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Abstract

We propose a generalization of Quillen’s exact category — arithmetic exact category
and we discuss conditions on such categories under which one can establish the notion of
Harder-Narasimhan filtrations and Harder-Narsimhan polygons. Furthermore, we show
the functoriality of Harder-Narasimhan filtrations (indexed by R), which can not be stated
in the classical setting of Harder and Narasimhan’s formalism.

1 Introduction

The notion of Harder-Narasimhan flag1 (or canonical flag) of a vector bundle on a smooth
projective curve over a field was firstly introduced by Harder and Narasimhan [10] to study the
cohomology groups of moduli spaces of vector bundles on curves. Let C be a smooth projective
curve on a field k and E be a non-zero locally free OC-module (i.e. vector bundle) of finite
type. Harder and Narasimhan proved that there exists a flag

0 = E0 ( E1 ( E2 ( · · · ( En = E

of E such that

1) each sub-quotient Ei/Ei−1 (i = 1, · · · , n) is semistable2 in the sense of Mumford,

2) we have the inequality of successive slopes

µmax(E) := µ(E1/E0) > µ(E2/E1) > · · · > µ(En/En−1) =: µmin(E).

The Harder-Narasimhan polygon of E is the concave function on [0, rkE], the graph of which
is the convex hull of points of coordinate (rkF, deg(F )), where F runs over all coherent sub-
OC -modules of E. Its vertexes are of coordinate (rkEi, deg(Ei)). The avatar of the above
constructions in Arakelov geometry was introduced by Stuhler [19] and Grayson [9]. Similar
constructions exist also in the theory of filtered isocristals [7]. Classically, the canonical flags
have no functoriality. Notice that already the length of canonical flags varies when the vector
bundle E changes. However, as we shall show in this article, if we take into account the minimal
slopes of non-zero subbundles Ei in the canonical flag, which coincide with successive slopes, i.e.
µmin(Ei) = µ(Ei/Ei−1), we obtain a filtration indexed by R which we call Harder-Narasimhan
filtration. Such construction has the functoriality.

1In most literature this notion is known as “Harder-Narasimhan filtration”. However, the so-called “Harder-
Narasimhan filtration” is indexed by a finite set, therefore is in fact a flag of the vector bundle. Here we would
like to reserve the term “Harder-Narasimhan filtration” for filtration indexed by R, which we shall define later
in this article.

2We say that a non-zero locally free OC-module of finite type F is semistable if for any non-zero sub-module
F0 of F we have µ(F0) ≤ µ(F ), where the slope µ is by definition the quotient of the degree by the rank.
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The category of vector bundles on a projective variety is exact in the sense of Quillen [16].
However, it is not the case for the category of Hermitian vector bundles on a projective arith-
metic variety, or the category of vector spaces equipped with a filtration. We shall propose a
new notion — arithmetic exact category — which generalizes simultaneously the three cases
above. Furthermore we shall discuss the conditions on such categories under which we can
establish the notion of semistability and furthermore the existence of Harder-Narasimhan fil-
trations. We also show how to associate to such a filtration a Borel probability measure on
R which is a linear combination of Dirac measures. This construction is an important tool to
study Harder-Narasimhan polygons in the author’s forthcoming work [5].

We point out that the categorical approach for studying semistability problems has been
developed in various context by different authors, among whom we would like to cite Bridgeland
[3], Lafforgue [12] and Rudakov [17].

This article is organized as follows. We introduce in the second section the formalism of
filtrations in an arbitrary category. In the third section, we present the arithmetic exact cat-
egories which generalizes the notion of exact categories in the sense of Quillen. We also give
several examples. The fourth section is devoted to the formalism of Harder and Narasimhan
on an arithmetic exact category equipped with degree and rank functions, subject to certain
conditions which we shall precise (such category will be called Harder-Narasimhan category in
this article). In the fifth section, we associate to each arithmetic object in a Harder-Narasimhan
category a filtration indexed by R, and we establish the fonctoriality of this construction. We
also explain how to apply this construction to the study of Harder-Narasimhan polygons. As an
application, we give a criterion of Harder-Narasimhan categories when the underlying exact cat-
egory is an Abelian category. The last section contains several examples of Harder-Narasimhan
categories where the arithmetic objects are classical in p-adic representation theory, algebraic
geometry and Arakelov geometry respectively.

Acknowledgement The results in this article is the continuation of part of the author’s
doctorial thesis supervised by J.-B. Bost to whom the author would like to express his gratitude.
The author is also thankful to A. Chambert-Loir, B. Keller and C. Mourougane for remarks.

2 Filtrations in a category

In this section we shall introduce the notion of filtrations in a general category and their
functorial properties. Here we are rather interested in left continuous filtrations. However, for
the sake of completeness, and for possible applications elsewhere, we shall also discuss the right
continuous counterpart, which is not dual to the left continuous case.

We fix throughout this section a non-empty totally ordered set I. Let I∗ be the extension
of I by adding a minimal element −∞. The new totally ordered set I∗ can be viewed as a
small category. Namely, for any pair (i, j) of objects in I∗, Hom(i, j) is a one point set {uij} if
i ≥ j, and is the empty set otherwise. The composition of morphisms is defined in the obvious
way. Notice that −∞ is the final object of I∗. The subset I of I∗ can be viewed as a full
subcategory of I∗.

If i ≤ j are two elements in I∗, we shall use the expression [i, j]
(
resp. ]i, j[, [i, j[, ]i, j]

)

to denote the set {k ∈ I∗ | i ≤ k ≤ j}
(
resp. {k ∈ I∗ | i < k < j}, {k ∈ I∗ | i ≤ k < j},

{k ∈ I∗ | i < k ≤ j}
)
.

Definition 2.1 Let C be a category and X be an object of C. We call I-filtration of X in C
any functor F : I∗ → C such that F(−∞) = X and that, for any morphism ϕ in I∗, F(ϕ) is a
monomorphism.
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Let F and G be two filtrations in C. We call morphism of filtrations from F to G any
natural transformation from F to G. All filtrations in C and all morphisms of filtrations form
a category, denoted by FilI(C). It’s a full subcategory of the category of functors from I∗ to
C.

Let (X,Y ) be a pair of objects in C, F be an I-filtration of X and G be an I-filtration of
Y . We say that a morphism f : X → Y is compatible with the filtrations (F ,G) if there exists
a morphism of filtrations F : F → G such that F (−∞) = f . If such morphism F exists, it is
unique since all canonical morphisms G(i)→ Y are monomorphic.

We say that a filtration F is exhaustive if lim−→F|I exists and if the morphism lim−→F|I → X

defined by the system (F(ui,−∞) : Xi → X)i∈I is an isomorphism. We say that F is separated
if lim←−F exists and is an initial object in C.

If i is an element in I, we denote by I<i (resp. I>i) the subset of I consisting of all elements
strictly smaller (resp. strictly greater) than i. We say that I is left dense (resp. right dense)
at i if I<i (resp. I>i) is non-empty and if sup I<i = i (resp. inf I>i = i). The subsets I<i and
I>i can also be viewed as full subcategories of I∗.

The following two easy propositions give criteria for I to be dense (left and right respec-
tively) at a point i in I.

Proposition 2.2 Let i be an element of I. The following conditions are equivalents:

1) I is left dense at i;

2) I<i is non-empty and the set ]j, i[ is non-empty for any j < i;

3) I<i is non-empty and the set ]j, i[ is infinite for any j < i.

Proposition 2.3 Let i be an element of I. The following conditions are equivalents:

1) I is right dense at i;

2) I>i is non-empty and the set ]i, j[ is non-empty for any j > i;

3) I>i is non-empty and the set ]i, j[ is infinite for any i > j.

We say that a filtration F is left continuous at i ∈ I if I is not left dense at i or if the
projective limit of the restriction of F on I<i exists and the morphism F(i)→ lim←−F|I<i

defined
by the system (F(uij) : F(i)→ F(j))j<i is an isomorphism. Similarly, we say that F is right
continuous at i ∈ I if I is not right dense at i or if the inductive limit of the restriction of F on
I>i exists and the morphism lim−→F|I>i

→ F(i) defined by the system (F(uji) : F(j)→ F(i))j>i
is an isomorphism. We say that a filtration F is left continuous (resp. right continuous ) if it
is left continuous (resp. right continuous) at every element of I. We denote by FilI,l(C) (resp.
FilI,r(C)) the full subcategory of FilI(C) formed by all left continuous (resp. right continuous)
filtrations in C.

Given an arbitrary filtration F , we want to construct a left continuous filtration which is
“closest” to the original one. The best candidate is of course the filtration F l such that

F l(i) =

{
lim←−k<i F(k), I is left dense at i,

F(i), otherwise.

However, this filtration is well defined only when all projective limits lim←−k<i F(k) exist for any

i ∈ I where I is left dense. Therefore, under the following supplementary condition (M) for
the category C:
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any non-empty totally ordered system of monomorphisms in C has a projective limit,

for any filtration F in C, the filtration F l exists. Furthermore, F 7−→ F l is a functor, which is
left adjoint to the forgetful functor from FilI,l(C) to FilI(C).

Similarly, given an arbitrary filtration F of an object in C, if for any i ∈ I where I is
right dense, the inductive limit of the system (F(j))j>i exists, and the canonical morphism
lim−→j>i

F(j)→ X defined by the system (F(uj,−∞) : F(j)→ X)j>i is monomorphic, then the

filtration Fr such that

Fr(i) =

{
lim−→j>i

F(j), I is right dense at i,

F(i), otherwise,

is right continuous. Therefore, if the following condition (M∗) is fulfilled for the category C:

any non-empty totally ordered system ( Xi
αi // X )i∈J of subobjects of an object

X in C has an inductive limit, and the canonical morphism lim−→Xi → X induced by
(αi)i∈J is monomorphic,

then for any filtration F in C, the filtration Fr exists, and F 7−→ Fr is a functor, which is
right adjoint to the forgetful functor from FilI,r(C) to FilI(C).

Let X be an object in C. All I-filtrations of X and all morphisms of filtrations equalling
to IdX at −∞ form a category, denoted by FilIX . We denote by FilI,lX (resp. FilI,rX ) the full

subcategory of FilIX consisting of all left continuous (resp. right continuous) filtrations of X .
The category FilIX has a final object CX which sends all i ∈ I∗ to X and all morphisms in I∗

to IdX . We call it the trivial filtration of X . If the condition (M) is verified for the category

C, the restriction of the functor F 7−→ F l on FilIX is a functor from FilIX to FilI,lX , which is

left adjoint to the forgetful functor FilI,lX → FilIX . Similarly, if the condition (M∗) is verified

for the category C, the restriction of the functor F 7−→ Fr on FilIX gives a functor from FilIX
to FilI,rX , which is right adjoint to the forgetful functor FilI,rX → FilIX .

In the following, we shall discuss functorial constructions of filtrations. Namely, given a
morphism f : X → Y in a category C and a filtration of X or Y , we shall explain how to
construct a “natural” filtration of the other.

Suppose that f : X → Y is a morphism in C and G is an I-filtration of Y . If the fiber
product in the functor category Fun(I∗, C), defined by f∗G := G ×CY

CX , exists, where CX
(resp. CY ) is the trivial filtration of X (resp. Y ), then the functor f∗G is a filtration of X .
We call it the inverse image of G by the morphism f . The canonical projection P from f∗G
to G gives a morphism of filtrations in FilI(C) such that P (−∞) = f . In other words, the
morphism f is compatible with the filtrations (f∗G,G). Since the fiber product commutes to
projective limits, if G is left continuous at a point i ∈ I, then also is f∗G.

If in the category C, all fiber products exist3, then for any morphism f : X → Y in C and
any filtration G of Y , the inverse image of G by f exists, and f∗ is a functor from FilIY to FilIX
which sends FilI,lY to FilI,lX .

Let C be a category and f : X → Y be a morphism in C. We call admissible decomposition
of f any triplet (Z, u, v) such that:

1) Z is an object of C,

2) u : X → Z is a morphism in C and v : Z → Y is a monomorphism in C such that f = vu.

