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Abstract. The pi calculus has been applied to modelling biochemical
networks. In these applications, the modelling is done without consid-
erations to exceptions. The Ipi calculus, the Interference pi calculus, is
introduced to describe the signal transduction with aberrance. The cal-
culus is obtained by adding two aberrant actions into the pi calculus and
a tag system to check existing aberrance. A model of the signal trans-
duction, RTK-MAPK, with the aberrant Ras is highlighted to illustrate
the expressive power of the Ipi calculus.

1 Introduction

In recent years, various approaches from computer science have been adapted
for the research of biochemical processes. These include boolean networks, petri
nets, and object-oriented databases, to name a few. The pi calculus [1, 6] is an
alternative way to model biochemical processes. In the pi calculus approach,
molecules and their individual domains are treated as computational processes,
where their complementary structural and chemical determinants correspond to
the communication channels. Chemical interaction and subsequent modification
coincide with communication and channel transmission. There are some related
research about modelling various biochemical systems based on the pi calculus.
Such systems cover for instance the signal transduction (ST for short) [4, 5, 2,
3]. However the biochemical systems considered so far are restricted in the sense
that one assumes that there are no exceptions when they evolve.

ST, a process linking the detection of certain kinds of external events to bio-
chemical responses on the part of the cell is a very important biochemical process
in biology. An aberrant ST is the cause of many diseases challenged by modern
medicine, including cancer, inflammatory diseases, cardiovascular disease and
neuropsychiatric disorders. In the search for treatments, cures and preventions
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of these diseases, in-depth understanding of the biochemical processes of ST is
crucial.

In order to describe more complex biochemical systems like the aberrant ST,
we develop a calculus called the Interference pi calculus by extending the pi
calculus. The calculus is obtained by adding two aberrant actions into the pi
calculus and a tag system to check existing aberrance. We also illustrate our
system using a model of the ST, RTK-MAPK, with the aberrant Ras (a signal
that can lead to cancer) which will result to pathological changes.

In this short paper, we have to assume that the reader is familiar with the
pi calculus and has some knowledge of biochemical systems.

2 The Interference Pi Calculus

In this section we define the syntax and the semantics of the Interference pi

calculus.

2.1 Syntax

Processes evolve by performing actions. In process algebra action capabilities are
introduced by prefix capabilities. In our calculus we define prefix as a pair, where
each capability has a label we call interference coefficient, regulating whether it
can act in a normal way, or in an aberrant manner. So we define our interference

coefficient primitive before we introduce the prefix.
We assume an infinite countable set N of names and an infinite countable

set V of values. We let x, y,. . . range over the names. Let σ, ρ be functions from
N to V. One can think of σ as an interference function and that σ(x) as the
interference degree of x. The function ρ is a critical function and that ρ(x) is
the critical value of the interference degree of x. The interference coefficient can
be defined below:

Definition 1 (Interference Coefficient). For x ∈ N , let ix be |ρ(x)− σ(x)|.
We say that ix is the interference coefficient of x.

Intuitively, when ix is equal to zero, we take that x is in an aberrant state;
when ix is not zero, we think that x is still in a normal state. For convenience of
representation, when ix is equal to zero, we write 0 as the interference coefficient
of x. Otherwise we write ix as the interference coefficient of x.

We also define two symbols, § and ♯, to represent the aberrance capability.
Here § represents the killer capability and ♯ the propagation capability. When
a process has the killer capability, it will terminate immediately. And when a
process has the propagation capability, it will duplicate himself infinitely.

We define the prefix of Ipi calculus as follows:

Definition 2 (Prefix).

〈iπ, π〉 := 〈ix, x(y)〉 | 〈ix, x(y)〉 | 〈ix, x〉 | 〈ix, x〉

πi := 〈iπ, π〉 | 〈0, §〉πi | 〈0, ♯〉πi
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The capabilities of 〈iπ, π〉 is the same as in the π-calculus. Here are some
explanations of the πi capabilities: 〈0, §〉 has the capability that kills all the
processes; 〈0, ♯〉 has the capability that duplicates processes infinitely; 〈0, §〉πi

and 〈0, ♯〉πi are the substitution capabilities: they are respectively the capabilities
〈0, §〉 and 〈0, ♯〉 if the interference coefficient iπ of the π is zero.

