
HAL Id: hal-00155576
https://hal.science/hal-00155576

Submitted on 18 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dominance-Based Heuristics for One-Machine Total
Cost Scheduling Problems

Antoine Jouglet, David Savourey, Jacques Carlier, Philippe Baptiste

To cite this version:
Antoine Jouglet, David Savourey, Jacques Carlier, Philippe Baptiste. Dominance-Based Heuristics for
One-Machine Total Cost Scheduling Problems. European Journal of Operational Research, 2007, 184
(3), pp.879-899. �10.1016/j.ejor.2006.11.036�. �hal-00155576�

https://hal.science/hal-00155576
https://hal.archives-ouvertes.fr

Dominance-Based Heuristics for One-Machine
Total Cost Scheduling Problems

Antoine Jouglet1, David Savourey1, Jacques Carlier1 and Philippe Baptiste2

1 Heudiasyc, UMR CNRS 6599, Université de Technologie de Compiègne

BP 20 529, 60205 Compiègne, France

{antoine.jouglet, david.savourey, jacques.carlier}@hds.utc.fr
2 Ecole Polytechnique, CNRS LIX, 91128 Palaiseau, France

philippe.baptiste@polytechnique.fr

Abstract

We study the one-machine scheduling problem with release dates and we look at
several objective functions including total (weighted) tardiness and total (weighted)
completion time. We describe dominance rules for these criteria, as well as tech-
niques for using these dominance rules to build heuristic solutions. We use them to
improve certain well-known greedy heuristic algorithms from the literature. Finally,
we introduce a Tabu Search method with a neighborhood based on our dominance
rules. Experiments show the effectiveness of our techniques in obtaining very good
solutions for all studied criteria.
Key words: Scheduling, Heuristics, Single Machine

1 Introduction
In this paper we consider the situation where n jobs J1, . . . , Jn have to be scheduled for
processing on a single machine and where the objective is to minimize total (weighted)
tardiness or total (weighted) completion time. Associated with each job Ji is a release
date ri, a processing time pi, a due date di and a weight wi. A job cannot start before its
release date, preemption is not allowed, and at most one job at a time can be scheduled
on the machine. The tardiness of job Ji is defined as Ti = max ({0, Ci − di}, where
Ci is the completion time of Ji. The problem is to find a feasible schedule with mini-
mum total (weighted) tardiness

∑
(wi)Ti or with minimum total (weighted) completion

time
∑

(wi)Ci. These problems are denoted as 1|ri|
∑

wiTi, 1|ri|
∑

Ti, 1|ri|
∑

wiCi and
1|ri|

∑
Ci.

Several Branch and Bound procedures have been described in the literature to solve
these problems [1, 4, 5, 8, 9, 18]. To our knowledge, the best results are obtained for all the
above mentionned criteria by Baptiste, Carlier and Jouglet [4, 18]. All these problems are

1

known to be NP-hard in the strong sense [21]. It is therefore preferable to use heuristics
for large-scale problems, given that heuristics provide a reasonably good schedule with
reasonable computing effort. Moreover, heuristics provide good upper bounds which can
be used in Branch and Bound procedures to reduce the search tree. For total tardiness
and total completion time, Chu and Portmann have described several heuristics which
rely on local dominance properties [11, 10]. For total weighted tardiness, Akturk and
Ozdemir [2] have also described a sufficient condition for local optimality which can
improve heuristics. Some other heuristics from the literature can easily be adapted to
the studied problems [19]. A large number of these heuristics are greedy algorithms:
at each iteration, an unscheduled job is chosen in conformity with some priority rule
(see for instance [11, 10, 23, 20]) and is added to a partial sequence of scheduled jobs.
The heuristic stops when all jobs are scheduled. Other more sophisticated polynomial
methods have been proposed [6, 7, 14]. Among them, the powerful Recovering Beam
Search procedure proposed by Della Croce and T’Kindt [14] provides excellent results
for the total completion time criterion.

In this paper we describe several heuristic methods relying on the use of dominance
rules and other techniques. In Section 2, we describe some original dominance rules
which are used in our methods. In Section 3, we recall some well known heuristics from
the literature, and we propose two algorithms based on our dominance rules, which allow
us to improve drastically the results of these heuristics. Moreover, we propose a new
priority rule “CPRTWT” (Combined Priority Rule for Total Weighted Tardiness), based
on local dominance properties, which can be used in the heuristics referred to above.
Next, in Section 4 we describe a Tabu Search method with a new neighborhood which
makes use of our dominance rules. We also describe some other efficient techniques,
which allow us to improve the behavior of the Tabu Search method. Finally, we report
some experimental results (Section 5) which show the effectiveness of all our methods in
obtaining very good solutions to all the studied problems.

Hereafter, in order to simplify the presentation, we focus solely on the total weighted
tardiness criterion. Note that all our results are also valid for all other criteria.

2 Dominance Rules
In this section we describe some dominance rules to be used in subsequent sections in
order to improve the solutions built by heuristic methods.

2.1 Local Dominance Properties
We first describe local dominance properties and we define dominant subsets of schedules.

In an active schedule, no job can be completed earlier without delaying another job.
An objective function which is non-decreasing with respect to all completion times is
regular. Active schedules are dominant for regular criteria [3, 13].

Following Chu and Portmann [11, 10], we provide a necessary and sufficient condition

2

for local optimality. By “local optimality” Chu means the optimality of the sequence of
two adjacent jobs in a given schedule (taking into account neither following nor preceding
jobs).

Suppose that we have to schedule two jobs Jj and Jk on a machine available at time
t. Let WT jk(t) be the sum of the weighted tardiness of jobs Jj and Jk obtained by
scheduling Jj before Jk at time t, i.e., WT jk(t) = wj max {0, max{rj, t}}+ pj − dj}+
wk max {0, max{max{rj, t}+ pj, max{rk, t}}+ pk − dk}.

Proposition 1. Consider two jobs Jj and Jk which have to be scheduled on a machine
available at time t. Scheduling Jj before Jk is locally optimal if and only if WT jk(t) −
WT kj(t) ≤ 0.

Relying on this condition, we then define a dominant subset of schedules. Let ∆j(S)
be the completion time of the job immediately preceding job Jj in a schedule S. If Jj is
the first job of the schedule S, then ∆j(S) = −∞.

Definition 1. An active schedule S is said to be LO-Active (a Locally Optimal Active
Schedule) if and only if for any couple of consecutive jobs Jj and Jk one of the following
conditions is met

• (1) max{rj, ∆j(S)} < max{rk, ∆j(S)},

• (2) WT jk(∆j(S))−WT kj(∆j(S)) ≤ 0.

According to the previous definition, Proposition 1 leads to the following proposition.

Proposition 2. All optimal active schedules of the total weighted tardiness one-machine
problem are LO-Active.

Proof. Assume that there exists an optimal active schedule S which is not LO-Active.
There is at least one pair of adjacent jobs Jj and Jk (Jj followed by Jk) such that
WT jk(∆j(S)) −WT kj(∆j(S)) > 0 and max{rj, ∆j} ≥ max{rk, ∆j}. We construct
another schedule S ′ by interchanging Jj and Jk without moving any other job. This in-
terchange does not delay jobs after Jk since max{rk, ∆j} ≤ max{rj, ∆j}. Only the
tardiness of jobs Jj and Jk are changed. It is then clear that WT (S) − WT (S ′) =
WT jk(t)−WT kj(t) > 0. Hence, interchanging jobs Jj and Jk decreases strictly the to-
tal weighted tardiness and then S ′ is strictly better than S. This contradicts the assumption
that S is an optimal schedule.

Not all LO-Active schedules are optimal and it is possible to remove some schedules
which are dominated from the set of LO-Active schedules. We now remove schedules
S in which there are useless idle time periods, i.e., in which there are two consecutive
jobs Jj and Jk such that WT jk(∆j(S)) −WT kj(∆j(S)) = 0 and max{rj, ∆j(S)} >
max{rk, ∆j(S)}.

Definition 2. An active schedule S is said to be LOWS-Active (Locally Optimal Well
Sorted Active Schedule) if and only if for any couple of consecutive jobs Jj and Jk one of
the following conditions is met

3

• (1) WT jk(∆j(S))−WT kj(∆j(S)) < 0,

• (2) WT jk(∆j(S))−WT kj(∆j(S)) = 0 and max{rj, ∆j(S)} ≤ max{rk, ∆j(S)},

• (3) WT jk(∆j(S))−WT kj(∆j(S)) > 0 and max{rj, ∆j(S)} < max{rk, ∆j(S)}.

According to the previous definition, we establish the following proposition.

Proposition 3. The subset of the LOWS-Active schedules is dominant for the one machine
total weighted tardiness problem.

Proof. Consider an optimal schedule S which is not LOWS-Active. There is at least one
pair of adjacent jobs Jj and Jk (Jj followed by Jk) for which none of the three condi-
tions of a LOWS-Active schedule is satisfied. Condition (1) implies that WT jk(∆j(S))−
WT kj(∆j(S)) ≥ 0, otherwise schedule S should be LOWS-Active.
First, assume that WT jk(∆j(S)) −WT kj(∆j(S)) = 0. From condition (2), it follows
that we have max{rj, ∆j(S)} > max{rk, ∆j(S)}. Now assume that WT jk(∆j(S)) −
WT kj(∆j(S)) > 0. From condition (3), it follows that we have max{rj, ∆j(S)} ≥
max{rk, ∆j(S)}. Note that in the two cases max{rj, ∆j(S)} ≥ max{rk, ∆j(S)}.