3In this case, for any small category D, the category of functors from D to C supports fiber products. In
particular, all fiber products in the category Fil

I(C) exist.
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If (Z, u, v) and (Z ′, u′, v′) are two admissible decompositions of f , we call morphism of admis-
sible decompositions from (Z, u, v) to (Z ′, u′, v′) any morphism ϕ : Z → Z ′ such that ϕu = u′

and that v = v′ϕ.

Z

ϕ

��

v

  A
AA

AA
AA

A

X

u′

  A
AA

AA
AA

A

u

>>}}}}}}}}
f // Y

Z ′

v′

>>}}}}}}}

All admissible decompositions and their morphisms form a category, denoted by Dec(f). If the
category Dec(f) has an initial object (Z0, u0, v0), we say that f has an image. The monomor-
phism v0 : Z0 → Y is called an image of f , or an image of X in Y by the morphism f , denoted
by Im f .

Suppose that f : X → Y is a morphism in C and that F is a filtration of X . If for any i ∈ I,
the morphism f ◦F(ui,−∞) : F(i)→ Y has an image, then we can define a filtration f♭F of Y ,
which associates to each i ∈ I the subobject Im(f ◦ F(ui,−∞)) of Y . This filtration is called
the weak direct image of F by the morphism f . If furthermore the filtration f∗F := (f♭F)l

is well defined, we called it the strong direct image by f . Notice that for any filtration F of
X , the morphism f is compatible with filtrations (F , f♭F) and (F , f∗F) (if f♭F and f∗F are
well defined). Moreover, if any morphism in C has an image, then f♭ is a functor from FilIX to
FilIY . If in addition the condition (M) is fulfilled for the category C, f∗ is a functor from FilIX
to FilI,lY .

Proposition 2.4 Let C be a category which supports fiber products and such that any morphism
in it admits an image. If f : X → Y is a morphism in C, then the functor f∗ : FilIY → FilIX
is right adjoint to the functor f♭.

Proof. Let F be a filtration of Y , G be a filtration of X and τ : G → f∗F be a morphism.
For any i ∈ I let ϕi : F(i) → Y and ψi : G(i) → X be canonical morphisms, and let
(f♭G(i), ui, vi) be an image of G(i) by the morphism fψi. Since the morphism ϕi : F(i)→ Y is
monomorphic, there exists a unique morphism ηi from f♭G(i) to F(i) such that ϕiηi = vi and
that ηiui = pr1 τ(i).

f∗F(i)
pr1 //

��

F(i)

ϕi

��

G(i)

τ(i)
;;wwwwwwwww

ui //

ψi $$H
HHHHHHHH

f♭G(i)

ηi

;;wwwwwwww

vi

##H
HHHHHHHH

X
f

// Y

Hence we have a functorial bijection HomFilI
X

(G, f∗F)
∼−→ HomFilI

Y
(f♭G,F). 2

Corollary 2.5 With the notations of the previous proposition, if we suppose in addition that
the condition (M) is verified for the category C, then for any morphism f : X → Y in C, the

functor f∗ : FilI,lY → FilIX is right adjoint to the functor f∗.
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Proof. For any filtrationF ofX and any left continuous filtration G of Y , we have the following
functorial bijections

HomFilI
X

(F , f∗G) ∼−→ HomFilI
Y
(f♭F ,G) ∼−→ Hom

Fil
I,l

Y

(f∗F ,G).

2

In the last part of the section, we shall discuss a special type of filtrations, namely filtrations
of finite length, which are important for later sections.

Let C be a category. We say that a filtration F of X ∈ objC is of finite length if there exists
a finite subset I0 of I such that, for any i > j satisfying I0 ∩ [j, i] = ∅, the morphism F(uij)
is isomorphic. The subset I0 of I is called a jumping set of F . We may have different choices
of jumping set. In fact, if I1 is an arbitrary finite subset of I and if I0 is a jumping set of F ,
then I0 ∪ I1 is also a jumping set of F . However, the intersection of all jumping sets of F is
itself a jumping set, called the minimal jumping set of F .

Let f : X → Y be a morphism in C. If G is a filtration of finite length of Y such that f∗G
is well defined, then the filtration f∗G is also of finite length since the fibre product preserves
isomorphisms.

Let C be a category, X be an object in C and F be an I-filtration of X . We say that F is
left locally constant at i ∈ I if I is not left dense at i or if there exists j < i such that F(uij)
is an isomorphism, or equivalently F(uik) is an isomorphism for any k ∈ [j, i[. Similarly, we
say that F is right locally constant at i if I is not right dense at i or if there exists j > i such
that F(uji) is an isomorphism, or equivalently, F(uki) is an isomorphism for any k ∈]i, j]. We
say that the filtration F is left locally constant (resp. right locally constant) if it is left locally
constant (resp. right locally constant) at any point i ∈ I.

Proposition 2.6 Let C be a category, X be an object in C, F be a filtration of finite length of
X, and I0 be a jumping set of F . For any i ∈ I \ I0, the filtration F is left and right locally
constant at i.

Proof. Let i ∈ I \I0 be an element where I is left dense. Since I0 is a finite set, also is I<i∩I0.
Let j0 = max(I<i ∩ I0). We have j0 < i, therefore the set ]j0, i[ is non-empty since I is left
dense at i. Choose an arbitrary element j ∈]j0, i[. We have [j, i] ∩ I0 = ∅, so F(ui,j) is an
isomorphism. Therefore, F is left locally constant at i. The proof for the fact that F is right
locally constant at i is similar. 2

Proposition 2.7 If the filtration F is left locally constant (resp. right locally constant), then
it is left continuous (resp. right continuous). The converse is true when the filtration F is of
finite length.

Proof. “=⇒” is trivial.
“⇐=”: Suppose that F is a left continuous filtration of finite length. Let I0 be a jumping

set of F . If I is left dense at i, there then exists an element j < i in I such that [j, i[∩I0 = ∅.
Since F is left continuous at i, F(i) is the projective limit of a totally ordered system of isomor-
phisms. Therefore F(uij) is an isomorphism. The proof of the other assertion is the same. 2

Corollary 2.8 Let C be a category and F be a filtration of finite length in C. If F l (resp. Fr)
is well defined, then it is also of finite length.
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Proof. Let I0 be a jumping set of F . We know that the filtration F is left continuous outside
I0, hence for any i ∈ I \ I0 we have F l(i) = F(i), and if [j, i] ⊂ I doesn’t encounter I0, then
F l(uij) = F(uij). Therefore, F l is of finite length, and I0 is a jumping set of F l. The proof
for the other assertion is similar. 2

Corollary 2.9 Let C be a category, f : X → Y be a morphism in C and F be a filtration of
finite length of X. If f♭(F) (resp. f∗(F)) is well defined, then it is also of finite length.

Let C be a category and F be an I-filtration of an object X in C which is of finite length.
The filtration F is exhaustive if and only if there exists i1 ∈ I such that F(uji) is isomorphism
for all i ≤ j ≤ i1 in I∗. Suppose that C has an initial object, then the filtration F is separated
if and only if there exists i2 ∈ I such that F(i) is an initial object for any i ≥ i2.

Let C and D be two categories and F : C → D be a functor. If F sends any monomorphism
in C to a monomorphism in D, then F induces a functor F̃ : FilI(C) → FilI(D). If X is an

object of C and if F is a filtration of X , F̃ (F) is called the filtration induced from F by the
functor F . The following assertions can be deduced immediately from definition:

i) If F is left locally constant (resp. right locally constant, of finite length), then F̃ (F) is
left locally constant (resp. right locally constant, of finite length).

ii) If F is of finite length and exhaustive, then also is F̃ (F).

iii) Suppose that C and D have initial objects and that F preserves initial objects. If F is

separated and of finite length, the also is F̃ (F).

3 Arithmetic exact categories

The notion of exact categories is defined by Quillen [16]. It is a generalization of Abelian
categories. For example, the category of all locally free sheaves on a smooth projective curve
is an exact category, but it is not an Abelian category. Furthermore, there are natural cate-
gories which fail to be exact, but look alike. A typical example is the category of Hermitian
vector spaces and linear applications of norm ≤ 1. Another example is the category of finite
dimensional filtered vector spaces over a field and linear applications which are compatible with
filtrations. A common characteristic of such categories is that any object in such a category
can be described as an object in an exact category equipped with certain additional structure.
In the first example, it is a finite dimensional complex vector space equipped with a Hermitian
metric; and in the second one, it is a finite dimensional vector space equipped with a filtration.

In the following we shall formalize the above observation by a new notion — arithmetic
exact category — by proposing some axioms and we shall provide several examples. Let us
begin by recalling the exact categories in the sense of Quillen. Let C be an essentially small
category and let E be a class of diagrams in C of the form

0 // X ′ // X // X ′′ // 0 .

If 0 // X ′
f // X

g // X ′′ // 0 is a diagram in E , we say that f is an admissible
monomorphism and that g is an admissible epimorphism. We shall use the symbol “ // // ”
to denote an admissible monomorphism, and “ // // ” for an admissible epimorphism.

7



IfF : 0 // X ′ // X // X ′′ // 0 and G : 0 // Y ′ // Y // Y ′′ // 0
are two diagrams of morphisms in C, we call morphism from F to G any commutative diagram

0

(Φ) :

// X ′ //

ϕ′

��

X //

ϕ

��

X ′′ //

ϕ′′

��

0

0 // Y ′ // Y // Y ′′ // 0.

We say that (Φ) is an isomorphism if ϕ′, ϕ and ϕ′′ are all isomorphisms in C.

Definition 3.1 (Quillen) We say that (C, E) is an exact category if the following axioms are
verified:

(Ex1) For ay diagram

0 // X ′
ϕ // X

ψ // X ′′ // 0

in E , ϕ is a kernel of ψ and ψ is a cokernel of ϕ.

(Ex2) If X and Y are two objects in C, then the diagram

0 // X
(Id,0) // X ∐ Y

pr2 // Y // 0

is in E .

(Ex3) Any diagram which is isomorphe to a diagram in E lies also in E .

(Ex4) If f : X → Y and g : Y → Z are two admissible monomorphisms (resp. admissible
epimorphismes), then also is gf .

(Ex5) For any admissible monomorphism f : X ′
֌ X and any morphism u : X ′ → Y in C,

the fiber coproduct of f and u exists. Furthermore, if the diagram

X ′ // f //

u

��

X

v

��
Y g

// Z

is cocartesian, then g is an admissible monomorphism.

(Ex6) For any admissible epimorphism f : X ։ X ′′ and any morphism u : Y → X ′′ in C, the
fiber product of f and u exists. Furthermore, if the diagram

Z
g //

v

��

Y

u

��
X

f
// // X ′′

is cartesian, then g is an admissible epimorphism.

(Ex7) For any morphism f : X → Y in C having a kernel (resp. cokernel), if there exists
an morphism g : Z → X (resp. g : Y → Z) such that fg (resp. gf) is an admissible
epimorphism (resp. admissible monomorphism), then also is f itself.
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Keller [11] has shown that the axiom (Ex7) is actually a consequence of the other axioms.
If f : X → Y is an admissible monomorphism, by the axiom (Ex1), the morphism f admits

a cokernel which we shall note Y/X . The pair (X, f) is called an admissible subobject of Y .
After [16], if C is an Abelian category and if E is the class of all exact sequences in C,

then (C, E) is an exact category. Furthermore, any exact category can be naturally embedded
(through the additive version of Yoneda’s functor) into an Abelian category.

The following result is important for the axiom (A7) in Definition 3.3 below.

Proposition 3.2 Let (C, E) be an exact category and f : X → Y be a morphism in C.

1) The diagram

0 // X
(IdX ,f)// X ∐ Y

f◦pr1 − pr2 // Y // 0

is in E.

2) The morphism f factorizes as f = pr2 ◦(IdX , f). Furthermore, the second projection pr2 :
X ∐ Y → Y is an admissible epimorphism and (IdX , f) : X → X ∐ Y is an admissible
monomorphism.