We now define the processes of the Ipi calculus. The expression of a process
is also a pair 〈IP , P 〉 where IP is the tag of the process P . Using the tag in
processes we can know the existence of aberrance. If 0 ∈ IP we say that P has
aberrance. If for any i ∈ IP one has that i 6= 0 then we say that P is normal.
The value of tag is produced recursively.

Definition 3 (Process). The Ipi processes are defined as follows:

〈IP , P 〉 := 〈I0, 0〉 | πi.〈IP , P 〉 | πi.〈IP , P 〉 + π′

i.〈IP ′ , P ′〉 | 〈IP , P 〉|〈IP ′ , P ′〉 |

(νx)〈IP , P 〉 | 〈IP , P 〉; 〈IP ′ , P ′〉

The syntax of the tags are defined inductively by the following rules, where the

symbol ⊎ means disjoint union:
∞

⊎
n=1

IP , IP ⊎ IP ⊎ ...:

I0 = ∅
0-t

〈IP , P 〉 = 〈iπ, π〉.〈IQ, Q〉
IP = {iπ} ⊎ IQ

t-N

〈IP , P 〉 = 〈0, §〉〈iπ, π〉.〈IQ, Q〉
IP = {0}

§-t
〈IP , P 〉 = 〈0, ♯〉〈iπ, π〉.〈IQ, Q〉

IP =
∞

⊎
n=1

({0} ⊎ {iπ} ⊎ IQ)
♯-t

〈IP , P 〉 = 〈iπi
, πi〉.〈IQ, Q〉 + 〈iπ′

i
, π′

i〉.〈IR, R〉

IP = f〈{iπi
} ⊎ IQ, {iπ′

i
} ⊎ IR〉

sum-t

〈IP , P 〉 = 〈IQ, Q〉|〈IR, R〉
IP = IQ ∪ IR

com-t
〈IP , P 〉 = (νx)〈IQ, Q〉

IP = IQ
res-t

〈IP , P 〉 = 〈IQ, Q〉; 〈IR, R〉
IP = IQ ⊎ IR

seq-t

In the above definition, 〈IP , IQ〉 is a pair, f is the projection, and fP,Q〈IP , IQ〉
represents the tag of the process which has the operator “sum”. IP and IQ are

nondeterministically chosen as the process P or Q is chosen to act.

Intuitively the constructs of the Ipi processes have the following meaning: 〈I0, 0〉
is the inert process. The prefix process πi.〈IP , P 〉 has a single capability im-
posed by πi, that is, the process 〈IP , P 〉 cannot proceed until that capability has
been exercised. The capabilities of the sum πi.〈IP , P 〉+ π′

i.〈IP ′ , P ′〉 are those of
πi.〈IP , P 〉 plus those of π′

i.〈IP ′ , P ′〉. When a sum exercises one of its capabili-
ties, the other is rendered void. In the composition process 〈IP , P 〉 | 〈IQ, Q〉, the
components 〈IP , P 〉 and 〈IQ, Q〉 can proceed independently and can interact via
shared channels. In the restriction process (νx)〈IP , P 〉, the scope of the name
x is restricted to 〈IP , P 〉. The sequential process 〈IP , P 〉; 〈IP ′ , P ′〉 can run the
process 〈IP ′ , P ′〉 after the process 〈IP , P 〉.
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2.2 Semantics

The structural congruence ≡ is the least equivalence relation on processes that
satisfies the following equalities:

〈IP , P 〉 | 〈IQ, Q〉 ≡ 〈IQ, Q〉 | 〈IP , P 〉
(〈IP , P 〉 | 〈IQ, Q〉) | 〈IR, R〉 ≡ 〈IP , P 〉 | (〈IQ, Q〉 | 〈IR, R〉)

〈IP , P 〉 + 〈IQ, Q〉 ≡ 〈IQ, Q〉 + 〈IP , P 〉
(〈IP , P 〉 + 〈IQ, Q〉) + 〈IR, R〉 ≡ 〈IP , P 〉 + (〈IQ, Q〉 + 〈IR, R〉)