We construct another schedule S ′ by interchanging Jj and Jk without moving any
other job. This interchange does not delay the jobs after Jk since we have max{rk, ∆j} ≤
max{rj, ∆j}. Only the tardiness of jobs Jj and Jk are changed. It is therefore clear that
WT (S) −WT (S ′) = WT jk(t) −WT kj(t) ≥ 0. Hence, interchanging jobs Jj and Jk

does not increase total weighted tardiness. We can iterate this process until we obtain a
LOWS-Active schedule.

Note that this dominance rule dominates the dominance properties described by Ak-
turk and Ozdemir [2], and Chu [11, 10].

2.2 “Better” Sequence
In this section we introduce the notion of “better” sequence, which allows us to compare
two partial sequences σ1 and σ2 of the same set of jobs (i.e., σ1 is a permutation of σ2).
Informally speaking, we say that a sequence σ1 is “better” than a sequence σ2 if σ2 can be
replaced advantageously by σ1 in any feasible schedule which starts with the sequence σ2.
σ2 is then dominated by σ1. Let OJ be the set of jobs which do not belong to σ1. Note that
we have OJ = {Jl ∈ N |Jl /∈ σ1} = {Jl ∈ N |Jl /∈ σ2}. Consider any feasible schedule
S starting with sequence σ2. Now, let us examine under what conditions sequence σ1 is
“as good as” sequence σ2, i.e., under what conditions it is possible to replace sequence σ2

by sequence σ1 in any feasible schedule S.

• If Cmax(σ1) ≤ Cmax(σ2) and WT (σ1) ≤WT (σ2), then we can replace σ2 by σ1 in
any feasible schedule S starting with the sequence σ2. Consequently, sequence σ1

is at least “as good as” sequence σ2.

4

• Now, assume that Cmax(σ1) > Cmax(σ2). Let rmin = min{Jl∈OJ}{rl} be the small-
est release date of jobs belonging to set OJ . If we replace σ2 by σ1 in a feasible
schedule, all jobs in OJ have to be shifted by at most max{Cmax(σ1), rmin} −
max{Cmax(σ2), rmin} time units. So, the additional cost for jobs in OJ is at most
(max{Cmax(σ1), rmin} −max{Cmax(σ2), rmin})

∑
{Jl∈OJ} wl. Hence, sequence σ1

is at least “as good as” sequence σ2 if we have WT (σ1)+(max{Cmax(σ1), rmin}−
max{Cmax(σ2), rmin})

∑
{Jl∈OJ} wl ≤WT (σ2).

Note that if Cmax(σ1) = Cmax(σ2) and WT (σ1) = WT (σ2), then σ1 is equivalent to
σ2, and we can break ties by following the lexicographic order with respect to vectors of
job indices. We can now define the notion of “better” sequence:

Definition 3. A sequence σ1 is “better” than a sequence σ2 if σ1 is at least “as good as”
σ2 and if either (1) σ2 is not at least “as good as” σ1 or (2) if σ1 is lexicographically
smaller than σ2.

We have shown in [18] that this dominance rule is very effective in improving Branch-
and-Bound algorithms. The second case of the dominance rule does not appear very often
in comparison with the first case. For total (weighted) tardiness, the considered upper
bound of the additional cost for the delayed jobs of OJ (i.e., (max{Cmax(σ1), rmin} −
max{Cmax(σ2), rmin})

∑
{Jl∈OJ} wl) is often loose. Nevertheless, the second case appears

much more often for total (weighted) completion time, where this upper bound is tight.

3 Greedy Heuristic Algorithms

3.1 Building a Solution: Heuristic Frameworks
In this section we recall several heuristics in the literature for related problems. We have
adapted them for total weighted tardiness. The first four algorithms (“EST”, “HP”, “IT’
and “GL”) are greedy. At each iteration we assume that the machine is available at some
time t and we schedule a job in the set NS of unscheduled jobs (NS is initialized with the
complete set of jobs). The heuristic stops when all jobs are scheduled, i.e., when set NS
is empty (see Algorithm 1). In each algorithm J[i] is the job scheduled in the ith position.
The other two algorithms (LA and RBS) can also be seen as “sophisticated” greedy al-
gorithms. Recall that the set of active jobs is dominant for all the studied problems (see

Algorithm 1 Greedy Algorithm: build a sequence σ = (J[1], . . . , J[n]).
1: NS ← {J1, . . . , Jn}, t← 0, i← 0
2: while NS 6= ∅ do
3: select Jx ∈ NS , i← i + 1, J[i] ← Jx, t← max{t, rx}+ px, NS ← NS − {Jx}
4: end while

Section 2.1). Let NS ′ be the set of unscheduled jobs which lead to an active schedule. At

5

each iteration of the algorithms, NS ′ is obtained from NS by removing jobs Jk such that
rk ≥ min{Ji∈NS} {max{t, ri}+ pi}. All the following algorithms use some priority rules
which are described at the end of the section.

• Algorithm EST (Earliest Start Time) builds non-delay schedules [3],i.e.schedules
in which the machine can not kept idle if there is a job available for processing: at
each iteration the job which can be processed the earliest is chosen from set NS .
Ties are broken with a priority rule. Note that this algorithm builds active schedules
in all cases, since it builds non-delay schedules.

• Algorithm HP (Highest Priority) works as follows: At each iteration, a job Jx with
maximum priority among those in NS ′ is chosen (if jobs have the same priority, the
one is chosen which can be scheduled the earliest).

• Algorithm IT (Insertion Technique) [9]. At each iteration, a job Jx is chosen from
NS and scheduled. The job with the highest priority is chosen. We break ties by
choosing the job which can be scheduled the earliest. Unlike the other heuristic
algorithms, IT can schedule a job which does not lead to an active schedule. We
then verify if there are some unscheduled jobs which can be completed before the
beginning of Jx. If there are such jobs, the one which can be processed the earliest
is scheduled, with the priority rule used to break ties. This procedure continues
until there is no unscheduled job which can be completed before the beginning of
Jx. Note that the insertion technique yields an active schedule.

• Algorithm GL (Gain - Loss) is a generalization of an algorithm by Chu [8, 10]
which was initially described for the total completion time criterion. Two jobs
Jα and Jβ are chosen among unscheduled jobs. Job Jα is chosen from among all
unscheduled jobs (set NS) using a priority rule. Job Jβ is chosen using a priority
rule from among jobs which are available at time t. If we schedule job Jβ at time
t we will eliminate avoidable idle time on the machine. With job Jα scheduled at
time t the schedule may be locally optimal if WT βα(t) −WTαβ(t) ≥ 0. If we
schedule job Jα before job Jβ , we may obtain a gain WT βα(t)−WTαβ(t), but we
create an idle time of max{t, rα} − t. The gain and the loss entailed by scheduling
job Jα is then evaluated. If the gain is at least as large as the loss, we schedule Jα;
otherwise Jβ is scheduled.

• Algorithm LA (Look-Ahead) is a local search technique by Kanet and Zhou [19].
It defines the alternative courses of action at each decision point by evaluating the
consequences of each alternative according to a given criterion and choosing the
best alternative. In Algorithm LA, we compute all sequences obtained by putting
one of the unscheduled jobs in NS ′ first and ordering the remaining jobs using a
heuristic algorithm (for example EST or HP). After computing the total weighted
tardiness of each sequence whith a job scheduled first, we choose the scenario with
the minimum total weighted tardiness. Note that this algorithm requires a large
amount of CPU time.

6

• Algorithm RBS (Recovering Beam Search). It has been described by Della Croce
and T’Kindt [14] for the total completion time criterion. Since this method is
strongly based on dominance properties valid only for the total completion time
criterion, we have not generalized it for the other criteria. In this method, at each
iteration, the set NS of unscheduled jobs is filtered using a technique based on
dominance properties. Let NS ′′ be this filtered set. For each job Ji ∈ NS ′′, like
in algorithm LA, an evaluation of the cost corresponding to the case, in which Ji

is scheduled first after the partial sequence of scheduled jobs, is computed. The
difference with respect to LA is that the evaluation is done using a linear combi-
nation of lower and upper bounds. The lower bound LB is computed using the
SRPT (Shortest Remaining Processing Time) rule on NS/{Ji}. The upper bound
UB is computed using a technique using both greedy algorithms HP and GL (with
the priority rule PRTF, see Section 3.1) and a filtering method based on the SRPT
schedule computed for LB . A value V = (1−ϕ)LB + ϕUB is computed. At each
iteration, the job Jx with the smallest value V is chosen to be scheduled. At the end
of each iteration, a recovering step based on an insertion technique is then used to
improve the partial schedule. We refer the reader to [14] for more details about this
method.

Priority Rules

Name & Ref. Rule
CPRTWT Combined Priority Rule for Total Weighted Tardiness
New Priority Rule max{Jj∈NS}{

∑
{Jl∈NS} cjl(t)}

(all criteria) with cjl(t) = 1 if WT jl(t)−WT lj(t) ≤ 0, and cjl(t) = 0 otherwise.
ATC [23] Apparent Tardiness Cost
(
∑

wiTi) max{Jj∈NS}{πj = wj

pj
exp(−max{0,dj−t−pj}

2p̄)}
p̄ =

∑
{Jl∈NS} pl/|NS |

X-RM [20] X-dispatch ATC
(
∑

wiTi) max{Jj∈NS}{πj(1− B max{0,rj−t}
p̃)}

B ∈ {1.6, 2}, p̃ ∈ {p̄, min{Jl∈NS}{pl}}
COVERT [23] Weighted Cost Over Time
(
∑

wiTi) max{Jj∈NS}{
wj

pj
max[0, 1− max{0,dj−t−pj}

kpj
]}

WSPT [22] Weighted Shortest Processing Time
(
∑

wiCi) minJj∈NS{ pj

wj
}

PRTT [11, 9] Priority Rule for Total Tardiness
(
∑

Ti) minJj∈NS{max{t, rj}+ max{dj ,max{t, rj}+ pj}}
PRTF [8, 10] Priority Rule for Total Flow Time
(
∑

Ci) minJj∈NS{2 max{t, rj}+ pj}

Table 1: Priority Rules for the total cost problems.