Proof. Let Z = X ∐Y . Consider the morphisms u = (IdX , f) : X → Z and v = pr2 : Z → Y .
Clearly we have vu = f . Moreover, after the axiom (Ex2), v is an admissible epimorphism.
Therefore it suffices to verify that u is an admissible monomorphism. Consider the morphism
w = f ◦ pr1− pr2 : Z → Y . We shall prove that w is the cokernel of u. First we have wu = 0.
Furthermore, any morphism α : Z → S can be written in the form α = α1 ◦ pr1−α2 ◦ pr2 :
Z → S, where α1 ∈ Hom(X,S) and α2 ∈ Hom(Y, S). If αu = 0, we have α2f = α1, i.e., the
diagram

X
u // X ∐ Y w //

α
##G

GG
GG

GG
GG

Y

α2

��
S

is commutative. Finally, if β : Y → S satisfies βw = βf − β = α, then β = α2. Therefore, we
have proved that u has a cokernel.

Since the composition of moprhisms X
u // Z

pr1 // X is the identity morphism IdX ,
which is an admissible monomorphism, we know, thanks to axiom (Ex7), that u is also an
admissible monomorphism. 2

We now introduce the notion of arithmetic exact categories. As explained above, an arith-
metic exact category is an exact category where each object is equipped with a set of “arith-
metic structures”, subject to some compatibility conditions (axioms (A1) — (A6)). Finally,
the axiom (A7) shall be used to describe morphisms compatible with arithmetic structures.

Definition 3.3 Let (C, E) be an exact category. We call arithmetic structure on (C, E) the
following data:

1) a mapping A from objC to the class of sets,

2) for any admissible monomorphism f : X → Y , a mapping f∗ : A(Y )→ A(X),

3) for any admissible epimorphism g : X → Y , a mapping g∗ : A(X)→ A(Y ),

subject to the following axioms:
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(A1) A(0) is a one-point set,

(A2) if X // i // Y // j // Z are admissible monomorphisme, we have (ji)∗ = i∗j∗,

(A3) if X
p // // Y

q // // Z are admissible epimorphisms, we have (qp)∗ = q∗p∗,

(A4) for any object X of C, Id∗
X = IdX∗ = IdA(X),

(A5) if f : X → Y is an isomorphism, we have f∗f∗ = IdA(X) and f∗f
∗ = IdA(Y ),

(A6) for any cartesian or4 cocartesian square

X // u //

p
����

Y

q
����

Z //
v

// W

(1)

in C, where u and v (resp. p and q) are admissible monomorphisms (resp. admissible
epimorphisms), we have v∗q∗ = p∗u

∗,

(A7) if X
u // // Y // v // Z is a diagram in C where u (resp. v) is an admissible epimorphism

(resp. admissible monomorphism) and if (hX , hZ) ∈ A(X) × A(Z) satisfies u∗(hX) =
v∗(hZ), then there exists h ∈ A(X ∐Z) such that (Id, vu)∗(h) = hX and that pr2∗(h) =
hZ .

The triplet (C, E , A) is called an arithmetic exact category. For any object X of C, we call
arithmetic structure on X any element h in A(X). The pair (X,h) is called an arithmetic
object in (C, E , A). If p : X → Z is an admissible epimorphism, p∗(h) is called the quotient
arithmetic structure on Z. If i : Y → X is an admissible monomorphism, i∗h is called the
induced arithmetic structure on Y . (Z, p∗(h)) is called an arithmetic quotient and (Y, i∗(h) is
called an arithmetic subobject of (X,h).

Let (C, E) be an exact category. If for any object X of C, we denote by A(X) a one
point set, and we define induced and quotient arithmetic structure in the obvious way, then
(C, E , A) becomes an arithmetic exact category. The arithmetic structure A is called the trivial
arithmetic structure on the exact category (C, E). Therefore, exact categories can be viewed as
trivial arithmetic exact categories.

Let (C, E , A) be an arithmetic exact category. If (X ′, h′) and (X ′′, h′′) are two arithmetic
objects in (C, E , A), we say that a morphism f : X ′ → X ′′ in C is compatible with arithmetic
structures if there exists an arithmetic object (X,h), an admissible monomorphism u : X ′ → X
and an admissible epimorphism v : X → X ′′ such that h′ = u∗(h) and that h′′ = v∗(h).

From the definition of morphisms compatible with arithmetic structures, we obtain the
following assertions:

1) If (X1, h1) and (X2, h2) are two arithmetic objects and if f : X1 → X2 is an admissible
monomorphism (resp. admissible epimorphism) such that f∗h2 = h1 (resp. f∗h1 = h2),
then f is compatible with arithmetic structures.

2) If (X1, h1) and (X2, h2) are two arithmetic objects and if f : X1 → X2 is the zero morphism,
then f is compatible with arithmetic structures.

4Here we can prove that the square is actually cartesian and cocartesian.
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3) The composition of two morphisms compatible with arithmetic structure is also compatible
with arithmetic structure. This is a consequence of the axiom (A7).

Let (C, E , A) be an arithmetic exact category. After the argument 3) above, all arithmetic
objects in (C, E , A) and morphisms compatible with arithmetic structures form a category
which we shall denote by CA. In the following, in order to simplify the notations, we shall use
the symbol X to denote an arithmetic object (X,h) if there is no ambiguity on the arithmetic
structure h.

Let (C, E) be an exact category. Suppose that (Ai)i∈I is a family of arithmetic structure on
(C, E). For any object X in C, let A(X) =

∏
i∈I Ai(X). Suppose that h = (hi)i∈I is an element

in A(X). For any admissible monomorphism u : Y → X , we define u∗h := (u∗hi)i∈I ∈ A(Y );
for any admissible epimorphism π : X → Z, we define π∗h = (π∗hi)i∈I ∈ A(Z). Then it is
not hard to show that A is an arithmetic structure on (C, E). We say that A is the product
arithmetic structure of (Ai)i∈I , denoted by

∏
i∈I Ai.

We now give some examples of arithmetic exact categories.

Hermitian spaces

Let VecC be the category of finite dimensional vector spaces over C. It is an Abelian
category. Let E be the class of short exact sequences of finite dimensional vector spaces. For
any finite dimensional C-vector space E over C, let A(E) be the set of all Hermitian metrics on
E. Suppose that h is a Hermitian metric on E. If i : E0 → E is a subspace of E, we denote by
i∗(h) the induced metric on E0. If π : E → F is a quotient space of E, we denote by π∗(h) the
quotient metric on F . Then (VecC, E , A) is an arithmetic exact category. In fact, the axioms
(A1) — (A6) are easily verified. The verification of the axiom (A7) relies on the following
proposition.

Proposition 3.4 Let E, F0 and F be Hermitian spaces such that F0 is a quotient Hermitian
space of E and a Hermitian subspace of F . We denote by π : E → F0 the projection of E onto
F0 and by i : F0 → F the inclusion and we note ϕ = iπ. Then there exists a Hermitian metric
on E ⊕ F such that in the diagram

0 // E
(Id,ϕ) // E ⊕ F

pr2 // F // 0 ,

(Id, ϕ) : E → E ⊕ F is an inclusion and pr2 : E ⊕ F → F is a projection of Hermitian spaces.

Proof. Suppose that E ⊕ F is equipped with the Hermitian metric ‖ · ‖ such that for any
(x, y) ∈ E ⊕ F ,

‖(x, y)‖2 = ‖x− ϕ∗y‖2E + ‖y‖2F
where ‖ · ‖E and ‖ · ‖F are Hermitian metrics on E and on F respectively. Clearly with this
metric, pr2 : E⊕F → F is a projection of Hermitian spaces. Moreover, π∗ is the identification
of F0 to (Kerπ)⊥, i∗ is the orthogonal projection of F onto F0. Therefore, ϕ∗ϕ : E → E is the
orthogonal projection of E onto (Kerπ)⊥. Hence, for any vector x ∈ E, we have

‖(x, ϕ(x))‖2 = ‖x− ϕ∗ϕ(x)‖2E + ‖ϕ(x)‖2F = ‖x‖2E .

2

The assertion above works also in Hilbert spaces case with the same choice of metric.
Furthermore, it can be generalized to the family case. Suppose that X is a space ringed in
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R-algebra (resp. smooth manifold) and E, F0 and F are locally free OX,C-modules of finite
rank such that F0 is a quotient of E and a submodule of F . We denote by ϕ the canoical
homomorphism defined by the composition of the projection from E to F0 and the inclusion
of F0 into F . If E and F are equipped with continuous (resp. smooth) Hermitian metrics such
that for any point x ∈ X , the quotient metric on F0,x by the projection of Ex coincides with
the metric induced from that of Fx, then there exists a continuous (resp. smooth) Hermitian
metric on E ⊕ F such that for any point x ∈ X , the graph of ϕx defines an inclusion of
Hermitian spaces and the second projection Ex⊕Fx → Fx is a projection of Hermitian spaces.

The arithmetic objects in (VecC, E , A) are nothing other than Hermitian spaces. From
definition we see immediately that if a linear mapping ϕ : E → F of Hermitian spaces is
compatible with arithmetic structure, then the norm of ϕ must be smaller or equal to 1. The
following proposition shows that the converse is also true.

Proposition 3.5 Let ϕ : E → F be a linear map of Hermitian spaces. If ‖ϕ‖ ≤ 1, then there

exists a Hermitian metric on E ⊕ F such that in the decomposition E
(Id,ϕ) // E ⊕ F

pr2 // F
of ϕ, (Id, ϕ) is an inclusion of Hermitian spaces and pr2 is a projection of Hermitian spaces.

Proof. Since ‖ϕ‖ ≤ 1, we have ‖ϕ∗‖ ≤ 1. Therefore, we obtain the inequalities ‖ϕ∗ϕ‖ ≤ 1
and ‖ϕϕ∗‖ ≤ 1. Hence IdE −ϕ∗ϕ and IdF −ϕϕ∗ are Hermitian endomorphisms with positive
eigenvalues. So there exist two Hermitian endomorphisms with positive eigenvalues P and Q
of E and F respectively such that P 2 = IdE −ϕ∗ϕ and Q2 = IdF −ϕϕ∗.

If x is an eigenvector of ϕϕ∗ associated to the eigenvalue λ, then ϕ∗x is an eigenvector
of ϕ∗ϕ associated to the same eigenvalue. Therefore ϕ∗Qx =

√
1− λϕ∗x = Pϕ∗x. As F is

generated by eigenvectors of ϕϕ∗, we have ϕ∗Q = Pϕ∗. For the same reason we haveQϕ = ϕP .

Let R =

(
P ϕ∗

ϕ −Q

)
. As R is clearly Hermitian, and verifies

R2 =

(
P 2 + ϕ∗ϕ Pϕ∗ − ϕ∗Q
ϕP −Qϕ ϕϕ∗ +Q2

)
= IdE⊕F ,

it is an isometry for the orthogonal sum metric on E ⊕F . Let u : E → E ⊕F be the mapping

which sends x to

(
x
0

)
. The diagram

E
ϕ //

u

��

F

E ⊕ F
R

// E ⊕ F

pr2

OO

is commutative. The endomorphism ϕ∗ϕ is auto-adjoint, there exists therefore an orthonormal
base (xi)1≤i≤n of E such that ϕ∗ϕxi = λixi. Suppose that 0 ≤ λj < 1 for any 1 ≤ j ≤ k
and that λj = 1 for any k < j ≤ n. Let B : E → E be the C-linear mapping such that

B(xj) =
√

1− λjxj for 1 ≤ j ≤ k and that B(xj) = xj for j > k. Define S =

(
B ϕ∗

0 IdF

)
:

E ⊕ F → E ⊕ F . Since Ru =

(
P
ϕ

)
and since

(BP + ϕ∗ϕ)(xi) =
√

1− λiBxi + λixi =

{
(1− λi)xi + λixi = xi, 1 ≤ i ≤ k,
0Bxi + xi = xi, k < i ≤ n,

12



the diagram

E ⊕ F

S

��

pr2

))SSSSSSSS

E

Ru 55kkkkkkkk

τ ))SSSSSSSS F

E ⊕ F
pr2

55kkkkkkkk

is commutative, where τ =

(
IdE
ϕ

)
. We equip E ⊕ F with the Hermitian product 〈·, ·〉0 such

that, for any (α, β) ∈ (E ⊕ F )2, we have

〈α, β〉0 =
〈
S−1α, S−1β

〉
,

where 〈·, ·〉 is the orthogonal direct sum of Hermitian products on E and on F . Then for any
(x, y) ∈ E × E,

〈τ(x), τ(y)〉0 = 〈SRu(x), SRu(y)〉0 = 〈Ru(x), Ru(y)〉 = 〈u(x), u(y)〉 = 〈x, y〉 .