(νx)〈I0, 0〉 ≡ 〈I0, 0〉
(νx)(νy)〈IP , P 〉 ≡ (νy)(νx)〈IP , P 〉

((νx)〈IP , P 〉) | 〈IQ, Q〉 ≡ (νx)(〈IP , P 〉 | 〈IQ, Q〉) if x 6∈ FN(Q)

Let IP , IQ be the tags of the processes P and Q. We define

IP = IQ ⇔ 〈IP , P 〉 ≡ 〈IQ, Q〉

So we have defined an equivalence on the tags in terms of the structural equiv-
alence.

The reaction relation, introduced initially by Milner [1], is a concise account
of computation in the pi calculus. A reaction step arises from the interaction of
the adjacent process with m〈M〉.P and m(x).Q, which is also included in the
Ipi calculus. Besides this rule, our reaction relation also include two new rules
representing reactions with aberrance. All the rules react with their tags reacting
simultaneously. We define them and their tag reaction rules blow:

〈0, §〉〈iπ, π〉.〈IP , P 〉 −→ 〈∅, 0〉
;

{0} \ {0} = ∅
pre-§;

〈0, ♯〉〈iπ, π〉.〈IP , P 〉 −→ 〈iπ, π〉.〈IP , P 〉; 〈0, ♯〉〈iπ, π〉.〈IP , P 〉
;

∞

⊎
n=1

({0} ⊎ {iπ} ⊎ IP ) \ {0} = {iπ} ⊎ IP ⊎
∞

⊎
n=1

({0} ⊎ {iπ} ⊎ IP )
pre-♯;

〈ix, x(z)〉.〈IQ, Q〉 | 〈ix, x(y)〉.〈IP , P 〉 −→ 〈IQ, Q〉|〈IP , P 〉{z/y}
;

({ix} ⊎ IQ) ∪ ({ix} ⊎ IP ) \ {ix} = IQ ∪ IP
com-N;

〈IP , P 〉 −→ 〈IP ′ , P ′〉
〈IP , P 〉 + 〈IQ, Q〉 −→ 〈IP ′ , P ′〉

;
IP \ {iy} = IP ′

fP 〈IP , IQ〉 \ {iy} = IP ′

;

〈IP , P 〉 −→ 〈IP ′ , P ′〉
〈IP , P 〉 | 〈IQ, Q〉 −→ 〈IP ′ , P ′〉 | 〈IQ, Q〉

;
IP \ {iy} = IP ′

IP ∪ IQ \ {iy} = IP ′ ∪ IQ
;

〈IP , P 〉 −→ 〈IP ′ , P ′〉 x 6= y
(νx)〈IP , P 〉 −→ (νx)〈IP ′ , P ′〉

;
IP \ {iy} = IP ′

IP \ {iy} = IP ′

;

〈IQ, Q〉 ≡ 〈IP , P 〉 〈IP , P 〉 −→ 〈IP ′ , P ′〉 〈IP ′ , P ′〉 ≡ 〈IQ′ , Q′〉
〈IQ, Q〉 −→ 〈IQ′ , Q′〉

;

IQ = IP IP \ {ix} = IP ′ IP ′ = IQ′

IQ \ {ix} = IQ′

.
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The first and the second rules deal with reactions with aberrance: the former
says that the resulting process is terminated and its tag also changes to empty
set. The latter declares that the resulting process duplicates itself infinitely and
its tag also duplicates itself. The third reaction rule deals with the interaction
in which one sends a message with a channel while the other receives a message
with the same channel so that they have an interactive action. This is quite
common in the pi calculus. Each of the reduction rules also includes its tag
reductions, which means that all the reaction rules are closed in the summation,
composition, restriction and structural congruence.

3 An Example in ST Pathway with the Aberrance

In this section we take a look at an example of ST pathways using the new
calculus.

3.1 The RTK-MAPK pathway

In biology pathways of molecule interactions provide communication between
the cell membrane and intracellular endpoints, leading to some change in the
cell.

