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Abstract. We discuss secrecy of signals in signal transduction. As we
have developed a basic concurrent language with interferencial coeffi-
cients, Iπ-calculus, to describe aberrance in biological models, a typing
system for Iπ-calculus is proposed for achieving secrecy of signals in
signal transduction. We show that this typing system guarantees that, if
signal transduction typechecks, then it does not leak aberrance of signals.

1 Introduction

Signal transduction, short for ST, is the key to uncover the wild growth of
cells. Aberrant ST is the cause of many diseases challenged by modern medicine,
including cancers, inflammatory diseases, and so on. Formal method is one of
approach to research ST. Process algebra, such as pi calculus and its variation,
is a way to model ST system. There are several pieces of related work about
modelling ST [4, 5, 2, 3], based on pi calculus [1, 6]. Interference pi calculus [8],
(Iπ- calculus) is proposed to model aberrant ST.

When a signal mutates aberrantly, we want to know what will happen in
the whole ST. We used a typing system [9], to replace the tag system which
is used to label the existence of aberrance by sets computation, such as union,
disjoint [8]. This typing system is simple enough to be enforced statically. It had
been proved to be equivalent to the tag system in the capability of labelling the
existence of aberrance [9].

In this paper, we emphasis on this typing system. An informal principle is
developed for achieving secrecy of signals in ST. In particular, in the analyzing
aberrance of ST, we label each protein(its domains) and each signal as either
normal or aberrant. A signal-receiver can not find the signal from signal-sender
is normal or aberrant during the transduction of signals. That is to say, the
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whole ST does not leak aberrance of signal. The notion of leaking is formalized
in terms of testing equivalence. We point out, if ST typechecks, then it does not
leak the aberrance of signals.

2 Secrecy of Signals in Signal Transduction

Signal transduction is a manner to answer the stimulation of cells outside. It
is the key to uncover the wild growth of cells leading to many diseases. When the
whole ST works perfectly, decisions of growth and death of cells are also made by
rule and line. When some signals mutate aberrantly, however, the whole ST could
be interfered. Cancers are some diseases resulting from this kind of interference
of ST.

The sequel that the ST is interfered is, the growth of a cell is never controlled
by growth factors outside. There exist many methods to get it, one of which is
that some aberrant proteins make the cell release the growth factors into the
environment. These factors can stimulate the cell which sets them free, and
make it grow. Another is the aberrance of Ras protein. Normal Ras protein in
the inactive state is waiting for the signal. It is activated when it receives the
signal, and then sends signal to the others. After that, it could be inactivated
to return the initial state. This kind of inactivity make assure that the cell just
can receive finite signals.

Aberrant Ras protein has some difference with normal Ras protein. Aberrant
Ras protein can be activated and send a signal to the others, as same as normal
Ras protein. Aberrant Ras protein however can not be inactivated any more.
That means, it will be always in the active state and always sends the signal to
the others, even there is no real signal coming.

In a word, whatever is chosen, aberrant proteins pretend the normal proteins
to transduce stimulation signals. In another word, a carrier waiting for signals
does not know the category of signals.

Therefore, we have an important property about aberrance:

In signal transduction, a sender does not leak aberrance of signals.

This is also a principle in the studying of signal transduction.

3 The Pure Iπ-calculus

Iπ-calculus is proposed to describe aberrant ST. This section presents the
pure version of Iπ-calculus that serves as the preliminary setting for our formal
work.

We assume an infinite countable set A of values, an infinite countable set N
of names and an infinite countable set V of variables. Let σ, ρ be functions from
N to A. One can think of σ as an interference function and that σ(a) as the
interference degree of a. The function ρ is a critical function and that ρ(a) is the
critical value of the interference degree of a. The interferential coefficient can be
defined below:



Definition 1 (Interferential Coefficient). For a ∈ N , let ia be |ρ(a)−σ(a)|.
We say that ia is the interference coefficient of a.

Intuitively, when ia is equal to zero, we take that a is in an aberrant state;
when ia is not zero, we think that a is still in a normal state.

Processes evolve by performing actions. In process algebra actions capabilities
are introduced by prefix capabilities. In Iπ-calculus, we introduce two capabili-
ties in addition to the prefix defined by pi calculus.

Let a, b, · · · range over the names and x, y, · · · range over the variables. We
also define two symbols § and ♯ to represent the aberrance capability. Here
§ represents the suicide capability and ♯ the propagation capability. When a
process has the suicide capability, it terminates its action immediately. And when
a process has the propagation capability, it will duplicate its action infinitely.