Finally, the kernel of pr2 is stable by the action of S, so the projections of 〈·, ·〉0 and of 〈·, ·〉
by pr2 are the same. 2

From the proof of Proposition 3.5, we see that a weaker form (the case where ‖ϕ‖ < 1) can
be generalized to the family case, no matter the family of Hermitian metrics is continuous or
smooth.

Ultranormed space

Let k be a field equipped with a non-Archimedean absolute value ‖ · ‖ under which k is
complete. We denote by Veck the category of finite dimensional vector spaces over k, which
is clearly an Abelian category. Let E be the class of short exact sequence in Veck. For any
finite dimension vector space E over k, we denote by A(E) the set of all ultranorms (see [2] for
definition) on E. Suppose that h is an ultranorm on E. If i : E0 → E is a subspace of E, we
denote by i∗(h) the induced ultranorm on E0. If π : E → F is a quotient space of E, we denote
by π∗(h) the quotient ultranorm on F . Then (Veck, E , A) is an arithmetic exact category. In
particular, the axiom (A7) is justified by the following proposition, which can be generalized
without any difficulty to Banach space case or family case.

Proposition 3.6 Let ϕ : E → F be a linear map of vector spaces over k. Suppose that E and
F are equipped respectively with the ultranorms hE and hF such that ‖ϕ‖ ≤ 1. If we equip E⊕F
with the ultranorm h such that, for any (x, y) ∈ E ⊕ F , h(x, y) = max(hE(x), hF (y)), then in

the decomposition E
(Id,ϕ) // E ⊕ F

pr2 // F of ϕ, we have (Id, ϕ)∗(h) = hE and pr2∗(h) = hF .

Proof. In fact, for any element x ∈ E, h(x, ϕ(x)) = max(hE(x), hF (ϕ(x))) = hE(x) since
hF (ϕ(x)) ≤ ‖ϕ‖hE(x) ≤ hE(x). Furthermore, by definition it is clear that hF = pr2∗(h).
Therefore the proposition is true. 2

Hermitian vector bundles

Let K be a number field and OK be its integer ring. For any scheme X of finite type
and flat over SpecOK such that XK is smooth, we denote by Vec(X ) the category of locally
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free modules of finite rank on X . If we denote by E the class of all short exact sequence of
coherent sheaves in Vec(X ), then (Vec(X ), E) is an exact category. Let Σ∞ be the set of all
embeddings of K in C. The space X (C) of complex points of X , which is a complex analytic
manifold, can be written as a disjoint union

X (C) =
∐

σ∈Σ∞

Xσ(C),

where Xσ(C) is the space of complex points in X ×OK ,σ Spec C. Notice that the complex
conjugation of C induces an involution F∞ : X (C)→X (C) which sends Xσ(C) onto Xσ(C).

We call Hermitian vector bundle on X any pair (E, h) where E is an object in Vec(X ) and
h = (hσ)σ∈Σ∞

is a collection such that, for any σ ∈ Σ∞, hσ is a continuous Hermitian metric
on Eσ(C), Eσ being E ⊗OK,σ C, subject to the condition that the collection h = (hσ)σ∈Σ∞

should be invariant under the action of F∞. The collection of Hermitian metrics h is called a
Hermitian structure on E. One can consult for example [1] and [4] for details. If i : E0 → E
is an injective homomorphism of OX -modules in Vec(X ), we denote by i∗(h) the collection
of induced metrics on (E0,σ(C))σ∈Σ∞

; if π : E → F is a surjective homomorphism of OX -
modules in Vec(X ), we denote by π∗(h) the collection of quotient metric on (Fσ(C))σ∈Σ∞

.
For any object E in Vec(X ), let A(E) be the set of all Hermitian structures on E. The family
version of Proposition 3.4 implies that (Vec(X ), E , A) is an arithmetic exact category. The
family version of Proposition 3.5 implies that, if (E, hE) and (F, hF ) are two Hermitian vector
bundles over X and if ϕ : E → F is a homomorphism of OX -modules in Vec(X ) such that,
for any x ∈ X (C), ‖ϕx‖ < 1, then ϕ is compatible with arithmetic structures.

We say that a Hermitian structure h = (hσ)σ∈Σ∞
on a vector bundle E on X is smooth

if for any σ ∈ Σ∞, hσ is a smooth Hermitian metric. For any vector bundle E on X , let
A0(E) be the set of all smooth Hermitian structures on E. Then (Vec(X ), E , A0) is also an
arithmetic exact category. If (E, hE) and (F, hF ) are two smooth Hermitian vector bundles
over X , then any homomorphism ϕ : E → F which has norm < 1 at every complex point of
X is compatible with arithmetic structures.

Filtrations in an Abelian category

Let C be an essentially small Abelian category and E be the class of short exact sequences
in C. It is well known that any finite projective limit (in particular any fiber product) exists
in C. Furthermore, any morphism in C has an image, which is isomorphic to the cokernel of
its kernel, or the kernel of its cokernel. For any object X in C, we denote by A(X) the set5

of isomorphism classes of left continuous I-filtrations of X , where I is a totally ordered set, as
explained in the beginning of the second section. For any left continuous I-filtration F of X ,
we denote by [F ] the isomorphism class of F . If u : X0 → X is a monomorphism, we define
u∗[F ] to be the class of the inverse image u∗F . If π : X → Y is an epimorphism, we define
π∗[F ] to be the class of the strong direct image π∗F .

We assert that (C, E , A) is an arithmetic exact category. In fact, the axioms (A1) — (A5)
are clearly satisfied. We now verify the axiom (A6). Consider the diagram (1) in Definition 3.3,
which is the right sagittal square of the following diagram (2). Suppose given an I-filtration
F of Y . For any i ∈ I, we note Yi = F(i) and we denote by bi : Yi → Y the canonical

5This is a set because C is essentially small.
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monomorphism.

Zi // ci //
��
vi

��

Z
��

v

��

Xi

pi

>>

��

ui

��

//
ai

// X

p

>> >>~~~~~~~~

��

u

��

Wi
// di // W

Yi

qi

>> >>||||||||
//

bi

// Y

q

>> >>~~~~~~~~

(2)

Let di : Wi → W be the image of qbi in W and qi : Yi → Wi be the canonical epimorphism.
Let (Zi, ci, vi) be the fiber product of v and di, and (Xi, ai, ui) be the fiber product of u and
bi. Therefore, in the diagram (2), the two coronal square and the right sagittal square are
cartesian, the inferior square is commutative. As vpai = quai = qbiui = diqiui, there exists a
unique morphism pi : Xi → Zi such that cipi = pai and that vipi = qiui. It is then not hard
to verify that the left sagittal square is cartesian, therefore pi is an epimorphism, so Zi is the
image of pai. The axiom (A6) is therefore verified. Finally, the verification of the axiom (A7)
follows from the following proposition.

Proposition 3.7 Let X and Y be two objects in C and let F (resp. G) be an I-filtration of X
(resp. Y ). If f : X → Y is a morphism which is compatible with the filtrations (F ,G), then
there exists a filtration H on X ⊕ Y such that Γ∗

fH = F and pr2∗H = G, where Γf = (Id, f) :
X → X ⊕ Y is the graph of f and pr2 : X ⊕ Y → Y is the projection onto the second factor.

Proof. Let H be the filtration such that H(i) = F(i)⊕G(i). Clearly it is left continuous, and
pr2♭H = G. Therefore pr2∗H = Gl = G. Moreover, for any i ∈ I, consider the square

F(i)
φi //

(Id,fi)

��

X

(Id,f)

��
F(i)⊕ G(i)

Φi

// X ⊕ Y

(3)

where φi : F(i) → X and Φi = φi ⊕ ψi : F(i) ⊕ G(i) → X ⊕ Y are canonical inclusions,
fi : F(i) → G(i) is the morphism through which the restriction of f on F(i) (i.e., fφi)
factorizes. Then the square (3) is commutative. Suppose that α : Z → X and β = (β1, β2) :
Z → F(i)⊕ G(i) are two morphisms such that (Id, f)α = Φiβ.

Z

β1

$$

α

$$

β

$$

F(i)
φi //

(Id,fi)

��

X

(Id,f)

��
F(i)⊕ G(i)

Φi

// X ⊕ Y

(4)

Then we have α = φiβ1 and fα = ψiβ2. So

ψiβ2 = fα = fφiβ1 = ψifiβ1.
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As ψi is a monomorphism, we obtain that fiβ1 = β2. So β1 : Z → F(i) is the only morphism
such that the diagram (4) commutes. Hence we get F = (Id, f)∗H. 2

Notice that the category of arithmetic objects CA is equivalent to the category FilI,l(C)
of left continuous filtrations. Moreover, there exist some variants of (C, E , A). For example,
if for any object X in C, we denote by A0(X) the set of isomorphism classes of I-filtrations
which are separated, exhaustive, left continuous and of finite length. Then (C, E , A0) is also an
arithmetic exact category. Furthermore, the category CA0

is equivalent to FilI,self(C), the full
subcategory of FilI,l(C) consisting of filtrations which are separated, exhaustive, left continous
and of finite length.

4 Harder-Narasimhan categories

In this section we introduce the formalism of Harder-Narasimhan filtrations (indexed by
R) on arithmetic exact categories. Let (C, E , A) be an arithmetic exact category. We say that
an arithmetic object (X,h) is non-zero if X is non-zero in C. Since C is essentially small, the
isomorphism classes of objects in CA form a set.

We denote by EA the class of diagrams of the form

0 // (X ′, h′)
i // (X,h)

p // (X ′′, h′′) // 0

where (X ′, h′), (X,h) and (X ′′, h′′) are arithmetic objects and

0 // X ′
i // X

p // X ′′ // 0

is a diagram in E such that h′ = i∗(h) and h′′ = p∗(h).
Let K0(C, E , A) be the free Abelian group generated by isomorphism classes in CA, modulo

the subgroup generated by elements of the form [(X,h)]− [(X ′, h′)]− [(X ′′, h′′)], where

0 // (X ′, h′)
i // (X,h)

p // (X ′′, h′′) // 0

is a diagram in EA, in other words, 0 // X ′
i // X

p // X ′′ // 0 , and i∗(h) = h′,
p∗(h) = h′′. The group K0(C, E , A) is called the Grothendieck group of the arithmetic exact
category (C, E , A). We have a “forgetful” homomorphism from K0(C, E , A) to K0(C, E), the
Grothendieck group6 of the exact category (C, E), which sends [(X,h)] to [X ].

In order to establish the semi-stability of arithmetic objects and furthermore the Harder-
Narasimhan formalism, we need two auxiliary homomorphisms of groups. The first one, from
K0(C, E , A) to R, is called a degree function on (C, E , A); and the second one, from K0(C, E) to
Z, which takes strictly positive values on elements of the form [X ] with X non-zero, is called
a rank function on (C, E).

Now let d̂eg : K0(C, E , A) → R be a degree function on (C, E , A) and rk : K0(C, E) → Z

be a rank function on (C, E). For any arithmetic object (X,h) in (C, E , A), we shall use

the expressions d̂eg(X,h) and rk(X) to denote d̂eg([(X,h)]) and rk([X ]), and call them the
arithmetic degree and the rank of (X,h) respectively. If (X,h) is non-zero, the quotient

µ̂(X,h) = d̂eg(X,h)/ rk(X) is called the arithmetic slope of (X,h). We say that a non-zero

6Which is, by definition, the free Abelian group generated by isomorphism classes in C, modulo the sub-

group generated by elements of the form [X]− [X′]− [X′′], where 0 // X′ // X // X′′ // 0
is a diagram in E.
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arithmetic object (X,h) is semistable if for any non-zero arithmetic subobject (X ′, h′) of (X,h),
we have µ̂(X ′, h′) ≤ µ̂(X,h).