We focus our attention on the well-studied RTK-MAPK pathway. The RTK-
MAPK pathway is composed of 14 kinds of proteins. A protein ligand molecule
(GF), with two identical domains, binds two receptor tyrosine kinase (RTK)
molecules on their extracellular part. The bound receptors form a dimeric com-
plex, cross-phosphorylate and activate the protein tyrosine kinase in their in-
tracellular part. The activated receptor can phosphorylate various targets, in-
cluding its own tyrosines. The phosphorylated tyrosine is identified and bound
by an adaptor molecule SHC. A series of protein-protein binding events follows,
leading to formation of a protein complex (SHC, GRB2, SOS, and Ras) at the
receptor intracellular side. Within this complex the SOS protein activates the
Ras protein, which in turn recruits the serine/threonine protein kinase, Raf, to
the membrane, where it is subsequently phosphorylated and activated. A cas-
cade of phosphorylations/activations follows, from Raf to MEK1 to ERK1. This
cascade culminates in the activation of the threonine and tyrosine protein kinase,
ERK1. Activated ERK1 translocates to the nucleus, where it phosphorylates and
activates transcription factors.

Within the framework of Ipi calculus, we set some principles for the corre-
spondence. Firstly, we choose the functional signaling domain as our primitive
process. This captures the functional and structural independence of domains in
signaling molecules. Secondly, we model the component residues of domains as
communication channels that construct a process. Finally, molecular interaction
and modification is modelled as communication and the subsequent change of
channel names.
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3.2 Representation for the Ras and the Aberrant Ras

Fig.1 gives an example Ras Activation of the ST pathway, RTK-MAPK. In
this ST, Ras Activation is the part of the pathway. At the normal state, the
protein-to-protein interactions bring the SOS protein close to the membrane,
where Ras can be activated. SOS activates Ras by exchanging Ras’s GDP with
GTP. Active Ras interacts with the first kinase in the MAPK cascade, Raf. GAP
inactivates it by the reverse reaction. Aviv Regev and his colleagues have given
the representation of normal RTK-MAPK using the pi calculus.

RAS


GDP


RAS


GTP


GNRP


GTP


GDP


GAP


P
i


SOS


INACTIVE


ACTIVE


Fig.1. Ras Activation

The interpretation of Ras in the Ipi calculus can be done in the following
manner:

The system defined in (1) is a collection of concurrently operating molecules,
seen as processes with potential behavior. Here the operator | is the concurrent
combinator:

〈IS , SY STEM〉 ::= 〈IRS , RAS〉 | 〈IS , SOS〉 | 〈IG, GAP 〉 |

〈IRF , RAF 〉 | · · · (1)

A protein molecule is composed of several domains, each of which is modelled as
a process as well. In (2) through (5) the detailed Ipi calculus programs for the
proteins Ras, SOS, Raf and GAP are given:

〈IRS , RAS〉 ::= 〈IISI , INASWI I〉 | 〈IISII , INASWI II〉 (2)

〈IS , SOS〉 ::= 〈ISSB , S SH3 BS〉 | 〈ISG, S GNEF 〉 (3)

〈IRF , RAF 〉 ::= 〈IRN , R Nt〉 | 〈IRACB , R ACT BS〉 | 〈IRMB , R M BS〉

| 〈IIRC , INA R Ct〉 | 〈IRATB , R ATP BS〉 (4)

〈IG, GAP 〉 ::= 〈is, sg〉(c ras).〈ic, c ras〉(gdp).〈IG, GAP 〉 (5)

The molecules (or domains) interact with each other based on their structural
and chemical complementarity. Interaction is accomplished by the motifs and
residues that constitute a domain. These are viewed as channels or communica-
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tion ports of the molecule:

〈IISI , INASWI I〉 ::= 〈ib, bbone〉.〈IASI , ACTSWI I〉 (6)

〈IISII , INASWI II〉 ::= 〈isg, sg〉(rs 1).〈irs1, rs 1〉(x).〈ib, bbone〉.

〈IASII , ACTSWI II〉 (7)

〈ISG, S GNEF 〉 ::= 〈ib, bbone〉.〈ISG, S GNEF 〉 + 〈isg, sg〉(c ras).