Definition 2 (Prefix). The prefix of Iπ-calculus are defined as follows:

π ::= a(b) | a(x) | a | a πi ::= π | [iπi
= 0]§(πi) | [iπi

= 0]♯(πi)

The capability of π is the same as in pi calculus. [iπi
= 0]§(πi) and [iπi

= 0]♯(πi)
are the substitution capabilities. They are respectively the capabilities § and ♯
if the subject of πi is in an aberrant state.

Definition 3 (Process). The Iπ-calculus processes are defined as follows:

P ::= 0 | πi.P | πi.P + π′
i.P

′ | P |P ′ | (νa)P

Intuitively the constructs of Iπ-calculus processes have the following meaning:
0 is the inert process. The prefix process πi.P has a single capability imposed by
πi, that is, the process P cannot proceed until that capability has been exercised.
The capabilities of the sum πi.P + π′

i.P
′ are those of πi.P plus those of π′

i.P
′.

When a sum exercises one of its capabilities, the other is rendered void. In the
composition process P |P ′, the components P and P ′ can proceed independently
and can interact via shared channel. In the restriction process (νa)P , the scope
of the name a is restricted to P .

We write fn(P ) for the set of free names in process P , and fv(P ) for the set
of free variables in P . An expression is closed if it has no free variables. Notice
that a closed expression may have free names.

The reaction relation, introduced initially by Milner [1], is a concise account
of computation in the pi calculus. In addition to the well-known interaction
rule(Com-N), our reaction relation also includes two new rules about reactions
with aberrance(Pre-§ and Pre-♯).

A barb is a name m, a co-name m or two primitives § and ♯. An action is a
barb or the distinguished silent action τ . We range α, β, · · · over actions.

[iπi
= 0]§(πi).P

§
−→ 0

Pre-§ ;
[iπi

= 0]♯(πi).P
♯

−→ πi.[iπi
= 0]♯(πi).P

Pre-♯ ;

a(b).Q | a(x).P
τ

−→ Q|P{b/x}
Com-N;

a.Q | a.P
τ

−→ Q | P
Com-SN



P
α

−→ P ′

P + Q
α

−→ P ′ Sum;
P

α
−→ P ′

P | Q
α

−→ P ′ | Q
Com;

P
α

−→ P ′ a 6= α

(νa)P
α

−→ (νa)P ′ Res;
Q ≡ P P

α
−→ P ′ P ′ ≡ Q′

Q
α

−→ Q′ Stc.

The first two rules deal with reactions with aberrance: the former says that the
resulting process is terminated; the latter declares that the resulting process du-
plicates its action infinitely. The third reaction rule deals with the interaction
in which one sends a message with a channel while the other receives a message
with the same channel so that they have an interactive action. Each of the reduc-
tion rules are closed in the summation, composition, restriction and structural
congruence.

Next, we represent some preliminaries of testing equivalence. These notions
are belong to Mart́ın Abadi [7].

A test is a pair (Q, β) consisting of a closed process Q and a barb β. We say

that P passes a test (Q, β) if and only if (P | Q)
τ

−→ Q0 · · ·
τ

−→ Qn
β

−→ A
For some n ≥ 0, some processes Q0, · · ·Qn, and some process A, we obtain a

testing preorder ⊑ and a testing euqivalence ≃ on closed processes:

P ⊑ P ′ △
= for any test (Q, β), if P passes (Q, β) then P ′passes (Q, β)

p ≃ P ′ △
= P ⊑ P ′ and P ′ ⊑ P

A strict barbed simulation is a binary relation S on closed processes such
that PSP ′ implies:

(1) for every barb β, if P
β

−→ A for some A, then P ′ β
−→ A′ for some A′,

(2) for every P1, if P1

τ
−→ P1 then there exists P1

′ such that P ′ τ
−→ P1

′ and
P1SP1

′ .

A strict barbed bisimulation is a relation S such that both S and S−1 are strict
barbed simulations.

The following lemma provides a method for proving testing equivalence:

Lemma 1. If for every closed process Q there exists a strict barbed bisimulation

S such that (P | Q)S(P ′ | Q), then P ⋍ P ′

In [7], Mart́ın Abadi gave a simple direct proof.

4 The Typing System

This section describes rules for controlling information flow in Iπ-calculus
calculus. Here we embody them in a typing system for Iπ-calculus calculus.
The typing system was firstly introduced by Martin Abadi in studying security
protocols [7].