7

We now present some priority rules which can be used with heuristics (see Table 1).
Let t be the time at which the machine is available and let NS be the set of unscheduled
jobs at time t.

The apparent tardiness cost ATC and the COVERT priority rules [23] are priority rules
which combine the Weighted Shortest Processing Time rule and the Minimum Slack rules.
They trade off job urgency (slack) against machine utilization. In the X-RM rule, Morton
and Ramnath [20] modify the ATC rule to allow heuristic algorithms to insert idle times.
A priority correction is made to reduce the priority of late-arriving critical jobs. The PRTT
and the PRTF priority rules have been described by Chu [11, 10], for the total tardiness
and the total completion time criteria, respectively. These powerful priority rules were
derived from local dominance properties. Note that all the previous priority rules are
computed in 0(1) time for each job and, choosing the best job according to one of these
priority rules among n jobs has a cost of 0(n) times.

We now define a new priority rule CPRTWT (Combined Priority Rule for Total
Weighted Tardiness) which uses the local dominance properties. For two jobs Jj and
Jl, let cjl(t) be a cost which is equal to 1 if WT jl(t)−WT lj(t) ≤ 0, and to 0 otherwise.
We define the priority rule CPRTWT as follows: at time t, we choose a job with the max-
imum value

∑
Jl∈NS cjl(t). Note that this priority rule has the great advantage of being

valid and applicable to all the studied criteria. Note also that the CPRTWT priority rule
is equivalent to the PRTT and the PRTF priority rules when it is used respectively for the
total tardiness and the total completion time problem. Indeed, it is easy to prove that in
these cases a job chosen with the CPRTWT priority rule is identical to that chosen by the
PRTT or the PRTF priority rule. Nevertheless, this new priority rule suffers from the fact
that if i jobs have to be compared, then choosing the best job according to the CPRTWT
priority rule costs O(n2). Fortunately, experimental results (see Section 5) show that the
CPRTWT priority rule gives very good results compared with the other priority rules
(except for PRTT and PRTF, which are equivalent).

3.2 Improving a Solution
In this section we describe two procedures which use our dominance rules (see Section 2)
and are capable of drastically improving the quality of sequences built using the heuristic
algorithms described in the previous section. From now on, let σ = (J[1], . . . , J[y]) be a
partial sequence of y scheduled jobs obtained by one of the greedy heuristic algorithms.

Algorithm 2 - MakeLOWSActive((J[1], . . . , J[y])): Make partial sequence (J[y−1], J[y])
LOWS-Active.

1: if y ≥ 3 then t← C[y−2] else t← 0 end if
2: if y ≥ 2 and {[WT [y](t) −WT [y−1](t) < 0 and max{t, r[y]} ≤ max{t, r[y−1]}] or

[WT [y](t)−WT [y−1](t) = 0 and max{t, r[y]} < max{t, r[y−1]}]} then
3: interchange J[y−1] and J[y]

4: end if

8

A first improving algorithm allows us to make the partial sequence σ LOWS-Active
(see Section 2.1) on the last two jobs, possibly by interchanging these jobs (see Algo-
rithm 2). In line 2 we check whether the conditions for a LOWS-Active schedule are met
regarding the last two jobs of the partial sequence. If not, these last two jobs are inter-
changed (line 3). Note that this algorithm runs in O(1). From now on, we refer to this
algorithm as “MakeLOWSActive”.

Algorithm 3 - MakeBetter((J[1], . . . , J[y])).
Improve sequence (J[1], . . . , J[y]) with insertions and interchanges.

1: x← y − 1
2: while x ≥ 1 and r[y] < r[x] + p[x] do
3: for i = 1 to x− 1 do J(i) ← J[i], J{i} ← J[i] end for
4: J(x) ← J[y], MakeLOWSActive((J(1), . . . J(x)))
5: J{x} ← J[y], MakeLOWSActive((J{1}, . . . J{x}))
6: J{x+1} ← J[x], MakeLOWSActive((J{1}, . . . J{x+1}))
7: for i = x + 1 to y − 1 do
8: J(i) ← J[i], MakeLOWSActive((J(1), . . . J(i)))
9: J{i+1} = J[i], MakeLOWSActive((J{1}, . . . J{i}))

10: end for
11: J(y) ← J[x], MakeLOWSActive((J(1), . . . J(y)))
12: S ← (J[1], . . . , J[y])
13: if (J(1), . . . J(y)) is “better” than S then S ← (J(1), . . . J(y)) end if
14: if (J{1}, . . . J{y}) is “better” than S then S ← (J{1}, . . . J{y}) end if
15: replace (J[1], . . . , J[y]) by S, x← x− 1
16: end while

A second improving algorithm involves searching a “better” (see Section 2.2) se-
quence than σ (see Algorithm 3). To this end, in lines 3 − 11, we enumerate the per-
mutations that are obtained from σ by inserting the last job J[y] somewhere inside σ, or
by interchanging J[y] with another job in σ. Let (J{1}, . . . , J{y}) be the sequence obtained
by such an insertion and let J{i} be the job in ith position in this sequence. In addition, let
(J(1), . . . J(y)) be the sequence obtained by such an interchange and let J(i) be the job in
ith position in this sequence.

If a “better” sequence is found as a result of the above interchanges or insertions, the
current partial sequence σ is replaced by this better sequence (see lines 12 − 15). Since
there are O(|σ|) such permutations of σ, and since the comparison of two sequences can
be done in a linear time, the algorithm runs in O(|σ|2). To improve the quality of permu-
tations built during the execution of the algorithm, we try to ensure that local optimality
holds between each pair of adjacent jobs: during the construction of a sequence, two
adjacent jobs can be interchanged to obtain LOWS-Active schedules by using the first
improving algorithm. Note that this method does not lead necessarily to LOWS-Active
schedules. From now on, we refer to this algorithm as “MakeBetter”.

Either of these two improving algorithms may easily be included in the heuristic al-

9

gorithms described in Section 3.1. We can use one of these at each iteration by adding it
to the end of line 4 of Algorithm 1. Moreover, in the heuristics LA and RBS, these two
improving algorithms can be used to perform the evaluations (Algorithms HP and GL
with the PRTF priority rule for the heuristic RBS, and algorithms EST, HP, IT or GL with
any priority rules for LA).

Recall that the time complexities of priority rules are not all the same. Computing
priority CPRTWT for a job requires O(|NS |) time, whereas priority rules ATC, X-RM
and COVERT take O(1) time. Moreover, improving algorithms do not have the same
complexity. Hence, the complexities of heuristic algorithms depend on both the improv-
ing algorithm and the priority rule used. For instance, Algorithms EST, HP and IT, used
with priority rules ATC, X-RM and COVERT, run in O(n2) time if they are used either
with no improving algorithm or with MakeLOWSActive. They run in O(n3) time if they
are used with MakeBetter. Experimental results, which show the effectiveness of these
two algorithms in improving the solutions built by the greedy algorithms, are provided in
Section 5.

4 Tabu Search Method
In this section we describe a Tabu Search method which allows us to build good solutions
for total cost problems. The components of our method are described in Sections 4.1, 4.2,
4.3 and 4.4. We describe how these components are used in our method in Section 4.5.
Note that this method can be greatly enhanced by techniques from the literature specific
to the Tabu Search. Here, we wish simply to show that our techniques can be very useful
for these kinds of problems.

Tabu Search [15, 16] is a neighborhood search algorithm which starts with a feasible
solution S and tries to improve it iteratively. The improving solution S ′ is found in some
neighborhood of S. To be efficient, a neighborhood search algorithm has to avoid cycles.
The classical technique used in the Tabu Search method is to keep a list L of the latest
solutions (or of the latest moves). If a solution (or a move) is in L, it is tabu (i.e., for-
bidden), and it is not investigated until a given number of iterations has been performed.
Below we shall describe a variant of this approach which seems more adequate for the
total weighted tardiness problem.

A solution is a sequence of jobs σ. The schedule S associated with σ is obtained
by scheduling the jobs as early as possible according to the sequence. From now on, let
σ(S) be the sequence associated with the schedule S. As a cost function we use the total
weighted tardiness WT (S) of schedule S.

4.1 Tabu List
We performed a large number of experiments in order to find a technique which avoids as
many cycles as possible. One difficulty, inherent to the total (weighted) tardiness problem,
is that a lot of solutions are equivalent. In particular, a typical solution is composed of

10

partial sequences of on-time jobs which can be exchanged under feasibility constraints to
obtain solutions with exactly the same cost. This is also true for sequences of tardy jobs.
Consequently, we may need to explore a lot of equivalent solutions. Moreover, it is very
easy to cycle even where we forbid the last moves or the last solutions. Our objective is
to limit such explorations.

To deal with these issues, we propose the following approach. Instead of storing the
last moves or the last solutions, we store the last values of the total cost obtained in the
last visited solutions. From now on, a solution is “tabu” if its total cost belongs to the
Tabu list. Our experiments show that the list needs to be large in order to be efficient.

4.2 Neighborhood
An insertion neighborhood is used. A schedule S ′ is a neighbor of the current solution S
if the sequence σ(S ′) can be obtained from σ(S) by a single insertion of a job at some
earlier position. To converge quickly to active schedules (which are dominant for this
problem), we avoid insertions of a job Ji in a position j if its release date ri is greater than
or equal to the completion time of the job in position j in σ(S).