The following proposition provides some basic properties of arithmetic degrees and of arith-
metic slopes.

Proposition 4.1 Let us keep the notations above.

1) If 0 // (X ′, h′) // (X,h) // (X ′′, h′′) // 0 is a diagram in EA, then

d̂eg(X,h) = d̂eg(X ′, h′) + d̂eg(X ′′, h′′).

2) If (X,h) is an arithmetic object of rank 1, then it is semistable.

3) Any non-zero arithmetic object (X,h) is semistable if and only if for any non-trivial arith-
metic quotient (X ′′, h′′) (i.e., X ′′ does not reduce to zero and is not canonically isomorphic
to X), we have µ̂(X,h) ≤ µ̂(X ′′, h′′).

Proof. Since d̂eg is a homomorphism from K0(C, E , A) to R, 1) is clear.
2) If (X ′, h′) is an arithmetic subobject of (X,h), then it fits into a diagram

0 // (X ′, h′)
f // (X,h) // (X ′′, h′′) // 0

in CA. Since X ′ is non-zero, rk(X ′) ≥ 1. Therefore rk(X ′′) = 0 and hence X ′′ = 0. In other
words, f is an isomorphism. So we have µ̂(X ′, h′) = µ̂(X,h).

3) For any diagram

0 // (X ′, h′) // (X,h) // (X ′′, h′′) // 0

in EA, (X ′′, h′′) is non-trivial if and only if (X ′, h′) is non-trivial. If (X ′, h′) and (X ′′, h′′) are
both non-trivial, we have the following equality

µ̂(X,h) =
rk(X ′)

rk(X)
µ̂(X ′, h′) +

rk(X ′′)

rk(X)
µ̂(X ′′, h′′).

Therefore µ̂(X ′, h′) ≤ µ̂(X,h)⇐⇒ µ̂(X ′′, h′′) ≥ µ̂(X,h). 2

We are now able to introduce conditions ensuring the existence and the uniqueness of
Harder-Narasimhan “flag”. The conditions will be proposed as axioms in the coming definition,
and in the theorem which follows, we shall prove the existence and the uniqueness of Harder-
Narasimhan “flag”.

Definition 4.2 Let (C, E , A) ba an arithmetic exact category, d̂eg : K0(C, E , A) → R be a

degree function and rk : K0(C, E) → Z be a rank function. We say that (C, E , A, d̂eg, rk) is a
Harder-Narasimhan category if the following two axioms are verified:

(HN1) For any non-zero arithmetic object (X,h), there exists an arithmetic subobject (Xdes, hdes)
of (X,h) such that

µ̂(Xdes, hdes) = sup{µ̂(X ′, h′) | (X ′, h′) is a non-zero arithmetic subobject of (X,h)}.
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Furthermore, for any non-zero arithmetic subobject (X0, h0) of (X,h) such that µ̂(X0, h0) =
µ̂(Xdes, hdes), there exists an admissible monomorphism f : X0 → Xdes such that the
diagram

X0
f //

j ""E
EE

EE
EE

E
Xdes

i

��
X

is commutative and that f∗(hdes) = h0, where i and j are canonical admissible
monomorphisms.

(HN2) If (X1, h1) and (X2, h2) are two semistable arithmetic objects such that µ̂(X1, h1) >
µ̂(X2, h2), there exists no non-zero morphism from X1 to X2 which is compatible with
arithmetic structures.

With the notations of Definition 4.2, if (X,h) is a non-zero arithmetic object, then (Xdes, hdes)
is a semistable arithmetic object. If in addition (X,h) is not semistable, we say that (Xdes, hdes)
is the arithmetic subobject which destabilizes (X,h).

Theorem 4.3 Let (C, E , A, d̂eg, rk) be a Harder-Narasimhan category. If (X,h) is a non-zero
arithmetic object, then there exists a sequence of admissible monomorphisms in C:

0 = X0
// X1

// · · · // Xn−1
// Xn = X , (5)

unique up to a unique isomorphism, such that, if for any integer 0 ≤ i ≤ n, we denote by hi
the induced arithmetic structure (from h) on Xi and if we equip, for any integer 1 ≤ j ≤ n,
Xj/Xj−1 with the quotient arithmetic structure (of hj), then

1) for any integer 1 ≤ j ≤ n, the arithmetic object Xj/Xj−1 defined above is semistable;

2) we have the inequalities µ̂(X1/X0) > µ̂(X2/X1) > · · · > µ̂(Xn/Xn−1).

Proof. First we prove the existence by induction on the rank r of X . The case where (X,h)
is semistable is trivial, and a fortiori the existence is true for r = 1. Now we consider the case
where (X,h) isn’t semistable. Let (X1, h1) = (Xdes, hdes). It’s a semistable arithmetic object,
and X ′ = X/X1 is non-zero. The rank of X ′ being strictly smaller than r, we can therefore
apply the induction hypothesis on (X ′, h′), where h′ is the quotient arithmetic structure. We
then obtain a sequence of admissible monomorphisms

0 = X ′
1

f ′

1 // X ′
2

// · · · // X ′
n−1

f ′

n−1 // X ′
n = X ′

verifying the desired condition.
Since the canonical morphism fromX toX ′ is an admissible epimorphism, for any 1 ≤ i ≤ n,

if we note Xi = X ×X′ X ′
i, then by the axiom (Ex6), the projection πi : Xi → X ′

i is an
admissible epimorphism. For any integer 1 ≤ i < n, we have a canonical morphism from Xi to
Xi+1 and the square

Xi
fi //

πi

����

Xi+1

πi+1

����
X ′
i

f ′

i

// X ′
i+1

(6)
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is cartesian. Since f ′
i is an monomorphism, also is fi (cf. [13] V. 7). On the other hand, since

the square (6) is cartesian, fi is the kernel of the composed morphism

Xi+1
πi+1 // // X ′

i+1

pi // // X ′
i+1/X

′
i ,

where pi is the canonical morphism. Since πi+1 and pi are admissible epimorphisms, also is
piπi+1 (see axiom (Ex4)). Therefore fi is an admissible monomorphism. Hence we obtain a
commutative diagram

0 = X0
// X1

f1 //

π1

��

X2
//

π2

��

· · · // Xn−1
fn−1 //

πn−1

��

Xn = X

π

��
0 = X ′

1
f ′

1

// X ′
2

// · · · // X ′
n−1

f ′

n−1

// X ′
n = X ′

where the horizontal morphisms in the lines are admissible monomorphisms and the vertical
morphisms are admissible epimorphisms. Furthermore, for any integer 1 ≤ i ≤ n− 1, we have
a natural isomorphism ϕi from Xi+1/Xi to X ′

i+1/X
′
i. We denote by gi (resp. g′i) the canonical

morphism from Xi (resp. X ′
i) to X (resp. X ′). Let hi = g∗i (h) (resp. h′i = g′i

∗
(h′)) be the

induced arithmetic structure on Xi (resp. X ′
i). After the axiom (A6), πi∗(hi) = πi∗f

∗
i (h) =

f ′∗
i π∗(h) = h′i. Therefore ϕi∗ sends the quotient arithmetic structure on Xi+1/Xi to that

on X ′
i+1/X

′
i. Hence the arithmetic object Xi+1/Xi is semistable and we have the equality

µ̂(Xi+1/Xi) = µ̂(X ′
i+1/X

′
i). Finally, since X1 = Xdes, we have

µ̂(X2/X1) =
rk(X2)µ̂(X2)− rk(X1)µ̂(X1)

rk(X2)− rk(X1)
< µ̂(X1).

Therefore the sequence 0 = X0
// X1

// · · · // Xn−1
// Xn = X satisfies the de-

sired conditions.
We then prove the uniqueness of the sequence (5). By induction we only need to prove

that X1
∼= Xdes. Let i be the first index such that the canonical morphism Xdes → X factor-

izes through Xi+1. The composed morphism Xdes→Xi+1→Xi+1/Xi is then non-zero. Since
Xdes and Xi+1/Xi are semistable, we have µ̂(Xdes) ≤ µ̂(Xi+1/Xi). This implies i = 0 and
µ̂(Xdes) = µ̂(X1). Therefore the morphism X1 → X factorizes through Xdes. So we have
Xdes

∼= X1. 2

From the proof above we see that the axiom (HN1) suffices for the existence. It is the
axiom (HN2) which ensures the uniqueness.

Definition 4.4 With the notations of Theorem 4.3, the sequence (5) is called the Harder-
Narasimhan sequence of the (non-zero) arithmetic object (X,h). Sometimes we write instead

0 = X0
// X1

// · · · // Xn−1
// Xn = X

for underlining the arithmetic structures. The real numbers µ̂(X1) and µ̂(X/Xn−1) are called
respectively the maximal slope and the minimal slope of X, denoted by µ̂max(X) and µ̂min(X).
We point out that for any integer 1 ≤ i ≤ n,

0 = X0
// X1

// · · · // Xi−1
// Xi

is the Harder-Narasimhan sequence ofX i. Therefore we have µ̂min(X i) = µ̂(Xi/Xi−1). Finally,
we define by convention µ̂max(0) = −∞ and µ̂min(0) = +∞.
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Corollary 4.5 Let (C, E , A, d̂eg, rk) be a Harder-Narasimhan category and X be a non-zero
arithmetic object.

1) For any non-zero arithmetic subobject Y of X, we have µ̂max(Y ) ≤ µ̂max(X).

2) For any non-zero arithmetic quotient Z of X, we have µ̂min(Z) ≥ µ̂min(X).

3) We have the inequalities µ̂min(X) ≤ µ̂(X) ≤ µ̂max(X).

Proof. Let 0 = X0 −→ X1 −→ · · · −→ Xn−1 −→ Xn = X be the Harder-Narasimhan
sequence of X.

1) After replacing Y by Y des we may suppose that Y is semistable. Let i be the first index
such that the canonical morphism Y → X factorizes through Xi+1. The composed morphism
Y → Xi+1 → Xi+1/Xi is non-zero and compatible with arithmetic structures. Therefore

µ̂(Y ) ≤ µ̂(Xi+1/Xi) ≤ µ̂max(X).

2) After replacing Z by a semistable quotient we may suppose that Z is itself semistable.
Let f : X → Z be the canonical morphism. It is an admissible epimorphism. Let i be the

smallest index such that the composed morphism Xi+1 → X
f→ Z is non-zero. Since the

composed morphism Xi → X
f→ Z is zero, we obtain a non-zero morphism from Xi+1/Xi to

Z which is compatible with arithmetic structures after Axiom (A6).

Xi+1
// //

����

X

����
Xi+1/Xi

// // X/Xi
// // Z

Therefore µ̂(Z) ≥ µ̂(Xi+1/Xi) ≥ µ̂min(X).

3) We have d̂eg(X) =

n∑

i=1

d̂eg(Xi/Xi−1). Therefore

µ̂(X) =

n∑

i=1

rk(Xi/Xi−1)

rk(X)
µ̂(Xi/Xi−1) ∈

[
µ̂min(X), µ̂max(X)

]
.

2

It is well known that if E and F are two vector bundles on a smooth projective curve C
such that µmin(E) > µmax(F ), then there isn’t any non-zero homomorphism from E to F . The
following result (Proposition 4.7) generalizes this fact to Harder-Narasimhan categories.

Lemma 4.6 Let (C, E , A) be an arithmetic exact category. Suppose that any epimorphism in
C has a kernel. Let (X,hX) and (Z, hZ) be two arithmetic objects, (Y, hY ) be an arithmetic
quotient of (X,hX), and f : Y → Z be a morphism in C. Denote by π : X → Y the canonical
admissible epimorphism. The morphism f is compatible with arithmetic structures if and only
if it is the case for fπ.