〈icr, c ras〉(gtp).〈ISG, S GNEF 〉 (8)

The following interactions are possible:

〈IISI , INASWI I〉 | 〈ISG, S GNEF 〉 −→

〈IASI , ACTSWI I〉 | 〈ISG, S GNEF 〉 (9)

〈IISII , INASWI II〉 | 〈ISG, S GNEF 〉 −→

〈ib, bbone〉〈IASII , ACTSWI II〉 | 〈ISG, S GNEF 〉 (10)

The interaction (9) shows that the domain INASWI I of Ras is activated by
the domain of S GNEF of SOS. The interaction (10) shows that the domain
INASWI II of Ras is activated by the domain S GNEF of SOS.

The detailed Ipi programs for activated domains, ACTSWI I, ACTSWI II
of the protein Ras and the domain R Nt of Raf are defined in (11) through (13):

〈IASI , ACTSWI I〉 ::= 〈is, s〉(rs 2).〈iis2, rs 2〉.〈IASI , ACTSWI I〉

+〈ib, bbone〉.〈IISI , INASWI I〉 (11)

〈IASII , ACTSWI II〉 ::= 〈isg, sg〉(r swi 1).〈irs1, r swi 1〉(x).

〈ib, bbone〉〈IASII , ACTSWI II〉 (12)

〈IRN , R Nt〉 ::= 〈is, s〉(c ras).〈icr, c ras〉.〈IARN , ACTR Nt〉(13)

The processes so defined have the following interactions:

〈IISI , ACTSWI I〉 | 〈IRN , R Nt〉 −→∗

〈IISI , ACTSWI I〉 | 〈IARN , ACTR Nt〉 (14)

〈IISII , ACTSWI II〉 | 〈IG, GAP 〉 −→∗

〈ib, bbone〉〈IISII , INASWI II〉 | 〈IG, GAP 〉 (15)

〈ib, bbone〉.〈IASII , ACTSWI II〉 | 〈IASI , ACTSWI I〉 −→

〈IISII , INASWI II〉 | 〈IISI , INASWI I〉 (16)

The interaction (14) shows that the active domain ACTSWI I of Ras interacts
with the domain R Nt of Raf. (15) shows that GAP inactivates the domain
ACTSWI II of Ras. (16) says that the domains of Ras interact with each
other and that Ras rollbacks to the initial inactivated state.

When Ras mutates aberrantly, it does not have any effect on the Ras’s binding
with GTP and GDP but will reduce the activity of the GTP hydrolase of Ras
and lower its hydrolysis of GTP greatly; in the meantime Ras will be kept in
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an active state; they keep activating the molecule, induce the continual effect of
signal transduction, and result in cell proliferation and tumor malignancy.

(17) defines the Ipi representation of GAP in the aberrant state. (18) shows
that GAP loses its function and does nothing, meaning that it can not inactivate
the domain ACTSWI II of Ras.

〈IG, GAP 〉 ::= 〈0, §〉〈is, sg〉(c ras).〈ic, c ras〉(gdp).〈IG, GAP 〉 (17)

〈IG, GAP 〉 −→ 〈∅, 0〉 (18)

But then the interaction (16) will not occur whereas the interaction (14) will
occur infinitely. Now observe that

〈0, ♯〉〈IASI , ACTSWI I〉 −→ 〈IASI , ACTSWI I〉; 〈0, ♯〉〈IASI , ACTSWI I〉

It reaches in an abnormal state with exceptions. The pi calculus could not easily
describe this aberrant case. Ipi calculus, on the contrary, can describe it quite
precisely. In fact, when the aberrance occurs, it will be marked into the tag. So
we can check the existing aberrance, using the tag system of Ipi calculus.

4 Future Prospects

The Ipi calculus is an extension of the pi calculus. The desirable outcomes and
properties of a biochemical process can be formally proven in the framework of
the Ipi caluclus. The theory of process calculus allows us to formally compare two
programs using bisimulation. We can also define different levels of bisimilarity
for verifying different properties of biochemical processes.

The research opens up new possibilities in the study of biochemical systems
with exceptions. Designing and implementing an automatic tool will be our next
work.
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