In order to represent the aberrance of ST we classify signals into three classes:

– A Normal signal is one that takes part in the normal processes.



– An Aberrant signal is one that takes part in the aberrant processes.
– An Unknown signal could be any signal.

To simplify we define a reflexive order relation <: among these three classes:

Normal<: Unknown; Aberrant <: Unknown.

For convenience of representation, we denote M as a name or a variable. M
is called term. Corresponding to these three classes the typed system has three
kinds of assertions:

– “⊢ Γ well formed” means that the environment Γ is well-formed.
– “Γ ⊢ M : T” means that the term M is of the class T in Γ .
– “E ⊢ P : ok” means that the process P typechecks in E.

Typing rules are given under an environment. An environment is a list of
distinct names and variables with associated classifications.

Definition 4 (Typed Environment). Typed environments are given by the

following rules:

⊢ ∅ well formed
Environment Empty

⊢ Γ well formed,M 6∈ Γ
⊢ Γ, M : T well formed

Environment Term

Having defined the environments, one can define rules for terms and pro-
cesses.

Definition 5 (Terms). The rules for terms of typing system are as follows:

Γ ⊢ M : T T <: R
Γ ⊢ M : R

Level Subsumption

⊢ Γ well formed M : T in Γ
Γ ⊢ M : T

Level Term

Intuitively the rule Level Subsumption says that a term of level Normal or
Aberrant has level Unknown as well.

Definition 6 (Processes). The rules for typing processes are as follows:

Γ ⊢ a : Normal Γ ⊢ b : Normal Γ ⊢ P : Ok
Γ ⊢ a(b).P : Ok

T-out

Γ ⊢ a : Normal Γ ⊢ x : Unknown Γ ⊢ P : Ok
Γ ⊢ a(x).P : Ok

T-in

Γ ⊢ a : Normal Γ ⊢ P : Ok
Γ ⊢ a.P : Ok

T-sout
Γ ⊢ a : Normal Γ ⊢ P : Ok

Γ ⊢ a.P : Ok
T-sin

Γ ⊢ a : Aberrant Γ ⊢ b : Normal Γ ⊢ P : Ok
Γ ⊢ a(b).P : Ok

T-aout



Γ ⊢ a : Aberrant Γ ⊢ x : Unknown Γ ⊢ P : Ok
Γ ⊢ a(x).P : Ok

T-ain

Γ ⊢ a : Aberrant Γ ⊢ P : Ok
Γ ⊢ a.P : Ok

T-asout
Γ ⊢ a : Aberrant Γ ⊢ P : Ok

Γ ⊢ a.P : Ok
T-asin

Γ ⊢ a : Aberrant Γ ⊢ b : Normal Γ ⊢ P : Ok
Γ ⊢ [ia = 0]§(a(b)).P : Ok

T-kout

Γ ⊢ a : Aberrant Γ ⊢ x : Unknown Γ ⊢ P : Ok
Γ ⊢ [ia = 0]§(a(x)).P : Ok

T-kin

Γ ⊢ a : Aberrant Γ ⊢ P : Ok
Γ ⊢ [ia = 0]§(a).P : Ok

T-ksout
Γ ⊢ a : Aberrant Γ ⊢ P : Ok

Γ ⊢ [ia = 0]§(a).P : Ok
T-ksin

Γ ⊢ a : Aberrant Γ ⊢ b : Normal Γ ⊢ P : Ok
Γ ⊢ [ia = 0]♯(a(b)).P : Ok

T-pout

Γ ⊢ a : Aberrant Γ ⊢ x : Unknown Γ ⊢ P : Ok
Γ ⊢ [ia = 0]♯(a(x)).P : Ok

T-pin

Γ ⊢ a : Aberrant Γ ⊢ P : Ok
Γ ⊢ [ia = 0]♯(a).P : Ok

T-psout
Γ ⊢ a : Aberrant Γ ⊢ P : Ok

Γ ⊢ [ia = 0]♯(a).P : Ok
T-psin

⊢ Γ well formed
Γ ⊢ 0 : Ok

T-nil
Γ, a : Normal ⊢ P : Ok, a 6∈ dom(Γ )