Proof. Since π is compatible with arithmetic structures, the compatibility of f with arithmetic
structures implies that of fπ. It then suffices to verify the converse assertion. By definition

there exists an arithmetic object (W,hW ) and a decomposition X // i // W
p // // Z of fπ
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such that i∗hW = hX and p∗hW = hZ . Let T be the fiber coproduct of i and π and let
j : Y → T and q : W → T be canonical morphisms. After Axiom (Ex5), j is an admissible
monomorphism. Let τ : U ֌ X be the kernel of π. We assert that q = Coker(iτ). On one
hand, we have qiτ = jπτ = 0. On the other hand, if α : W → V is a morphism in C such
that αiτ = 0, then there exists a unique morphism β : Y → V such that βπ = αi since π is a
cokernel of τ . Therefore, there exits a unique morphism γ : T → V such that γq = α. So q is a
cokernel of iτ , hence an admissible epimorphism. The morphisms p : W ։ Z and f : Y → Z
induce a morphism g : T → Z:

U
��

τ

��
X // i //

π
����

W

q
����

p

    A
AA

AA
AA

A

Y //
j

// T g
// Z

Since g is an epimorphism, by hypothesis it has a kernel. After Axiom (Ex7), it is an admis-
sible epimorphism. Finally if we denote by hT the arithmetic structure q∗hW on T , we have
g∗(hT ) = p∗(hW ) = hZ and j∗(hT ) = π∗(i

∗hW ) = π∗(hX) = hY . 2

Proposition 4.7 Let (C, E , A, d̂eg, rk) be a Harder-Narasimhan category. Suppose that any
epimorphism in C has a kernel. If X and Y are two arithmetic objects and if f : X → Y is a
non-zero morphism compatible with arithmetic structures, then µ̂min(X) ≤ µ̂max(Y ).

Proof. Let 0 = X0
// X1

// · · · // Xn−1
// Xn = X be the Harder-Narasimhan

sequence of X. For any integer 0 ≤ i ≤ n, let hi : Xi → X be the canonical monomorphism.
Let 1 ≤ j ≤ n be the first index such that fhj is non-zero. Since fhj−1 = 0, the morphism
fhj factorizes through Xj/Xj−1, so we get a non-zero morphism g from Xj/Xj−1 to Y . After
Lemma 4.6, g is compatible with arithmetic structures. Let

0 = Y 0
// Y 1

// · · · // Y m−1
// Y m

be the Harder-Narasimhan sequence of Y . Let 1 ≤ k ≤ n be the first index such that g factorizes
through Yk. If π : Yk → Yk/Yk−1 is the canonical morphism, then πg is non-zero since g doesn’t
factorize through Yk−1. Furthermore, it is compatible with arithmetic structures. Therefore,
we have

µ̂min(X) ≤ µ̂(Xj/Xj−1) ≤ µ̂(Yk/Yk−1) ≤ µ̂max(Y ).

2

Corollary 4.8 Keep the notations and the hypothesis of Proposition 4.7.

1) If in addition f is monomorphic, then µ̂max(X) ≤ µ̂max(Y ).

2) If in addition f is epimorphic, then µ̂min(X) ≤ µ̂min(Y ).

Proof. Suppose that f is monomorphic. Let i : Xdes → X be the canonical morphism. Then
the composed morphism fi : Xdes → Y is non-zero and compatible with arithmetic structures.
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Therefore µ̂max(X) = µ̂min(Xdes) ≤ µ̂max(Y ). The proof of the other assertion is similar. 2

If the arithmetic structureA is trivial, then any morphism in C is compatible with arithmetic
structures. Therefore in this case we may remove the hypothesis on the existence of kernels
in Proposition 4.7 and in Corollary 4.8. However, we don’t know whether in general case we
can remove the hypothesis that any epimorphism in C has a kernel, although this condition is
fulfilled for all examples that we have discussed in the previous section.

In the following, we give an example of Harder-Narasimhan category, which will play an
important role in the next section. Let C be an Abelian category and E be the class of all short
exact sequences in C. We suppose given a rank function rk : K0(C) → Z. In this example we
take the totally ordered set I as a subset of R (with the induced order). For any object X

in C, let A0(X) be the set of isomorphism classes in FilI,selfX . We have shown in the previous
section that (C, E , A0) is an arithmetic exact category. Any arithmetic object X = (X,h)
of this arithmetic exact category may be considered, after choosing a representative in h, as
an object X in C equipped with an R-filtration (Xλ)λ∈I which is separated, exhaustive, left
continuous and of finite length. We define a real number7

d̂eg(X) =
∑

λ∈I

λ
(

rk(Xλ)− sup
j>λ,j∈I

rk(Xj)
)
.

The summation above turns out to be finite since the filtration is of finite length and its
value doesn’t depend on the choice of the representative in h. If X = (X, (Xλ)λ∈I) and
Y = (Y, (Yλ)λ∈I) are two arithmetic objects and if f : X → Y is an isomorphism which is
compatible with arithmetic structures, then for any λ ∈ I, we have rk(Xλ) ≤ rk(Yλ). Therefore

we have d̂eg(X) ≤ d̂eg(Y ) by Abel’s summation formula.

We now show that the function d̂eg defined above extends naturally to a homomorphism
from K0(C, E , A0) to R. Let

0 // X ′
u // X

p // X ′′ // 0

be a short exact sequence in C. Suppose that F ′ = (X ′
λ)λ∈I (resp. F = (Xλ)λ∈I , F ′′ =

(X ′′
λ)λ∈I) is an R-filtration of X ′ (resp. X , X ′′) which is separated, exhaustive, left continuous

and of finite length, and such that F ′ = u∗(F), F ′′ = p∗(F). Then for any real number λ ∈ I
we have a canonical exact sequence

0 // X ′
λ

// Xλ
// X ′′

λ
// 0 .

Therefore, d̂eg(X, [F ]) = d̂eg(X ′, [F ′]) + d̂eg(X ′′, [F ′′]). Notice that an non-zero arithmetic
object X = (X, [F ]) is semistable if and only if the filtration F has a jumping set which reduces
to a one point set. If X is semistable and if {λ} is a jumping set of F , then the arithmetic
slope of X is just λ. Therefore, if X = (X, [F ]) and Y = (Y, [G]) are two semistable arithmetic
objects such that λ := µ̂(X) > µ̂(Y ), then any morphism f : X → Y which is compatible with
filtrations sends F(λ) = X into G(λ) = 0, therefore is the zero morphism.

If X = (X, [F ]) is a non-zero arithmetic object, we denote by Xdes the non-zero object in
the filtration F having the maximal index. The existence of Xdes is justified by the finiteness
and the left continuity of F . The arithmetic subobject Xdes of X is semistable. Furthermore,

7Here sup∅ = 0 by convention.
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for any non-zero arithmetic subobject Y = (Y, [G]) of X , we have

µ̂(Y ) =
1

rk(Y )

∑

λ∈I

λ
(

rk(G(λ)) − sup
j>λ,j∈I

rk(G(j))
)

≤ 1

rk(Y )

∑

λ∈I

µ̂(Xdes)
(

rk(G(λ)) − sup
j>λ,j∈I

rk(G(j))
)

= µ̂(Xdes).

The equality holds if and only if Y is semistable and of slope µ̂(Xdes), in this case, the canonical
morphism from Y to X factorizes through Xdes since it is compatible with filtrations. Hence

we have proved that (C, E , A0, d̂eg, rk) is a Harder-Narasimhan category.
Suppose that X = (X, [F ]) is a non-zero arithmetic object, where F = (Xλ)λ∈R. If E =

{λ1 > λ2 > · · · > λn} is the minimal jumping set of F (i.e. the intersection of all jumping sets
of F , which is itself a jumping set of F), then

0 // Xλ1
// Xλ2

// · · · // Xλn
= X

is the Harder-Narasimhan sequence of X. Furthermore, µ̂(Xλ1
) = λ1, and for any 2 ≤ i ≤ n,

µ̂(Xλi
/Xλi−1

) = λi.

5 Harder-Narasimhan filtrations and polygons

We fix in this section a Harder-Narasimhan category (C, E , A, d̂eg, rk). We shall intro-
duce the notions of Harder-Narasimhan filtrations and Harder-Narasimhan measures for an
arithmetic object in (C, E , A, d̂eg, rk). We shall also explain that if D is an Abelian category
equipped with a rank function and if there exists an exact functor F : C → D which pre-
serves rank functions, then for any non-zero arithmetic object X in C, the Harder-Narasimhan
filtration of X induces a filtration of F (X), which defines an arithmetic object F (X) of the
Harder-Narasimhan category defined by R-filtrations in D which are separated, exhaustive, left
continuous and of finite length. Furthermore, the Harder-Narasimhan polygon (resp. measure)
of F (X) coincides with that of X . Therefore, filtered objects in Abelian categories equipped
with rank functions can be considered in some sense as models to study Harder-Narasimhan
polygons.

Proposition 5.1 Let X be a non-zero arithmetic object and

0 = XHN
0

// XHN
1

// · · · // XHN
n−1

// XHN
n = X

be its Harder-Narasimhan sequence. If for any real number λ we denote by8

iX(λ) = max{1 ≤ i ≤ n | µ̂(X
HN

i /X
HN

i−1) ≥ λ}

and Xλ = XHN
i
X

(λ), then (Xλ)λ∈R is an R-filtration of the object X in C. Furthermore, this

filtration is separated, exhaustive, left continuous and of finite length.

Proof. If λ > λ′, then iX(λ) ≤ iX(λ′), hence (Xλ)λ∈R is an R-filtration of X . Moreover,
for any λ ∈ R, Xλ ∈ {XHN

0 , · · · , XHN
n }, therefore this filtration is of finite length. When

λ > µ̂max(X), we have iX(λ) = 0, which implies that Xλ = X
HN

0 = 0 is the zero object, so

8By convention max ∅ = 0.

23



the filtration is separated. When λ < µ̂min(X), iX(λ) = n, so Xλ = X , i.e., the filtration is
exhaustive. To prove the left continuity of this filtration, it suffices to verify that the function
λ 7→ iX(λ) is left continuous. Actually, this function is left locally constant: if iX(λ) = 0,

then for any integer 1 ≤ i ≤ n, we have µ̂(X
HN

i /X
HN

i−1) < λ, so there exists ε0 > 0 such that

for any 0 ≤ ε < ε0, we have µ̂(X
HN

i /X
HN

i−1) < λ − ε, i.e., iX(λ − ε) = 0; if iX(λ) = n, then

for any integer 1 ≤ i ≤ n and any real number ε ≥ 0, we have µ̂(X
HN

i /X
HN

i−1) ≥ λ ≥ λ − ε,
so iX(λ − ε) = n; finally if 1 ≤ iX(λ) ≤ n − 1, then we have µ̂(X

HN

iX (λ)/X
HN

iX (λ)−1) ≥ λ and

µ̂(X
HN

i
X

(λ)+1/X
HN

i
X

(λ)) < λ, hence there exists ε0 > 0 such that, for any 0 ≤ ε < ε0, we have

µ̂(X
HN

i
X

(λ)/X
HN

i
X

(λ)−1) ≥ λ− ε and µ̂(X
HN

i
X

(λ)+1/X
HN

i
X

(λ)) < λ− ε, i.e., iX(λ− ε) = iX(λ). 2

Definition 5.2 With the notations of Proposition 5.1, the filtration (Xλ)λ∈R is called the
Harder-Narasimhan filtration (or canonical filtration) of X , denoted by HN(X). Clearly,
µ̂min(Xλ) ≥ λ for any λ ∈ R. We define the Harder-Narasimhan filtration (or canonical
filtration) of the zero object to be its only R-filtration which associates to each λ ∈ R the zero
object itself.

Theorem 5.3 Keep the notations of Proposition 5.1. Suppose in addition that any epimor-
phism in C has a kernel in the case where A is non-trivial. Then any morphism in CA is
compatible with Harder-Narasimhan filtrations.