Since the size of the complete neighborhood is O(n2), and since a sequence is evalu-
ated in linear time, visiting the entire neighborhood requires 0(n3). The best solution S ′

is chosen from among the non-tabu solutions.
Sequence S ′ may have a cost greater than that of S. If the cost function was previously

decreasing, we are in a local optimum (according to the neighborhood used), in which
case we shall use the intensification described in the next section. Conversely, if the cost
function was previously increasing, the move is accepted.

4.3 Intensification
We can view the intensification as a larger neighborhood. In this section we describe
an intensification method derived from our local dominance rules. This intensification is
based on a kind of dynasearch technique (see [12]). While traditional local search algo-
rithms make a single move at each iteration, dynasearch allows a series of “independent”
moves to be performed.

First, we describe in Section 4.3.1 an extended neighborhood relying on the domi-
nance rules described in Section 2.1. In Section 4.3.2 we analyze the consequences of a
move on an initial sequence. To make use of all the performed computations, we define
in Section 4.3.3 the notion of “compatibility” between several moves, which is an adapta-
tion of the notion of “independence” [12]. In Section 4.3.4 we then propose a Dynasearch
technique involving several compatible moves at each iteration, and present a O(n3) time
algorithm which allows us to find the best combination of compatible moves according to
the computations which have been made.

11

4.3.1 Elementary Improved Moves Using Local Dominance Rules

In this section we enlarge the neighborhood of Section 4.2 and we use dominance rules
described in Section 2.1.

All the sequences obtained by inserting a job in another position, or by the interchang-
ing of two jobs, are now investigated. Recall that the subset of the LOWS-Active schedules
has been proved to be dominant for the one-machine total (weighted) tardiness problem
(Section 2). In order to obtain better sequences, whenever we build a new sequence,
we try to obtain LOWS-Active schedules. Consider a partial current sequence during the
building of a new sequence. Each time we add a job to this partial sequence, we shall pos-
sibly interchange the two last jobs to make the partial sequence LOWS-Active on the two
last jobs, using the MakeLOWSActive algorithm (see Section 3.2). Note that this method
does not necessarily yield LOWS-Active schedules. The size of this new neighborhood is
O(n2) and can be computed in O(n3) time, since MakeLOWSActive requires O(1) time.

4.3.2 Consequences of Improving Moves

Let us now analyze the consequences of an improving move on a schedule. Let J[i] be
the job at the ith position in a schedule S and let σ(S) = (J[1], . . . , J[n]) be the initial
sequence corresponding to schedule S. Suppose that i < k, and let Mi,k be one of the
following three improving moves: (1) an interchange between the two jobs J[i] and J[k],
(2) an insertion of job J[i] at position k, or (3) an insertion of job J[k] at position i. Let
Mi,k(S) be the schedule which is obtained after the execution of move Mi,k on schedule
S, and let σ(Mi,k(S)) = (J{1}, . . . , J{n}) be the sequence corresponding to the schedule
Mi,k(S). Additionally, let Gi,k(S) be the gain with respect to the total cost of schedule S
obtained by move Mi,k, i.e., Gi,k(S) = WT (S)−WT (Mi,k(S)).

Note that jobs {J[1], . . . , J[i−1]} do not move, and so we have J{i} = J[i],∀i ∈
{1, . . . , i − 1}. Jobs {J[i], . . . , J[k]} can move, and their cost may be modified. As a
result of the move and the use of the MakeLOWSActive algorithm, the completion time
of the job at position k in schedule S may not be the same as the completion time of the
job in position k in schedule Mi,k(S), i.e., it may happen that C[k] 6= C{k}. If C[k] < C{k},
then the jobs {J[k+1], . . . , J[n]} are scheduled later in Mi,k(S), and their cost may increase.
If C[k] > C{k}, then the jobs {J[k+1], . . . , J[n]} can in certain cases be scheduled earlier
in Mi,k(S), and their cost may decrease. Note that in these two cases MakeLOWSActive
can modify the positions of the jobs to try to make the sequence LOWS-Active. Finally, if
C[k] = C{k}, the jobs {J[k+1], . . . , J[n]} do not move and their cost does not change.

It can be observed that the global gain Gi,k(S) is due to the moves of jobs {J[i], . . . , J[k]},
and possibly to the moves of jobs {J[k+1], . . . , J[n]} if C[k] 6= C{k}. Thus, let PG[i,k](S)
be the partial gain due to the moves of jobs {J[i], . . . , J[k]}, and let PG[k+1,n](S) be the
partial gain due to the moves of jobs {J[k+1], . . . , J[n]}. Note that values PG[i,k](S)
and PG[k+1,n](S) can be positive, null or negative. However, Gi,k(S) = PG[i,k](S) +
PG[k+1,n](S) will be positive, since by hypothesis the move is an improving move.

12

4.3.3 Compatibility between two moves

We now define the notion of “compatibility” between two moves, which is an adaptation
to our problem of the concept of “independence” described by [12].

Let Mi,k et Mj,l be two elementary moves which allow us to improve a schedule S
(i.e., Gi,k(S) ≥ 0 and Gj,l(S) ≥ 0). Informally, we say that Mi,k is compatible with Mj,l

when we are sure that they can be both performed on the schedule, i.e., the consequences
of the first move do not impact on the second.

A first condition for the compatibility of moves Mi,k and Mj,l is that the two moves
are “independent” ([12]), i.e., k < j or l < i. If this condition does not hold, the gain
from one move can disturb the other. Suppose now that Mi,k and Mj,l are two independent
moves. Without loss of generality, suppose that k < j (i.e., Mi,k is further to the left than
Mj,l). Note that if we have C[k] > C{k}, the jobs on the right of the position k in S are
delayed, i.e., the move Mi,k disturbs the move Mj,l. It follows that a second condition for
the compatibility of moves Mi,k and Mj,l is that C[k] ≤ C{k}, and we must avoid any move
of jobs on the right of the position k if we perform move Mi,k accompanied by move Mj,l.

In this case the gain to be taken into account is the partial gain PG[i,k](S) and not the
global gain Gi,k(S). It is clear that a move Mi,k such that PG[i,k](S) < 0 is not considered
as an improving move for S if it is accompanied by move Mj,l. Nevertheless, note that
Mj,l can be an improving move S if PG[i,k](S) < 0, PG[k+1,n](S) > 0 and Gi,k(S) ≥ 0.
We can now define compatibility between two jobs:

Definition 4. Let S be a schedule and let Mi,k and Mj,l be two improving and independent
moves for S such that we have k < j and PG[i,k](S) ≥ 0. The moves Mi,k and Mj,l are
compatible if C[k] ≤ C{k}.

This notion of “compatibility” can be generalized to a combination of more than two
independent moves. By extension of the above, for each move Mi,k other than the right-
most move in the schedule, we cannot delay jobs after index k.

Definition 5. Let E = {Mi1,k1 . . . , Mix,kx} be a set of x elementary improving and inde-
pendent moves such that k1 < i2, k2 < i3, . . ., kx−1 < ix. The set E is a combination of
compatible moves if for all j < x, we have C[kj] ≤ C{kj} and PG[ij ,kj](S) ≥ 0.

4.3.4 Finding the Best Combination of Improving Compatible Moves

The method described in [12] allows the authors to find the “best” combination of “in-
dependent” moves. Nevertheless, the notion of “compatibility”, which is adapted to the
problem with release dates in which one move can disturb a subsequent one (see previ-
ous section), does not allow us to find easily the best combination of “compatible” moves.
That is why we refer only to a Dynasearch technique [12] which allows us to find a “good”
combination of elementary compatible moves.

To this end we build the following valued graph G. Two vertices s and p are built.
For each possible improving move Mi,k, we build a vertex M1

i,k if C[k] ≤ C{k} and
PG[ij ,kj](S) ≥ 0, an edge of value 0 between vertex s and M1

i,k, and an edge of value

13

PG[ij ,kj](S) between vertex M1
i,k and vertex p. Each of these vertices corresponds to the

case in which the move M1
i,k is made without modification to the positions of jobs after

index k. We also build a vertex M2
i,k, an edge of value 0 between vertices s and M2

i,k, and
an edge of value Gi,k(S) between vertices M2

i,k and p. Each of these vertices corresponds
to the case where move Mi,k is made and where the algorithm MakeLOWSActive allows
us to modify the positions of jobs after the index k. Note that this move is permitted
only if it is the last move of the combination. All of these edges from M2

i,k are therefore
connected to vertex p. Finally, for each pair of compatible moves Mi,k and Mj,l such that
k < j, we build an edge from vertex M1

i,k to vertex M1
j,l, and an edge from vertex M1

i,k to
vertex M2

j,l, these two vertices being of value PG[i,k](S).
For any path in G from vertex s to vertex p corresponds a combination of compatible

moves belonging to the path. Moreover, the value of a path corresponds to the minimum
gain obtained by performing the whole combination of these moves.

We shall obtain the best combination of moves, with respect to this minimum gain,
by seeking the longest path between s and p in this valued graph. Let S be a schedule.
For each job J[i] in S, there are at most O(n) possible interchanges and insertions. There
are O(n2) vertices and O(n3) edges. The graph is acyclic, and so the longest valued path
between s and p can be computed in O(n3) by dynamic programming.

Note that the described method gives the best combination of compatible moves with
respect to a minimum gain (i.e., performing the moves could lead to a better gain than the
computed one), unlike [12], whose method yields the best combination of independent
moves with a computation of the real gain.

Once this longest path is computed, each move belonging to the path is performed.
The process is iterated until no further improvement on the total cost function can be
achieved. This intensification may lead to a solution whose cost belongs to the Tabu list.
In such a case, we use the diversification procedure described in the next section.