Γ ⊢ (νa)P : Ok
T-res

Γ ⊢ P : Ok Γ ⊢ Q : Ok
Γ ⊢ P | Q : Ok

T-com
Γ ⊢ P : Ok Γ ⊢ Q : Ok

Γ ⊢ P + Q : Ok
T-sum

Γ ⊢ a : Unknown Γ ⊢ b : Noraml Γ ⊢ P : Ok
Γ ⊢ P{b/x} : Ok

T-Sub
Γ ⊢ P : Ok Q ≡ P

Γ ⊢ Q : Ok
T-stc

5 Secrecy of Signals by Typing

As mentioned in the section 2, an important principle in the modelling signal
transduction is to guarantee that category of signals can not be detected. In this
section, we show that a signal-receiver can not distinguish the difference of signal
using our typing system. The original idea is from [7]. In that paper, Mart́ın
Abadi applies the similar typing system to Spi calculus, and uses it to analyzes
security protocols. Our main result says that if only variables of level Unknown
and only names of level Normal are in the domain of the environment E, if σ
and σ′ are two substitutions of values for the variables in E, and if P typechecks,
then Pσ and Pσ′ are testing equivalence.

We write E ⊢ σ when σ(x) is a closed term such that fn(σ(x)) ⊆ dom(E)
for every x ∈ dom(E).

Lemma 2. Suppose that E is an environment which all variables in dom(E)
are of level Unknown, E ⊢ P : ok and E ⊢ σ. Then we have



(1) if Pσ
τ

−→ Q′, then there exists a process Q such that
– Q′ = Qσ
– E ⊢ Q : ok
– Pσ′ τ

−→ Qσ′ whenever E ⊢ σ′

(2) if Pσ
β

−→ A′, there exists a process A such that
– A′ = Aσ
– E ⊢ A : ok
– Pσ′ β

−→ Aσ′ whenever E ⊢ σ′

Theorem 1. Given an environment E, suppose that all the variables in dom(E)
are of level Unknown. Suppose further that E ⊢ σ and E ⊢ σ′. Then the relation

{(Pσ, Pσ′) | E ⊢ P : ok}

is a strict barbed bisimulation.

This conclusion means that a signal-receiver can not distinguish Pσ and Pσ′,
so it can not detect the difference of signals.

6 An Example in Signal Transduction

In order to illustrate the use of our typing rules, we consider as an example of
aberrance of Ras protein. Ras protein is an important protein in the well-studied
RTK-MAPK pathway.

Fig.1 gives an example of Ras Activation of the ST pathway, RTK-MAPK. At
the normal state, the protein-to-protein interactions bring the SOS protein close
to the membrane, where Ras can be activated. SOS activates Ras by exchanging
Ras’s GDP with GTP. Active Ras interacts with the first kinase in the MAPK

cascade, Raf. GAP inactivates it by the reverse reaction. When Ras mutates
aberrantly, it does not have any effect on the Ras’s binding with GTP but will
reduce the activity of the GTP hydrolase of Ras and lower its hydrolysis of GTP

greatly; in the meantime Ras will be kept in an active state; it keeps activating
the molecule, inducing the continual effect of signal transduction, which result
in cell proliferation and tumor malignancy. Aviv Regev and his colleagues have
given the representation of normal RTK-MAPK using the pi calculus [4]. We
had given the representation of the aberrant Ras protein using Iπ-calculus.[8].

RAS

GDP

RAS

GTP

GNRP

GTP

GDP

GAP

Pi

SOS

INACTIVE

ACTIVE

Fig.1. Ras Activation



The interpretation of Ras in the Iπ-calculus can be done in the follow-
ing manner: The system defined in (1) is a collection of concurrently operating
molecules, seen as processes with potential behavior. Here the operator | is the
concurrent combinator. In biological models, all the names are bounded, for
simplicity, we here only list the aberrant names for restriction :

SY STEM ::= (νsACTSWI I)(νbboneACTSWI I)(νsgACTSWI II)

(RAS | SOS | GAP | RAF ) (1)

A protein molecule is composed of several domains, each of which is modelled as
a process as well. In (2) through (5) the detailed Iπ-calculus programs for the
proteins Ras, SOS, Raf and GAP are given:

RAS ::= INASWI I | INASWI II (2)

SOS ::= S SH3 BS | S GNEF (3)

RAF ::= R Nt | R ACT BS | R M BS

| INA R Ct | R ATP BS (4)

GAP ::= sg(x).x(gdp).GAP (5)

The molecules (or domains) interact with each other based on their structural
and chemical complementarity. Interaction is accomplished by the motifs and
residues that constitute a domain. These are viewed as channels or communica-
tion ports of the molecule:

INASWI I ::= bbone.ACTSWI I (6)

INASWI II ::= sg(rs 1).rs 1(y).bbone.ACTSWI II (7)

S GNEF ::= bbone.S GNEF + sg(z).z(gtp).S GNEF (8)

S SH3 BS ::= bbone.S SH3 BS (9)

The following interactions are possible:

INASWI I | S GNEF −→ ACTSWI I | S GNEF (10)

INASWI II | S GNEF−→∗bbone.ACTSWI II | S GNEF (11)

bbone.ACTSWI II | S SH3 BS −→ ACTSWI II | S SH3 BS (12)

The interaction (10) shows that the domain INASWI I of Ras is activated
by the domain of S GNEF of SOS. The interaction (11) and (12) show that
the domain INASWI II of Ras is activated by the domain S GNEF and
S SH3 BS of SOS.

The detailed Iπ-calculus programs for activated domains, ACTSWI I (Aber-
rant), ACTSWI II (Aberrant) of the protein Ras and the domain R Nt of Raf



are defined in (13) through (15):

ACTSWI I∗ ::= (νs)[is = 0]♯(s(rs 2).rs 2).INACTSWI I +

(νbbone)[ibbone = 0]§(bbone).INASWI I (13)

ACTSWI II∗ ::= (νsg)[isg = 0]§(sg(r swi 1)).r swi 1(h).bbone.

INACTSWI II (14)

R Nt ::= s(i).i.ACTR Nt (15)

The processes so defined have the following interactions:

ACTSWI I∗ | R Nt −→∗ (νs)[is = 0]♯(s(rs 2).rs 2).INACTSWI I

| ACTR Nt (16)

ACTSWI II∗ −→ 0 (17)

The interaction (16) shows that the active domain ACTSWI I of Ras interacts
with the domain R Nt of Raf, but it can not be inactivated any more. (17)
shows that the domain ACTSWI II of Ras can not inactivated by GAP.

In order to indicate how the process SY STEM typecheks, we annotate its
bound names and variables with there levels, as they are introduced.

Let E be an environment, where the variables are Unknown levels:

x : Unknown, z : Unknown, h : Unknown i : Unknown.

The bound names with their Normal levels:

sgGAP : Normal, bboneINASWI I : Normal, sgINASWI II : Normal,

rs 1INASWI II : Normal, bboneINASWI II : Normal, bboneS GNEF : Normal,

sgS GNEF : Normal, bboneS SH3 BS : Normal, rs 2ASWI I : Normal,

r swi 1ACTSWI II : Normal, bboneASWI II : Normal, sR Nt : Normal.

The bound names with there Aberrant levels:

sACTSWI I : Aberrant, bboneACTSWI I : Aberrant, sgACTSWI II : Aberrant.

We define:

Ras
△

= (bbone : Normal)[(s : Aberrant)(rs 2).(rs 2 : Normal).INACTSWI I +

(bbone : Aberrant).INASWI I] | (sg : Normal)(rs 1).(rs 1 : Normal)(y)

.(bbone : Normal).(sg : Aberrant)(r swi 1).(r sw 1 : Normal)

(h).(bbone : Normal).INACTSWI II

SOS
△

= (bbone : Normal).S SH3 BS | [(bbone : Normal).S GNEF + (sg :

Normal)(z).(z : Unknown)(gtp).S GNEF ]

RAF
△

= (s : Normal)(i).(i : Unknown).ACTR Nt | ...

GAP
△

= (sg : Normal)(x).(x : Unknown)(gdp).GAP



Finally, in the given environment E, we set

SY STEM
△

= (νsACTSWI I : Aberrant)(νbboneACTSWI I : Aberrant)

(νsgACTSWI II : Aberrant)(RAS | SOS | GAP | RAF ) (18)

It is easy to find E ⊢ SY STEM : Ok. By Theorem 1, as a consequence of
the typechecking, we obtain that SY STEM does not reveal the aberrance of
Ras protein.

7 Future Prospects

The typing system we introduced is very simple but strong. It can applied
not only into analyzing security protocols but also in the study of signal trans-
duction with exception, which is also opening up new possibilities in modelling
of biochemical systems.

To make quantitative analysis is another important step for studying bio-
chemical systems. So far, our Iπ-calculus is concerned about qualitative anal-
ysis. Could it do some quantitative analysis? Two functions ρ and σ which are
used to describe some quantitative properties of proteins will be found its value
in future work.
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