Proof. Let f : X → Y be a morphism which is compatible with arithmetic structures. The
case where X or Y is zero is trivial. We now suppose that X and Y are non-zero. Let

0 = XHN
0

// XHN
1

// · · · // XHN
n−1

// XHN
n = X

be the Harder-Narasimhan sequence of X and

0 = Y HN
0

// Y HN
1

// · · · // Y HN
m−1

// Y HN
m = Y

be the Harder-Narasimhan sequence of Y . For all integers 0 ≤ i < j ≤ m, let Pj,i be the
canonical morphism from Y HN

j to Y HN
j /Y HN

i . For any integer 0 ≤ i ≤ n, let Ui be the

canonical monomorphism from XHN
i to X . Suppose that λ is a real number. If iX(λ) = 0 or if

iY (λ) = 0, we define Fλ as the zero morphism from Xλ to Yλ; if iY (λ) = m, we have Y λ = Y

and we define Fλ as the composition fUiX (λ); otherwise we have µ̂(X
HN

i
X

(λ)/X
HN

i
X

(λ)−1) ≥ λ and

µ̂(Y
HN

i
Y

(λ)/Y
HN

i
Y

(λ)−1) ≥ λ, but µ̂(Y
HN

j /Y
HN

j−1) < λ for any j > iY (λ). We will prove by induction

that the morphism fUiX(λ) factorizes through Y HN
iY (λ). First it is obvious that the morphism

fUi
X

(λ) factorizes through Y HN
m = Y . If it factorizes through certain ϕj : XHN

iX (λ) → Y HN
j ,

where j > iY (λ), then the composition Pj,j−1ϕj must be zero since (see Proposition 4.7 and
the remark after its proof)

µ̂(Y
HN

j /Y
HN

j−1) < λ ≤ µ̂(X
HN

iX (λ)/X
HN

iX (λ)−1) = µ̂min(X
HN

iX (λ)).

So the morphism fUi
X

(λ) factorizes through Y HN
j−1. By induction we obtain that fUi

X
(λ) fac-

torizes (in unique way) through a morphism Fλ : XiX(λ) → YiY (λ). The family of morphisms
F = (Fλ)λ∈R defines a natural transformation such that (F, f) is a morphism of filtrations.
Therefore the morphism f is compatible with Harder-Narasimhan filtrations. 2
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Remark 5.4 Theorem 5.3 implies that HN defines actually a functor from the category CA
to the full sub-category FilR,self(C) of FilR(C) consisting of R-filtrations which are separated,
exhaustive, left continuous and of finite length, which sends an arithmetic object X to its
Harder-Narasimhan filtration.

Corollary 5.5 Suppose in the case where A is non-trivial that any epimorphism in C has a
kernel. Let X and Y be two arithmetic objects and f : Y → X be a morphism which is
compatible with arithmetic structures. If µ̂min(Y ) ≥ λ, then the morphism f factorizes through
Xλ.

Proof. Since f is compatible with arithmetic structures, it is compatible with Harder-Narasimhan
filtrations. So the restriction of f on Yλ factorizes through Xλ. As µ̂min(Y ) ≥ λ, we have
Yλ = Y , therefore f factorizes through Xλ. 2

Let X be a non-zero arithmetic object and

0 = XHN
0

// XHN
1

// · · · // XHN
n−1

// XHN
n = X

be its Harder-Narasimhan sequence. For any integer 0 ≤ i ≤ n, we note ti = rkXHN
i / rkX .

For any integer 1 ≤ i ≤ n, we note λi = µ̂(XHN
i /XHN

i−1). Then the function

PX(t) =

n∑

i=1

(
d̂eg(X

HN

i−1)

rkX
+ λi(t− ti−1)

)
11[ti−1,ti](t)

is a polygon9 on [0, 1], called the normalized Harder-Narasimhan polygon of X. The function
PX takes value 0 at the origin, and its first order derivative is given by

P ′

X
(t) =

n∑

i=1

λi 11[ti−1,ti[(t).

The probability measure

νX :=

n∑

i=1

rk(XHN
i )− rk(XHN

i−1)

rkX
δλi

=

n∑

i=1

(ti − ti−1)δλi

is called the Harder-Narasimhan measure of X. We define the Harder-Narasimhan measure
of the zero arithmetic object to be the zero measure on R. After Proposition 5.1, if X is
a non-zero arithmetic object and if (Xλ)λ∈R is the Harder-Narasimhan filtration of X , then
the Harder-Narasimhan measure νX of X is the first order derivative (in distribution sense)
of the function t 7−→ − rk(Xt). Finally we point out that the Harder-Narasimhan polygon
of a non-zero arithmetic object X can be uniquely determined in an explicit way from its
Harder-Narasimhan measure.

Proposition 5.6 Suppose in the case where A is non-trivial that any epimorphism in C has a
kernel. If X and Y are two non-zero arithmetic objects and if f : X → Y is an isomorphism

which is compatible to arithmetic structures, then µ̂(X) ≤ µ̂(Y ), and therefore d̂eg(X) ≤
d̂eg(Y ).

9Namely a concave function having value 0 at the origin and which is piecewise linear.
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Proof. Let (Xλ)λ∈R and (Yλ)λ∈R be the Harder-Narasimhan filtrations of X and of Y respec-
tively. Theorem 5.3 implies that f is compatible with filtrations. Hence rk(Xλ) ≤ rk(Yλ) for
any λ ∈ R. Therefore, by taking an interval [−M,M ] containing supp(νX) ∪ supp(νY ), we
obtain

µ̂(X) =

∫ M

−M

t dνX(t) = −
∫ M

−M

t d rk(Xt) =
[
− t rk(Xt)

]M
−M

+

∫ M

−M

rk(Xt)dt

≤M rk(XM ) +

∫ M

−M

rk(Yt)dt = M rk(YM ) +

∫ M

−M

rk(Yt)dt = µ̂(Y ).

2

Let D be an Abelian category and rk be a rank function on D. It is interesting to calculate
explicitly the Harder-Narasimhan filtration of an object Y in D, equipped with an R-filtration
F = (Yλ)λ∈R which is separated, exhaustive, left continuous and of finite length. Let U =
{λ1 > · · · > λn} be the minimal jumping set of the filtration F , then

0 // Yλ1
// Yλ2

// · · · // Yλn
= Y

is the Harder-Narasimhan sequence of Y = (Y, [F ]). Therefore, the Harder-Narasimhan filtra-
tion of Y is just the filtration F itself. So we have

P ′

Y
(t) =

n∑

i=1

λi 11[ti−1,ti[

where t0 = 0, and for any 1 ≤ i ≤ n, ti = rk(Yλi
)/ rk(Y ). Furthermore,

νY =

n∑

i=1

(ti − ti−1)δλi
.

Let F : C → D be an exact functor from C to an Abelian categoryD. The functor F induces
a functor F̂ : CA → D which sends an arithmetic object X to F (X), it also induces a homo-
morphism of groups K0(F ) : K0(C, E , A)→ K0(D). Since F is exact, it sends monomorphisms

to monomorphisms, therefore it induces a functor F̃ : FilR,self(C) → FilR,self(D). If X is an

arithmetic object of (C, E , A), then F̃ (HN(X)) is an R-filtration of F (X). The following propo-
sition shows that we can recover the Harder-Narasimhan polygon and the Harder-Narasimhan
measure of X from the filtration F̃ (HN(X)).

Proposition 5.7 Suppose given a rank function rk on K0(D) (which defines a Harder-Narasimhan
category structure on D) such that the functor F preserves rank functions (i.e. rk(F (X)) =
rk(X) for any X ∈ obj C). Then for any arithmetic object X in CA, the normalized Harder-

Narasimhan polygon of the filtration F (X) = (F (X), [F̃ (HN(X))]) coincides with that of X,
and the Harder-Narasimhan measure of F (X) coincides with that of X.

Proof. Since the Harder-Narasimhan filtration of F (X) coincides with F̃ (HN(X)), the func-

tion t 7−→ − rk(HN(X)(t)) identifies with t 7−→ − rk(F̃ (HN(X))(t)). Therefore ν
F (X) = νX

and hence P
F (X) = PX . 2

Let (C, E , A) be an arithmetic exact category, d̂eg be a degree function on (C, E , A) and rk be

a rank function on (C, E). If (C, E) is an Abelian category, then the axioms for (C, E , A, d̂eg, rk)
to be a Harder-Narasimhan category can be considerably simplified. We shall show this fact
in Proposition 5.8.
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Proposition 5.8 Supose that (C, E) is an Abelian category. Then (C, E , A, d̂eg, rk) is a Harder-
Narasimhan category if the following conditions are satisfied:

1) for any non-zero arithmetic object X, there exists a non-zero arithmetic subobject Z of X
such that

µ̂(Z) = sup{µ̂(Y ) | Y is a non-zero arithmetic subobject of X}; (7)

2) for any non-zero object X in C and for any two arithmetic structures hX and h′X on X,
if IdX : (X,hX) → (X,h′X) is compatible with arithmetic structures, then µ̂(X,hX) ≤
µ̂(X,h′X).

Note that the condition 1) is verified once {µ̂(Y ) | Y is a non-zero arithmetic subobject of X}
is a finite set, or equivalently {d̂eg(Y ) | Y is a non-zero arithmetic subobject of X} is a finite
set for any non-zero arithmetic object X .

The following technical lemma, which is dual to Lemma 4.6, is useful for the proof of
Proposition 5.8.

Lemma 5.9 Let (C, E , A) be an arithmetic exact category. Suppose that any monomorphism
in C has a cokernel. Let (X,hX) and (Y, hY ) be two arithmetic objects and f : X → Y be a
morphism in C. Suppose that (Y, hY ) is an arithmetic subobject of an arithmetic object (Z, hZ)
and u : Y → Z is the inclusion morphism. Then the morphism f is compatible with arithmetic
structures if and only if it is the case for uf .

Proof of Proposition 5.8. Suppose that Xdes is a non-zero arithmetic subobject of X verifying
(7), whose rank r is maximal. Suppose that Z is another non-zero arithmetic subobject of X
verifying (7). Consider the short exact sequence

0 // Z ∩Xdes
// Z ⊕Xdes

// Z +Xdes
// 0 ,

where Z∩Xdes is the fiber product Z×XXdes and Z+Xdes is the canonical image of Z⊕Xdes

in X . Therefore,

d̂eg(Z ∩Xdes) + d̂eg(Z +Xdes) = d̂eg(Z) + d̂eg(Xdes) = α(rk(Z) + rk(Xdes)),

so

d̂eg(Z +Xdes) = α(rk(Z) + rk(Xdes))− d̂eg(Z ∩Xdes)

≥ α(rk(Z) + rk(Xdes)− rk(Z ∩Xdes)) = α rk(Z +Xdes),

which means that µ̂(Z +Xdes) = α, and hence rk(Z + Xdes) = rk(Xdes) since rk(Xdes) is
maximal. As rk is a rank function, we obtain Z = Xdes. Therefore, the axiom (HN1) is
fulfilled.

We now verify the axiom (HN2). Let X = (X,hX) and Y = (Y, hY ) be two semistable
arithmetic objects. Suppose that there exists a non-zero morphism f : X → Y which is
compatible with arithmetic objects. Let Z be the image of f in Y , u : Z → Y be the
canonical inclusion and π : X → Z be the canonical projection. The fact that f is compatible
with arithmetic structures implies that the identity morphism IdZ : (Z, π∗hX)→ (Z, u∗hY ) is
compatible with arithmetic structures (after Lemmas 4.6 and 5.9). Therefore, the semistability
of X and of Y , combining the condition 2), implies that µ̂(X) ≤ µ̂(Z, π∗hX) ≤ µ̂(Z, u∗hY ) ≤
µ̂(Y ).

�
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Corollary 5.10 Let (C, E) be an Abelian category equipped with a rank function rk, n ≥ 2 be
an integer, (Ai)1≤i≤n be a family of arithmetic structures on (C, E) and A = A1 × · · · × An.
Suppose given for any 1 ≤ i ≤ n a degree function d̂egi on (C, E , Ai) such that

1) {d̂egi(Y ) | Y is a non-zero arithmetic subobject of X} is a finite set for any non-zero arith-
metic objec X;

2) (C, E , Ai, d̂egi, rk) is a Harder-Narasimhan category.