4.4 Diversification
To diversify the solution, we define a new cost function f as a linear combination of total
weighted tardiness and total earliness costs, i.e., f(S) = ν1

∑
wiTi + ν2

∑
wiEi, where

Ei = max{0, di − Ci(S)} is the earliness of job Ji in schedule S. Note that other linear
combinations such as f(S) = ν1

∑
wiTi + ν2Tmax, where Tmax = max {Ti}, may be

considered. We prefer
∑

wiEi to Tmax, because many different solutions may all have the
same value Tmax.

Parameters ν1 and ν2 are randomly generated according to the size of the problem. At
the beginning of this procedure, a job Ji is chosen randomly. We consider all the neighbors
obtained by interchanging Ji with another job of the current schedule S. Among the non-
tabu sequences (with respect to the main cost function, i.e., the total weighted tardiness),
we choose the interchange with a job Jk which leads to a sequence minimizing the cost
function f . At the next iteration, the job Jk takes the role of job Ji. We iterate a number
of times randomly (according to the size of the instance). In practice, this method allows
us to explore a new area of the set of feasible solutions, without loosing too much of the

14

structure of the initial solution.

4.5 Global Method
We now show how the above techniques are used in our Tabu search (Algorithm 4). An

Algorithm 4 Tabu Search
1: Compute an initial solution S.
2: i← 0
3: while i ≤NbItMax and time ≤timeMax do
4: Select the best non-tabu neighbor S ′ of solution S.
5: if WT (S ′) > WT (S) and we are in a local optimum then
6: S ′ ← solution built by the Intensification.
7: if WT (S ′) ∈ TabuList then
8: S ′ ← solution built by the Diversification.
9: end if

10: end if
11: S ← S ′.
12: Add WT (S) in TabuList.
13: if the best solution has not been improved since NbItWithoutImp then
14: S ← solution built randomly.
15: end if
16: end while

initial solution is built (using, for example, one of the greedy algorithms described in
Section 3). We fix a maximum number of iterations nbItMax and a maximum computing
time timeMax. The Tabu stops if the total weighted tardiness is equal to 0 (i.e., the
obtained solution is optimal). At each iteration, a solution S ′ is visited in accordance with
the methods described in Sections 4.2,4.3 and 4.4.

In line 4, a sequence S ′ is first computed with the neighborhood described in Sec-
tion 4.2. Solution S ′ may have a cost greater than the cost of S. If the cost function was
previously decreasing, we are in a local optimum (according to the neighborhood used),
and we use the intensification described in the Section 4.3 (see line 6). Conversely, if the
cost function was previously increasing, the move is accepted.

Where intensification leads to a solution whose cost belongs to the Tabu list we use
the diversification described in Section 4.4 (line 8).

During the search, the best obtained solution is stored. Throughout the search, if
the best solution has not been improved during a fixed number NbItWithoutImp of
iterations, a new solution is randomly built, as in the initialization (line 14).

15

5 Experimental Results
In this section we provide experimental results demonstrating the effectiveness of all the
algorithms described in this paper. All experimental results were obtained using a Pentium
IV 2.6 GHz running Windows XP.

In order to be able to compare our results to previous relevant experimental studies,
instances were generated in line with the most standard schemes in the literature. For
1|ri|

∑
Ti and 1|ri|

∑
wiTi, we use the schemes by Chu [9] and Akturk and Ozdemir [1].

Each instance is generated randomly from uniform distributions of ri, pi and di. pi are
uniformly distributed on [1, 10]. The ri and di depend on 2 parameters: π1 and π2. ri

are uniformly distributed on [0, π1
∑

pi] and di − (ri + pi) are uniformly distributed on
[0, π2

∑
pi]. In the weighted case, wi are uniformly distributed on [1, 10]. Four values for

π1 and three values for π2 are combined to produce 12 instances sets, each containing 20
instances of n jobs, n ∈ {10, . . . , 200}. We then obtain 240 instances for each size n.

For 1|ri|
∑

Ci and 1|ri|
∑

wiCi, the instances are generated using the same scheme
as the test problems of Hariri and Potts [17], and Belouadah, Posner and Potts [5]. For
each job, we generate a processing time from the uniform distribution in [1, 100] and a
weight from the uniform distribution in [1, 10]. For a problem size n ∈ {10, . . . , 200}, an
integer release date for each job was generated from the uniform distribution [0, 50.5nR],
where R controls the range of the distribution. For each selected value of n, 20 problems
were generated for each of the R values 0.2, 0.4, 0.6, 0.8, 1.0, 1.25, 1.5, 1.75, 2.0 and 3.0
producing 200 problems for each value of n.

5.1 Results for Greedy Algorithms
We tested the efficiency of the “improving” algorithms (MakeLOWSActive and Make-
Better, Section 3.2). Tests were run with greedy algorithms (EST, HP, IT, GL, RBS and
LA, Section 3.1), both with and without an improving procedure. It is difficult to analyze
the results. Not all heuristics require the same amount of time: the complexity of building
a solution depends on the heuristic in question, on the priority rule and on the improving
algorithm used in the heuristic. Therefore, a heuristic which gives the best results often
requires significantly more computing time (see for instance Table 7).

We first describe the results obtained by the greedy algorithms. In the first table we
present the results obtained with algorithms EST, HP, IT and GL. In the second one we
present the results obtained by the algorithm LA. A third table is also provided for the total
completion time criterion, presenting the results obtained with the RBS algorithm, which
is specific to this criterion. In this section we present results only for those instance sizes
for which all the optima are known ([18]). Results for larger instance sizes are provided
in Section 5.3.

For each heuristic, and for different priority rules according to the studied criterion,
we show the average relative gap with respect to the optimum (“gap”), and the relative
number of times the optimum is found (“%”) over the generated instances for a given in-
stance size n. Since the total costs of schedules are often very large for the total weighted

16

EST HP IT GL
n no ML MB no ML MB no ML MB no ML MB

CPRTWT 10 0.407 0.400 0.137 0.198 0.166 0.060 0.208 0.167 0.064 0.268 0.268 0.106
gap 20 0.497 0.477 0.240 0.481 0.334 0.108 0.441 0.305 0.106 0.363 0.349 0.204

30 2.435 2.414 1.605 1.211 1.142 0.661 0.770 0.542 0.094 2.089 2.089 1.458
10 41 44 68 54 59 80 54 59 80 56 56 73

% 20 25 27 46 33 38 57 34 39 59 29 29 50
30 13 14 28 23 24 41 27 30 47 17 17 33

ATC 10 0.526 0.396 0.144 1.081 0.565 0.208 1.115 0.650 0.268 0.268 0.268 0.082
gap 20 0.575 0.450 0.231 1.704 0.919 0.458 1.709 0.795 0.432 0.388 0.373 0.206

30 3.218 2.894 1.605 3.425 2.047 0.570 3.169 1.714 0.426 2.150 2.149 1.460
10 33 43 69 19 40 66 21 42 68 54 54 72

% 20 17 23 42 10 21 39 9 20 38 29 29 49∑
wiTi 30 10 14 26 10 15 29 10 20 33 17 17 34

XRM 10 0.526 0.396 0.144 1.200 0.610 0.110 1.589 0.880 0.298 0.268 0.268 0.082
gap 20 0.575 0.450 0.231 1.364 0.686 0.292 1.416 0.674 0.388 0.388 0.373 0.206

30 3.218 2.894 1.605 3.927 3.011 1.595 3.989 3.134 1.652 2.151 2.151 1.461
10 33 43 69 25 42 68 20 36 60 54 54 72

% 20 17 23 42 12 21 39 11 20 33 29 29 49
30 10 14 26 5 13 27 7 12 23 17 17 34

COVERT 10 0.634 0.448 0.169 0.838 0.307 0.122 0.874 0.313 0.130 0.266 0.266 0.082
gap 20 0.725 0.523 0.247 0.996 0.543 0.217 1.062 0.622 0.259 0.377 0.362 0.205

30 3.515 2.391 1.666 3.154 1.925 1.372 5.700 2.337 1.360 2.113 2.112 1.462
10 26 41 65 23 50 73 23 49 70 54 54 72

% 20 10 19 38 10 22 44 9 20 41 29 29 50
30 10 15 29 11 19 31 12 20 33 17 17 33

CPRTWT 20 13.722 13.563 5.827 5.020 5.020 3.052 5.020 5.020 3.052 10.488 10.488 5.338
40 6.761 6.688 3.676 5.620 5.620 2.413 5.620 5.620 2.413 5.254 5.218 3.396

gap 60 4.748 4.735 2.786 6.378 6.378 2.970 6.378 6.378 2.974 4.044 4.041 2.621
80 3.671 3.648 2.641 5.965 5.965 2.440 5.978 5.978 2.448 3.283 3.261 2.436

100 2.873 2.860 2.155 6.324 6.323 2.690 6.347 6.346 2.668 2.618 2.606 2.054
20 16 16 29 43 43 53 43 43 31 31 38
40 1 1 6 17 17 26 17 17 26 8 8 12

% 60 1 1 2 9 9 18 9 9 18 5 5 8
80 0 0 0 11 11 15 11 11 15 1 1 1∑

wiCi 100 0 0 0 5 5 6 5 5 6 1 1 1
SWPT 20 13.818 13.818 5.974 53.272 40.268 12.338 25.872 18.986 6.954 14.495 14.495 6.666

40 6.752 6.752 3.674 40.145 31.666 8.775 16.839 11.973 5.391 11.326 11.304 5.459
gap 60 4.854 4.854 2.882 37.691 29.442 7.914 11.274 7.883 3.756 10.761 10.757 5.882