Then for any α = (ai)1≤i≤n ∈ Rn≥0, if we denote by d̂egα =
∑n

i=1 aid̂egi, then (C, E , A, d̂egα, rk)
is a Harder-Narasimhan category.

6 Examples of Harder-Narasimhan categories

In this section, we shall give some example of Harder-Narasimhan categories.

Filtrations in an extension of Abelian categories

Let C and C′ be two Abelian categories and F : C → C′ be an exact functor which sends
a non-zero object of C to a non-zero object of C′. Let E (resp. E ′) be the class of all exact
sequences in C (resp. C′). Suppose given a rank function rk′ : K0(C′, E ′)→ R. Let I be a non-
empty subset of R, equipped with the induced order. For any object X in C, let A(X) be the

set of isomorphism classes of objects in FilI,selfF (X). Suppose that h = [F ] is an element in A(X).

For any monomorphism u : X0 → X , we define u∗(h) to be the class [F (u)∗F ] ∈ A(X0).
For any epimorphism p : X → Y , we define p∗(h) to be [F (p)∗F ] ∈ A(Y ). Similarly to
the the case of filtrations in an Abelian category, (C, E , A) is an arithmetic exact category.
By definition we know that if Xi = (Xi, [Fi]) (i = 1, 2) are two arithmetic objects, then a
morphism f : X1 → X2 in C is compatible with arithmetic structures if and only if F (f) is
compatible with filtrations (F1,F2). For any arithmetic object X of (C, E , A), we define the
arithmetic degree of X = (X, [F ]) to be the real number

d̂eg(X) =
∑

λ∈I

λ
(

rk′(F(λ))− sup
j>λ,j∈I

rk′(F(j))
)
.

Since F is an exact functor, d̂eg extends naturally to a homomorphism from K0(C, E , A) to R.
In the previous section we have shown that if we define, for any object X ′ in C′, A′(X ′) as the

set of all isomorphism classes of objects in FilI,selfX′ , then (C′, E ′, A′) is an arithmetic category.

Furthermore, if for any arithmetic object X
′
= (X ′, [F ′]), we define

d̂eg′(X
′
) =

∑

λ∈I

λ
(

rk′(F ′(λ)) − sup
j>λ,j∈I

rk′(F ′(j))
)
,

then d̂eg′ extends naturally to a homomorphism K0(C′, E ′, A′) → R, and (C′, E ′, A′, d̂eg′, rk′)
is a Harder-Narasimhan category. Notice that for any object (X, [F ]) in CA, we have

d̂eg(X, [F ]) = d̂eg′(F (X), [F ]).

Proposition 6.1 Denote by rk the composition rk′ ◦K0(F ). Then (C, E , A, d̂eg, rk) is a Harder-
Narasimhan category.
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Proof. Since F is an exact functor which sends non-zero objects to non-zero objects, the
homomorphism rk is a rank function. Let X = (X, [F ]) be a non-zero arithmetic object in

CA. First we show that S :=
{
d̂eg(Y ) | Y is an arithmetic subobject of X

}
is a finite set. Let

U = {λ1, · · · , λn} be a jumping set of F . If u : Y → X is a monomorphism, then U is also a
jumping set of F (u)∗F , therefore,

d̂eg(Y, [F (u)∗F ]) ∈
{ n∑

i=1

aiλi

∣∣∣ ∀1 ≤ i ≤ n, ai ∈ N, 0 ≤ a1 + · · ·+ an ≤ rk(X)
}
.

The latter is clearly a finite set. Therefore, the condition 1) of Proposition 5.8 is satisfied. If X
is an object in C and if F and G are two filtrations of F (X) such that IdF (X) = F (IdX) is com-

patible to filtrations (F ,G), then after Proposition 5.6, d̂eg′(F (X), [F ]) ≤ d̂eg′(F (X), [G])
and therefore µ̂(X, [F ]) ≤ µ̂(X, [G]). After Proposition 5.8, (C, E , A, d̂eg, rk) is a Harder-
Narasimhan category. 2

Remark 6.2 By Corollary 5.10, we can easily generalize the formalism of Harder and Narasimhan
to the case of bojects in C equipped with several filtrations of their images by F in C′.

Filtered (ϕ, N)-modules

Let K be a field of characteristic 0, equipped with a discrete valuation v such that K is
complete for the topology defined by v. Suppose that the residue field k of K is of characteristic
p > 0. Let K0 be the fraction field of Witt vector ring W (k) and σ : K0 → K0 be the absolute
Frobenius endomorphism. We call (ϕ,N)-module (see [8], [20], and [6] for details) any finite
dimensional vector space D over K0, equipped with

1) a bijective σ-linear endomorphism ϕ : D → D,

2) a K0-linear endomorphism N : D → D such that Nϕ = pϕN .

Let C be the category of all (ϕ,N)-modules. It’s an Abelian category. We denote by E the
class of all short exact sequences in C. There exists a natural rank function rk on the category
C defined by the rank of vector space over K0. Furthermore, we have an exact functor F
from C to the category VecK of all finite dimensional vector spaces over K, which sends a
(ϕ,N)-module D to D⊗K0

K. Consider the arithmetic structure A on (C, E) such that, for any
(ϕ,N)-module D, A(D) is the set of isomorphism classes of Z-filtrations of F (D) = D⊗K0

K.
Then (C, E , A) becomes an arithmetic exact category. The objects in CA are called filtered
(ϕ,N)-modules.

To each (ϕ,N)-module D we associate an integer degϕ(D) = −v(detϕ). If D = (D, [F ]) is
a filtered (ϕ,N)-module, we define

degF (D) :=
∑

i∈Z

i
(

rkK(F(i))− rkK(F(i+ 1))
)

and d̂eg(D) = degF (D) + degϕ(D).

It is clear that d̂eg is a degree function on (C, E , A).

Proposition 6.3 (C, E , A, d̂eg, rk) is a Harder-Narasimhan category.
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Proof. Let X = (X, [F ]) be a non-zero filtered (ϕ,N)-module. We have shown in the previous
example that SF = {degF (Y ) | Y is an arithmetic subobject of X} is a finite set. By the
isoclinic decomposition we obtain that Sϕ = {degϕ(Y ) | Y is a subobject of X} is also a finite
set. Therefore,

S̃ = {µ̂(Y ) | Y is an arithmetic subobject of X}
is a finite set, and hence the condition 1) of Proposition 5.8 is verified.

Suppose that X is a (ϕ,N)-module and F and G are two Z-filtrations of X such that
IdX is compatible with filtrations (F ,G). We have shown in the previous example that

degF (X,F) ≤ degF (X,G). Hence d̂eg(X,F) ≤ d̂eg(X,G). Therefore, the condition 2) of

Proposition 5.8 is verified, and hence (C, E , A, d̂eg, rk) is a Harder-Narasimhan category. 2

Note that semistable filtered (ϕ,N)-modules having slope 0 are nothing but admissible
filtered (ϕ,N)-modules. In classical literature, such filtered (ϕ,N)-modules are said to be
weakly admissible. In fact, Colmez and Fontaine [6] have proved that all weakly admissible
(ϕ,N)-modules are admissible, which had been a conjecture of Fontaine.

Torsion free sheaves on a polarized projective variety

Let X be a geometrically normal projective variety of dimension d ≥ 1 over a field K and L
be an ample invertible OX -module. We denote by TF(X) the category of torsion free coherent
sheaves on X . Notice that if 0 // E′ // E // E′′ // 0 is an exact sequence of
coherent OX -modules such that E′ and E′′ are torsion free, then also is E. Therefore, TF(X)
is an exact sub-category of the Abelian category of all coherent OX -modules on X . Let E
be the class of all exact sequences in TF(X) and let A be the trivial arithmetic structure on
it. If E is a torsion free coherent OK-module, we denote by rk(E) its rank and by deg(E)
the intersection number c1(L)d−1c1(E). The mapping deg (resp. rk) extends naturally to a
homomorphism from K0(TF(X)) to R (resp. Z). A classical result [14] (see also [18]) shows
that (TF(X), E , A, deg, rk) is in fact a Harder-Narasimhan category.

Hermitian vector bundles on the spectrum of an algebraic integer ring

Let K be a number field and OK be its integer ring. We denote by Pro(OK) the category
of all projective OK-modules of finite type. Let E be the family of short exact sequences of
projective OK-modules of finite type. Then (Pro(OK), E) is an exact category.

We denote by Σf the set of all finite places of K which identifies with the set of closed points
of SpecOK . If p is an element in Σf , we denote by vp : K× → Z the valuation associated to p

which sends a non-zero element a ∈ OK to the length of the Artinian local ring OK,p/aOK,p.
Let Fp := OK,p/pOK,p be the residue field and Np be its cardinal. We denote by | · |p the

absolute value on K such that |x|p = N
−vp(x)
p for any x ∈ K×. Let Σ∞ be the set of all

embeddings of K in C, whose cardinal is [K : Q]. For any σ ∈ Σ∞, let | · |σ : K → R≥0 be
the Archimedian absolute value such that |x|σ = |σ(x)|. The complex conjugation defines an
involution σ 7→ σ on Σ∞. The product formula asserts that for any x ∈ K×, |x|p = 1 for
almost all finite places p, and we have

∏

p∈Σf

|x|p
∏

σ∈Σ∞

|x|σ = 1.

Notice that a Hermitian vector bundle over SpecOK is nothing other than a pair E =
(E, (‖ · ‖σ)σ∈Σ∞

), where E is a projective OK-module of finite type E, and for any σ ∈ Σ∞,
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‖ · ‖σ is a Hermitian metric on E ⊗OK ,σ C such that ‖x ⊗ z‖σ = ‖x ⊗ z‖σ. The rank of the
Hermitian vector bundle E is just defined to be that of E. The rank function on Pro(OK)
extends naturally to a homomorphism from K0(Pro(OK)) to Z. If E is a Hermitian vector
bundle of rank r, the (normalized) Arakelov degree of E is by definition

d̂egnE =
1

[K : Q]

(
log #(E/OKs1 + · · ·+OKsr)−

1

2

∑

σ∈Σ∞

log det(〈si, sj〉σ)
)
,

where (s1, · · · , sr) ∈ Er is an arbitrary element in Er which defines a basis of EK over K.
This definition doesn’t depend on the choice of (s1, · · · , sr). For more details, see [1] and [4].

If for any projective OK-module of finite type E, we denote by A(E) the set of all Her-
mitian structures on E, then (Pro(OK), E , A) is an arithmetic exact category, as we have
shown in the previous section. The category Pro(OK)A is the category of all Hermitian vec-
tor bundles over SpecOK and all homomorphism of OK -modules having norm ≤ 1 at every

σ ∈ Σ∞. Furthermore, if 0 //
E

′ // E //
E

′′ // 0 is a sequence in EA, then we

have the equality d̂egn(E) = d̂egn(E
′
) + d̂egn(E

′′
). Therefore, d̂egn extends to a homomor-

phism from K0(Pro(OK), E , A) to R. The results of Stuhler [19] and Grayson [9] show that

(Pro(OK), E , A, d̂egn, rk) is a Harder-Narasimhan category.
A recent work of Moriwaki [15] generalizes the notion of semistability and Harder-Narasimhan

flag to Hermitian torsion free coherent sheaves on normal arithmetic varieties. His appoach
may also be adapted into the framework of Harder-Narasimhan categories.
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1994. With an appendix by Pierre Colmez, Périodes p-adiques (Bures-sur-Yvette, 1988).

[9] Daniel Grayson. Higher algebraicK-theory II (after Daniel Quillen). In Algebraic K-theory
(Proceedings of the Conference held at Northwestern University, 1976), pages 217–240.
Lecture Notes in Mathematics, Vol. 551. Springer, Berlin, 1976.

31



[10] G. Harder and M. S. Narasimhan. On the cohomology groups of moduli spaces of vector
bundles on curves. Mathematische Annalen, 212:215–248, 1974/1975.

[11] Bernhard Keller. Chain complexes and stable categories. Manuscripta Mathematica,
67(4):379–417, 1990.

[12] Laurent Lafforgue. Chtoucas de Drinfeld et conjecture de Ramanujan-Petersson.
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