80 3.724 3.724 2.651 33.964 26.967 6.938 8.249 6.781 3.223 11.879 11.874 7.280
100 2.907 2.907 2.160 31.194 24.634 6.858 7.327 5.604 2.835 10.792 10.787 6.838
20 16 16 29 1 8 29 6 12 24 30 30 36
40 1 1 6 0 4 9 1 1 5 5 5 11

% 60 1 1 2 0 1 2 0 1 1 4 4 6
80 0 0 0 0 0 2 0 0 0 1 1 1

100 0 0 0 0 0 1 0 0 0 1 1 1

PRTT 10 0.163 0.163 0.024 0.087 0.086 0.051 0.095 0.094 0.052 0.028 0.028 0.016
20 0.174 0.174 0.111 0.197 0.158 0.078 0.182 0.142 0.076 0.187 0.187 0.119

gap 30 0.138 0.138 0.079 0.244 0.208 0.058 0.339 0.177 0.045 0.174 0.174 0.114
40 0.181 0.181 0.145 0.416 0.273 0.050 0.411 0.300 0.075 0.236 0.236 0.182∑

Ti 50 0.297 0.297 0.132 0.204 0.190 0.037 0.180 0.149 0.027 0.339 0.339 0.185
10 75 75 85 78 78 86 78 78 86 82 82 89
20 57 57 66 51 53 67 53 55 67 53 53 63

% 30 41 41 51 42 45 61 48 50 63 40 40 51
40 39 39 51 39 44 59 44 48 58 33 33 46
50 30 30 43 36 38 55 43 45 57 28 28 38

PRTF 20 4.076 4.076 2.086 6.404 6.404 3.179 6.404 6.404 3.179 2.380 2.380 1.857
40 1.992 1.992 1.465 9.037 9.037 4.187 9.037 9.037 4.187 1.661 1.661 1.354

gap 60 1.351 1.351 1.133 9.743 9.743 3.862 9.743 9.743 3.862 1.087 1.087 0.992
80 0.893 0.893 0.754 9.014 9.014 3.235 9.014 9.014 3.235 0.733 0.733 0.661∑

Ci 100 0.726 0.726 0.628 9.493 9.493 3.487 9.493 9.493 3.487 0.621 0.621 0.564
20 28 28 48 46 46 58 46 46 58 55 55 64
40 12 12 21 24 24 27 24 24 27 29 29 33

% 60 4 4 6 12 12 18 12 12 18 12 12 14
80 1 1 2 6 6 8 6 6 8 2 2 3

100 1 1 3 5 5 7 5 5 7 4 4 6

Table 2: Results of algorithms EST, HP, IT and GL.

17

completion time and the total completion time criteria, the relative gaps have been mul-
tiplied by 1000 for these two criteria. In each case the column “no” gives the results
obtained with the heuristics alone. “ML” gives the results obtained with heuristics used
together with the MakeLOWSActive algorithm. Finally, “MB” gives the results obtained
with heuristics used together with the MakeBetter algorithm.

In Table 2 we compare the heuristics EST, HP, IT and GL for each criterion with differ-
ent priority rules: CPRTWT, ATC, X-RM and COVERT for the total weighted tardiness,
CPRTWT and SWPT for the total weighted completion time, PRTT for the total tardiness
and PRTF for the total completion time. We can see the effectiveness of the MakeLOWS-
Active and MakeBetter algorithms in improving the quality of solutions. We can also see
that the new priority rule CPRTWT is very efficient compared to the other priority rules
for the 1|ri|

∑
wiTi and 1|ri|

∑
wiCi problems. Indeed, most of the time it gives the best

results among heuristics algorithms used with or without improving algorithms.
For 1|ri|

∑
wiTi, the best results are obtained with heuristic IT using algorithm Make-

Better and the priority rule CPRTWT. For 1|ri|
∑

wiCi, the best results are obtained with
heuristic HP using algorithm MakeBetter and the priority rule CPRTWT. For 1|ri|

∑
Ti,

note that algorithms EST and GL do not need algorithm MakeLOWSActive, since these
heuristics, used with priority rule PRTT, build schedules which are already LOWS-Active.
For 1|ri|

∑
Ci, note that heuristic IT gives exactly the same results as heuristic HP. This

is because the priority rule PRTF strongly depends on the release dates of the jobs. Con-
sequently it is never possible to insert a job before a job which is chosen according to the
priority rule PRTF (see heuristic IT in Section 3.1). Note that heuristics EST, HP and GL
build schedules which are always LOWS-Active. Therefore it is not useful to use algo-
rithm MakeLOWSActive to improve the solutions for this criterion. On the other hand,
the algorithm MakeBetter is able to improve the solutions for all algorithms. The best
results are obtained with heuristic GL using algorithm MakeBetter. Note that heuristic
HP (or IT) frequently yields the optimum. It would, however, appear that these heuristics
generally give solutions of less good quality.

Recall that for algorithms LA and RBS the improving algorithms can be used in two
ways. They can be used at each iteration when scheduling a job. Alternatively, they can be
used inside the heuristic algorithm(s), which allows evaluations to be computed for each
possible job which can be scheduled at each iteration of the algorithm (EST, HP, IT or GL
for algorithm LA, and only HP and GL for algorithm RBS). As for the other heuristics,
we report results when LA and RBS are used with no improving algorithm (“no”), with
MakeLOWSActive (“ML”), and with MakeBetter (“MB”), at the end of each iteration of
LA or RBS. Moreover, in all cases, we report results when an evaluation heuristic H is
used with no improving algorithm (“no (H)”), with algorithm MakeLOWSActive (“ML
(H)”) and with algorithm MakeBetter (“MB (H)”).

In Table 3 we provide results obtained with algorithm LA. We only report results for
the combination which gives the best results for each of the criteria. For 1|ri|

∑
wiTi

and 1|ri|
∑

wiCi, we use the heuristic HP and the priority rule CPRTWT. For 1|ri|
∑

Ti,
we use the heuristic IT and the priority rule PRTT. Finally, for 1|ri|

∑
Ci, we use the

heuristic GL and the priority rule PRTF. We can see that algorithm LA gives very good

18

no ML MB
no(H) ML(H) MB(H) no(H) ML(H) MB(H) no(H) ML(H) MB(H)

n gap % gap % gap % gap % gap % gap % gap % gap % gap %
10 0.025 90 0.016 92 0.003 97 0.010 94 0.009 95 0.001 98 0.004 97 0.004 98 0.001 99∑

wiTi 20 0.095 58 0.099 63 0.025 79 0.067 63 0.074 68 0.022 85 0.039 77 0.051 80 0.013 92
HP, CPRTWT 30 0.182 45 0.149 48 0.027 70 0.120 53 0.102 56 0.021 77 0.054 63 0.048 68 0.015 83

20 1.462 75 1.462 75 0.868 82 1.153 80 1.153 80 0.649 86 0.465 88 0.465 88 0.285 92∑
wiCi 40 1.932 46 1.932 46 0.856 58 1.524 49 1.524 49 0.691 63 0.779 58 0.779 58 0.444 72

60 2.688 31 2.688 31 1.111 40 2.306 35 2.306 35 0.871 43 1.379 40 1.379 40 0.636 46
HP, CPRTWT 80 2.848 26 2.848 26 1.250 32 2.480 29 2.480 29 1.054 37 1.576 32 1.576 32 0.671 44

100 2.928 24 2.928 24 1.282 29 2.555 28 2.554 28 1.094 33 1.631 32 1.630 32 0.684 36

10 0.001 99 0.001 99 0.001 100 0.000 99 0.000 99 0.000 100 0.000 100 0.000 100 0.000 100∑
Ti 20 0.033 83 0.026 84 0.013 90 0.021 87 0.022 87 0.010 94 0.008 91 0.008 92 0.004 96

30 0.072 68 0.043 69 0.016 82 0.030 74 0.034 75 0.010 84 0.017 85 0.013 85 0.008 90
IT, PRTT 40 0.102 64 0.085 65 0.037 80 0.065 70 0.065 71 0.031 85 0.010 80 0.010 81 0.002 90

50 0.036 63 0.025 64 0.008 76 0.023 72 0.020 73 0.006 81 0.015 81 0.014 82 0.003 87

20 0.535 85 0.535 85 0.233 90 0.482 86 0.482 86 0.204 91 0.400 88 0.400 88 0.172 91∑
Ci 40 0.327 68 0.327 68 0.280 70 0.253 71 0.253 71 0.206 74 0.224 75 0.224 75 0.168 78

60 0.261 51 0.261 51 0.228 53 0.214 57 0.214 57 0.193 58 0.149 61 0.149 61 0.134 63
GL, PRTF 80 0.221 35 0.221 35 0.198 39 0.180 39 0.180 39 0.160 43 0.139 42 0.139 42 0.128 46

100 0.204 29 0.204 29 0.176 34 0.166 33 0.166 33 0.147 39 0.128 40 0.128 40 0.121 43

Table 3: Results of algorithm LA.

results. With n = 20, it yields the optimum 9 times out of 10 on average when used with
the improving algorithm MakeBetter.

no ML MB
no (H) ML (H) MB (H) no (H) ML (H) MB (H) no (H) ML (H) MB (H)

n gap % gap % gap % gap % gap % gap % gap % gap % gap %
20 0.541 79 0.541 79 0.406 82 0.541 79 0.541 79 0.406 82 0.519 79 0.519 79 0.385 82
40 0.372 53 0.371 53 0.280 60 0.372 53 0.371 53 0.280 60 0.350 54 0.350 53 0.268 61
60 0.307 39 0.307 38 0.242 43 0.307 39 0.307 38 0.242 43 0.296 39 0.295 39 0.234 44
80 0.322 25 0.321 25 0.267 28 0.322 25 0.321 25 0.267 28 0.324 25 0.323 25 0.264 28

100 0.263 22 0.261 22 0.225 26 0.263 22 0.261 22 0.225 26 0.270 22 0.270 22 0.230 26

Table 4:
∑

Ci: results of algorithm RBS.

In Table 4, we provide results obtained with algorithm RBS. Heuristics HP and GL
are used with PRTF inside RBS to compute evaluations for each possible job which can
be scheduled at each iteration of the algorithm. We can see that algorithm RBS gives very
good results particularly when used with the improving algorithm MakeBetter. Neverthe-
less, the obtained results are slightly less good than those obtained with LA. It should be
remembered that this heuristic take less time to execute (see Table 7).

In [14], only one preferred node is retained at each iteration of the RBS procedure
in order to minimize the CPU time required by the procedure. Nevertheless, it is inter-
esting to test if a larger beam size can lead to better solutions. Thus, additional tests for
different size of beam have been done. This leads to the following remarks. Even with
an infinite beam size, the procedures MakeLOWSActive and MakeBetter improve the re-
sults obtained by the RBS approach. Even with an infinite beam size, the RBS approach
is dominated by the LA approach. Indeed, the crude filter procedure used in the RBS is
fast but may result in discarding good solutions. As noticed by [14] branches leading to
optimal solutions in the search tree could be pruned in the nodes evaluation process and
the recovering step could not be able to repair these situations. Then, even for small size
of instances (such as 10), all the optima are not found. Obviously, for large beam sizes,
the algorithm is rather slow. In the original RBS approach, the node are not pruned if the

19

evaluation of the node is greater than the current best found solution. Indeed, the recov-
ering step on this node or on its derived nodes can lead to better solutions. Nevertheless,
from size 60 on, the number of nodes to evaluate is too high and the procedure is much
too slow. That is why, it is better in this situation to use the evaluations to prune the nodes.
Consequently, the results become slightly less good.

5.2 Results Obtained by the Tabu Search

nb. iter. nb. int. nb. div. nb. rest. time (ms)
n mean max mean max mean max mean max mean max
10 4 13 0 5 0 0 1 1 0 16
20 17 442 1 127 1 124 1 1 1 110

CM 30 35 480 2 69 1 66 1 1 5 219
40 68 2076 3 146 2 137 1 3 31 1328
50 99 1974 5 254 4 247 1 3 88 2141

mean 45 997 2 120 2 115 1 2 25 763

10 6 35 0 9 0 0 1 1 0 16
20 24 641 3 152 2 142 1 1 2 125

CM-DR 30 68 2931 7 510 6 489 1 5 15 1016
40 153 6035 12 713 10 653 1 11 84 4703
50 259 16137 16 837 14 750 1 31 259 16063

mean 102 5156 8 444 6 407 1 10 72 4385

10 4 47 0 18 0 0 1 1 0 16
20 22 2040 4 807 3 749 1 5 2 250

CM-TLIST 30 106 9090 47 8726 39 7990 1 39 49 8125
40 169 8041 74 6055 58 4837 1 15 186 9922
50 167 7901 58 4218 49 3861 1 11 251 11500

mean 94 5424 37 3965 30 3487 1 14 98 5963

10 35 9022 14 4034 14 1 1 19 1 125
20 261 98035 108 44222 98 40352 1 197 27 10985

CM-DR-TLIST 30 573 91993 241 38204 200 28276 2 183 178 29625
40 491 37076 198 16598 165 14910 2 75 375 26000
50 424 20671 160 9043 137 8301 2 41 661 29937

mean 357 51359 144 22420 123 18368 2 103 248 19334

Table 5:
∑

Ti, Comparing the Efficiency of our Techniques in the Tabu Search.

In this section we analyze the results obtained by our Tabu Search method. We show
that techniques described in Section 4 allow us to obtain good results for all criteria.
Recall that this method can be greatly enhanced by techniques from the literature specific
to the Tabu Search. Here we wish to show that our techniques can be very useful for
these kinds of problems. As in the previous section, we provide results only for instance
sizes where all the optima are known ([18]). Results for larger instance sizes are given in
Section 5.3.

In Table 5 we show the effectiveness of our Tabu Search method and of all our tech-
niques in improving the behavior of the method. This table shows experimental results for
the method in relation to the total tardiness criterion. For each n = {10, 20, . . . , 50}, the
method was executed 5 times for all the 240 instances. We arbitrarily set the maximum
computing time to 30 seconds and the Tabu list size to 200. Moreover, the initial solution
is computed randomly. We provide the results when the complete method is run (“CM”),
when the dominance rules are not used inside the intensification (“CM-DR”), when the
Tabu list is not used (“CM-TLIST”), and when the method is run without dominance
rules and without Tabu list (“CM-DR-TLIST”). We provide statistics on the number of
iterations (“nb. iter.”), the number of intensifications (“nb. int.”), the number of diversi-
fications (“nb. div.”), the number of restarts (“nb. rest.”) and the time (in milliseconds)

20

nb. iter. nb. int. nb. div. nb. rest. time (ms) % gap
n mean max mean max mean max mean max mean max min mean max min mean max

10 5 26 0 8 0 6 1 1 0 16 100 100 100 0.000 0.000 0.000
15 16 1394 3 437 2 423 1 3 1 156 100 100 100 0.000 0.000 0.000∑

wiTi 20 18 249 2 75 1 71 1 1 1 94 100 100 100 0.000 0.000 0.000
25 31 563 4 180 3 176 1 1 5 219 100 100 100 0.000 0.000 0.000
30 54 1812 10 529 9 522 1 3 28 1234 100 100 100 0.000 0.000 0.000

mean 25 809 4 246 3 240 1 2 7 344 100 100 100 0.000 0.000 0.000

10 6 72 1 23 0 19 1 1 0 16 100 100 100 0.000 0.000 0.000
20 26 1031 6 383 4 349 1 3 3 125 100 100 100 0.000 0.000 0.000
30 80 2551 22 1033 20 998 1 5 55 3438 100 100 100 0.000 0.000 0.000
40 263 12962 85 4505 79 4261 1 25 530 28297 98 99 99 0.003 0.006 0.015∑

wiCi 50 407 6572 131 2405 124 2259 1 13 1789 29688 96 97 98 0.050 0.063 0.094
60 758 9829 248 3603 235 3413 2 19 6020 59953 90 91 92 0.108 0.123 0.142
70 603 5825 183 2240 173 2118 1 11 7848 59984 81 83 85 0.125 0.180 0.232
80 753 4962 236 1847 221 1765 2 9 13082 59953 68 72 74 0.232 0.341 0.461
90 584 3340 162 1158 151 1081 1 5 14869 59953 59 63 65 0.475 0.636 0.713

100 588 2374 161 887 150 817 1 5 19128 60125 55 56 59 0.835 0.872 0.924
mean 407 4952 123 1808 116 1708 1 10 6332 36153 85 86 87 0.183 0.222 0.258

10 5 52 1 22 0 17 1 1 0 16 100 100 100 0.000 0.000 0.000
20 23 1364 4 456 3 448 1 3 2 187 100 100 100 0.000 0.000 0.000
30 90 6509 21 2106 19 2006 1 11 40 3703 100 100 100 0.000 0.000 0.000
40 222 19654 54 5779 50 5451 1 39 266 28265 99.5 99.8 100 0.000 0.002 0.004∑

Ci 50 483 14916 115 5023 106 4725 1 29 1072 29719 97 98 99 0.002 0.004 0.006
60 802 16485 155 3288 143 3147 2 33 2982 59859 98 98 99 0.002 0.012 0.029
70 1098 19324 182 3178 166 2816 2 33 5798 59687 92 94 96 0.018 0.022 0.024
80 1298 13820 184 2085 168 1964 2 21 9185 59875 78 80 81 0.068 0.134 0.206
90 1363 11451 166 1334 150 1254 2 21 12417 60000 69 70 70 0.212 0.328 0.409

100 1395 9261 143 1045 128 973 2 15 16195 60219 60 60 61 0.860 0.991 1.100
mean 678 11284 102 2432 93 2280 1 21 4796 36153 89 90 90 0.116 0.149 0.178

Table 6:
∑

wiTi,
∑

wiCi,
∑

Ci, Results obtained by the Tabu Search.

needed to converge to the best found solution. For all these statistics, the column “mean”
is the average (over the averages for the 5 executions for each instance) over the 240
instances. Moreover, the column “max” is the maximum (over the maxima for the 5 exe-
cutions for each instance) over the 240 instances. All optima are reached 5 times for each
of these instances, in a very short time when the method is used completely (“CM”). Our
method reaches the optimum for 100% of the instances for instance sizes lower than or
equal to 50. That is why we have not reported the relative number of times the optimum
is found, or the average relative gap in relation to the optimum. For n = 50 jobs, the aver-
age computing time needed and the average number of iterations to find the optimum are
respectively 0.09 seconds and 99 iterations. We remark that if the method is used without
dominance rules inside the intensification or without the Tabu list, it takes much more
time to converge to the optimum. Moreover, in a certain number of cases, the optimum is
not found (which has not been reported in the table).

In Table 6 we provide the same statistics for the other criteria (the total weighted
tardiness, the total weighted completion time and the total completion time criteria) when
the complete method is used. We arbitrarily set the maximum computing time to 30
seconds if n ≤ 50 and to 60 seconds if n ≥ 60. Moreover the Tabu list size was set to
200 in all cases. The initial solution is computed randomly. Since not all the optima are
found, we also provide the average relative gap (“gap”) and the relative number of times
that the optimum is found (“%”).

For the total weighted tardiness problem, all optima are again reached 5 times for
each of these instances, in a very short time. For n = 35 jobs, the average computing time
needed and the average number of iterations to find the optimum are respectively 0.03

21

seconds and 54 iterations. For the total weighted completion time and the total completion
time criteria, note that all optima are found. The results may easily be compared with
the other best methods (i.e., algorithm LA for all criteria, or algorithm RBS for the total
completion time criteria). The Tabu Search allows us to find better results in small amount
of time. For example, in the case of the total completion time criterion, the Tabu Search
method reaches an optimum in 90% of the instances, in an average time of 5 seconds,
while the algorithm LA reaches an optimum in 68% of the instances, in 2 seconds in
average. Nevertheless, note that the relative gap is larger with the Tabu Search method
for n ≥ 90. The Tabu Search gives the optimum more often, but when the optimum is not
reached, the solution is very far from the optimum. This is because the initial solution is
computed randomly for the Tabu Search method, and the method does not have sufficient
time to find the area where the best solution is located. We can easily obtain better results,
either by allocating more than 60 seconds to the Tabu Search method, or by computing
the initial solution with a greedy algorithm described in Section 3.1 (see next section).

5.3 Comparing Methods for Large Instance Sizes

n 100 150 200 mean
cpu (ms) av. F̄ cpu (ms) av. F̄ cpu (ms) av. F̄ cpu (ms) av. F̄

IT 48 88627 151 354675 340 619552 179 354285
IT (MB) 71 85393 232 343514 544 603523 282 344143∑

wiTi LA 24928 85559 185392 344521 746811 604136 319044 344739
LA (MB) 46027 83319 345019 337126 1428632 591644 606559 337363

Tabu 38153 82904 158303 334749 270292 588124 155583 335259

HP 9 1923118 26 4254697 59 7477394 31 4551736
HP (MB) 20 1919045 68 4246210 155 7463042 81 4542766∑

wiCi LA 5073 1919242 39454 4247184 153181 7465708 65902 4544045
LA (MB) 12105 1916779 95821 4242106 375380 7458060 161102 4538982

Tabu 81002 1916102 185152 4241208 368397 7457137 211517 4538149

IT 1 4634 1 10305 1 18188 1 11042
IT (MB) 6 4588 16 10197 36 18072 20 10952∑

Ti LA 270 4584 1262 10199 3824 18068 1785 10950
LA (MB) 4198 4561 25915 10154 94400 18005 41504 10907

Tabu 10159 4558 54606 10146 150701 17996 71822 10900

GL 23 356295 77 789024 182 1407782 94 851034
GL (MB) 28 356280 91 789002 217 1407743 112 851008

BS 829 356200 4453 788934 13491 1407576 6258 850903∑
Ci BS (MB) 1345 356192 7194 788908 21640 1407542 10059 850880

LA 3382 356187 22145 788909 83427 1407555 36318 850884
LA (MB) 5390 356166 35969 788872 137124 1407495 59495 850844

Tabu 32907 356153 33153 788888 108360 1407564 58140 850868

Table 7: Comparing methods for large sizes of instance.

In Table 7 we provide results for large instance sizes. For n = {100, 150, 250} and
for each criterion, we provide the results obtained by the best algorithm from among
EST, HP, IT and GL, the results obtained by LA, and the results obtained by the Tabu
Search method. Moreover, for the total completion time criterion, we provide the results
obtained by algorithm RBS. For each greedy algorithm, we provide the results obtained
by the algorithm used with or without the improving algorithm MakeBetter (“MB”). For
each method and for each instance size we give the computing times in milliseconds and
the average total cost (“F̄ ”) over the generated instances. For the Tabu Search method,
we arbitrarily set the maximum computing time to n/10 minutes. Moreover the Tabu list

22

size was set to 200 in all cases. The computing time shown for the Tabu Search is the time
required to converge to the best found solution.

The best algorithm to use is highly dependent on the time available for seeking a
solution. The results show that the use of heuristics such as HP(MB), IT(MB) or GL(MB)
is satisfactory if a good solution needs to be obtained quickly. Moreover, the algorithm
MakeBetter can drastically improve solutions at an insignificant cost. Indeed, even for
n = 200 jobs, the computing time needed to obtain a solution is lower than 0.5 seconds.
The algorithm LA used with no improving algorithm would appear to be less interesting,
since it gives equivalent or less good solutions in comparison to the other greedy heuristics
(HP(MB), IT(MB) or GL(MB)), and with significantly more computing effort. If more
computing time is available, the Tabu Search method appears to be the most interesting
algorithm. For the total weighted tardiness criterion, the Tabu Search method yields better
solutions in significantly less computing time effort. The Tabu Search method requires
about 3 minutes on average to obtain the best solution, whereas the solution built by
LA(MB) needs on average more than 10 minutes. For the total tardiness and the total
weighted completion time criteria, the Tabu Search method yields slightly better solutions
than LA(MB), with an equivalent computing effort. Finally, for the total completion time
criterion, the Tabu Search method yields slightly less good solutions than LA(MB) with
equivalent computing effort.

6 Conclusion
In this paper we have described new original dominance rules for 1|ri|

∑
wiTi and its

special cases. We have presented several powerful algorithms based on these dominance
rules, which improve well-known heuristic algorithms from the literature. Whereas our
Tabu Search method can be significantly enhanced by techniques from the literature spe-
cific to the Tabu Search, we have also shown that several techniques based on our dom-
inance rules can greatly improve meta-heuristics such as Tabu Search. Experimental re-
sults show the effectiveness of all our algorithms. The approaches we propose improve
and outperform the best-known heuristics (algorithms EST, HP, IT, GL and LA used with
no improving algorithm) from the literature for 1|ri|

∑
wiTi and its special cases.

References
[1] M.S. Akturk and D. Ozdemir. An exact approach to minimizing total weighted

tardiness with release dates. IIE Transactions, 32:1091–1101, 2000.

[2] M.S. Akturk and D. Ozdemir. A new dominance rule to minimize total weighted
tardiness with unequal release dates. European Journal of Operational Research,
135:394–412, 2001.

[3] K.R. Baker. Introduction to Sequencing and Scheduling. John Wiley and Sons,
1974.

23

[4] Ph. Baptiste, J. Carlier, and A. Jouglet. A branch-and-bound procedure to minimize
total tardiness on one machine with arbitrary release dates. European Journal of
Operational Research, 158(3):595–608, 2004.

[5] H. Belouadah, M.E. Posner, and C.N. Potts. Scheduling with release dates on a sin-
gle machine to minimize total weighted completion time. Discrete Applied Mathe-
matics, 36:213–231, 1992.

[6] S. Chand, R. Traub, and R. Uzsoy. An iterative heuristic for the single-machine
dynamic total completion time scheduling problem. Computers and Operations
Research, 23:641–651, 1996.

[7] S. Chand, R. Traub, and R. Uzsoy. Rolling horizon procedures for the single ma-
chine deterministic total completion time scheduling problem with release dates.
Annals of Operations Research, 70:115–125, 1997.

[8] C. Chu. A branch and bound algorithm to minimize total flow time with unequal
release dates. Naval Research Logistics, 39:859–875, 1991.

[9] C. Chu. A branch and bound algorithm to minimize total tardiness with different
release dates. Naval Research Logistics, 39:265–283, 1992.

[10] C. Chu. Efficient heuristics to minimize total flow time with release dates. Opera-
tions Research Letters, 12:321–330, 1992.

[11] C. Chu and M.C. Portmann. Some new efficient methods to solve the n|1|ri|
∑

Ti

scheduling problem. European Journal of Operational Research, 58:404–413, 1991.

[12] R.K. Congram, C.N. Potts, and S.L. Van De Velde. An iterated dynasearch al-
gorithm for the single-machine total weighted tardiness scheduling problem. IN-
FORMS Journal on Computing, 14:52–67, 2002.

[13] R.W. Conway, W.C. Maxwell, and L.W. Miller. Theory of scheduling. Addison
Wesley, Reading, MA, 1967.

[14] F. Della Croce and V. T’kindt. A recovering beam search algorithm for the one-
machine dynamic total completion time scheduling problem. Journal of the Opera-
tional Research Society, 53:1275–1280, 2002.

[15] F. Glover. Future paths for integer programming and links to artificial intelligence.
Computers and Operations Research, 13:533–549, 1986.

[16] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1998.

[17] A.M.A Hariri and C.N. Potts. An algorithm for single machine sequencing with
release dates to minimize total weighted completion time. Discrete Applied Mathe-
matics, 5:99–109, 1983.

24

[18] A. Jouglet, Ph. Baptiste, and J. Carlier. Handbook of Scheduling: Algorithms, Mod-
els, and Performance Analysis, chapter 13: Branch and Bound Algorithms for Total
Weighted Tardiness. CRC Press, ed. Joseph Leung, 2004.

[19] J.J. Kanet and Z. Zhou. A decision theory approach to priority dispatching for job
shop scheduling. Production and Operations Management, 2(1):2–14, 1993.

[20] T.E. Morton and P. Ramnath. Intelligent Scheduling System, chapter Guided forward
search in tardiness scheduling of large one machine problems. Kluwer Academic
Publishers, Hingham, MA, 1995.

[21] A.H.G. Rinnooy Kan. Machine sequencing problem: classification, complexity and
computation. Nijhoff. The Hague, 1976.

[22] W.E. Smith. Various optimizers for single stage production. Naval Research Logis-
tics Quarterly, 3:59–66, 1956.

[23] A.P.J. Vepsalainen and T.E. Morton. Priority rules for job shops with weighted
tardiness costs. Management Science, 39(5):626–632, 1993.

25

