
HAL Id: hal-00155297
https://hal.science/hal-00155297

Submitted on 18 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computational self-assembly
Pierre-Louis Curien, Vincent Danos, Jean Krivine, Min Zhang

To cite this version:
Pierre-Louis Curien, Vincent Danos, Jean Krivine, Min Zhang. Computational self-assembly. Theo-
retical Computer Science, 2008, 404 ((1-2)), pp.61-75. �hal-00155297�

https://hal.science/hal-00155297
https://hal.archives-ouvertes.fr


Computational self-assembly

Pierre-Louis Curien∗ Vincent Danos† Jean Krivine‡ Min Zhang§

January 18, 2007

Abstract

The object of this paper is to appreciate the computational limits inherent in the combinatorics

of an applied concurrent (aka agent-based) language κ.

That language is primarily meant as a visual and concise notation for biological signalling

pathways. Descriptions in κ, when enriched with suitable kinetic information, generate simula-

tions as continuous time Markov chains. However, κ can be studied independently of the intended

application, in a purely computational fashion, and this is what we are doing here.

Specifically, we define a compilation of κ into a language where interactions can involve at

most two agents at a time. That compilation is generic, the blow up in the number of rules is

linear in the total rule set size, and the methodology used in deriving the compilation relies on an

implicit causality analysis. The correctness proof is given in details, and correctness is spelt out in

terms of the existence of a specific weak bisimulation. To compensate for the binary restriction,

one allows components to create unique identifiers (aka names). An interesting by-product of the

analysis is that when using acyclic rules, one sees that name creation is not needed, and κ can be

fully reduced to binary form.

1 Introduction

Our knowledge of the combinatorial intricacies of signalling pathways is rapidly evolving. Kohn’s
molecular maps represent the earliest efforts of tying together mechanistic details of pathways into
a format that enables sharing, discussion, revision, and supports quantitative modelling [10, 11].
Similar projects by Oda, Kitano, and collaborators provide an extensive account of the EGF and
TOLL receptors pathways [14, 13]. Yet, none of these projects provides executable descriptions,
nor do they express unambiguously or conveniently the combinatorial detail at hand.

The κ language was introduced a few years ago (and named κ as a reference to Kohn maps) in an
attempt to partly formalise signalling, and give a better answer to that same set of questions [4].
That language goes in the community of modellers under the name of the BioNetGen language
(BNG), as it was discovered independently, and developed into a modelling framework [9, 2, 6,
5]. Both languages are essentially the same and will be taken as synonyms in this paper. BNG

∗CNRS & Univ. Paris 7
†CNRS & Univ. Paris 7 & Plectix Bio Systems
‡Plectix Bio Systems
§Univ. Shanghai

1



implements a natural extension of Gillespie’s algorithm [8, 7] that given kinetic rates turns the
non-deterministic transition system associated to a BNG set of rules into a continuous time Markov
chain (or a differential system if the set of reachable complexes is finite and can be constructed),
and that is obviously of interest for numerical simulation.

That language being intuitive, graphical, and quantitative, it seems a good start in the development
of an environment for building complex models of signalling. Because it is rule-based, ie based
on a contextual semantics, it allows for concise definitions of models, which, if one were to use a
flat enumeration of chemical reactions, would be difficult to write down by hand, and even more
difficult to modify. Even a simple EGF model1 generates hundreds of different complex components,
and thousands of flat reactions. Another valuable consequence of dealing with structured agents
is that one can define the attendant notion of causality (when a rule appears necessarily before
another one in a given trace) as in the traditional event structure representation of processes [20].
This leads to rather informative representations of traces as partial-time minimal configurations,
giving the user a better handle on the overwhelming number of traces.

Coming closer to the subject of the present paper, there was the further ambition in defining κ, to
set a framework in which some computational aspects of biological information processing could
be studied. Leaving aside the representation aspects of κ, we see it here as a purely computational
graph-rewriting model of a certain type, and try to understand whether the ability of rewriting any
number of agents can be dispensed with, and one can restrict oneself to (at most) binary interac-
tions and still obtain the same range of behaviours. This is what we call the self-assembly question,
although we use the term merely as an analogy since our result does not deal with the physics
and engineering issues, and self assembly has to be understood here as a distributed programming
question using an idealised medium, as the title is meant to suggest.

We solve the question to the positive although, and importantly, one cannot simply binarily restrict
κ, and to recover full expressiveness, one has to endow the system with an additional computational
mechanism, namely the ability to create unique identifiers. Under that condition, we are able to
give a complete binary reduction of κ, and furthermore we offer an informal argument showing
that it would probably be very difficult to do without name creation. This kind of negative result is
notoriously tricky to set up, and we keep it informal and inconclusive, though we find it persuasive.
Finally, one sees easily from the generic compilation, that tree-based rules (where rules never use
cyclic complexes), actually don’t need that additional name creation facility.

Our contribution can be set in different perspectives.

From the distributed algorithmics point of view this is a rather neat and efficient distributed im-
plementation of a graph-rewriting grammar, with the natural granularity choice of having agents
be the graph nodes. This breakdown of the grammar between agents (none of the agents actually
know the global grammar rules) essentially amounts to a distributed consensus into binary asyn-
chronous interactions. The trick is to use reversible rules so as to escape deadlocks, and that means
keeping careful track of causality. Furthermore the proof is done in details, which is important for
such rather large and non intuitive agent systems, and follows broadly the recent ‘history category
construction’ [3].

From a process or agent-based language perspective,2 this is a way of measuring the computational

1See subsection 2.1 for a brief presentation of that model taken from Ref. [1]
2By agent-based language, one usually means a language defining processes offering interactions with other processes,

2



power of κ, and one can easily derive a compilation down to π-calculus [12] from there (as shown
in Ref. [4]). This relates to previous work using directly π-calculus to model pathways [19, 17, 18,
16], in that it gives a structured and systematic way to obtain such lower-level descriptions (as a
compilation should) from a visual higher-level notation, should one need it.

But more importantly, that also says that there is a natural and naturally distributed task for which
π-calculus is complete. Note that one does not mean to say the π-calculus is Turing complete (which
it also is, and so is κ too as we will see soon), but complete in a sense which is much more difficult
to make precise. This is we believe the first instance of such a result, however for reasons we
discuss further in the conclusion, this is a difficult line of argument to tread, and there is for now
no satisfying theorem to prove here. The conclusion also discusses in which sense this study may
be relevant from a biological point of view.

2 κ

We start with a brief description of κ.

Suppose given a countable set of agent names A, a countable set of sites S, and a finite set of
values V. An agent is a tuple consisting in an agent name A ∈ A, a finite set of sites s ⊆ S, and a
partial valuation in V

s, called the agent internal state, and associating values to some of the agent
sites. We write λ(a) for the name of an agent a, σ(a) for the set of its sites, and µ(a) for its internal
state.

A κ-solution S is a set of agents, together with a partial matching on the set
∑

a∈S σ(a) of all agent
sites. In plain terms, agents can connect via their sites, but no site can be connected twice. A site
which is (not) in the domain of the matching is said to be bound (free). One writes (a, i), (b, j) ∈ S

to express the fact that sites i, j in agents a, b are matched in S.

Every solution has an underlying graph structure, and we shall freely use graph-theoretic notions
such as subgraph, connected component, path, etc., and rely mostly on graphical presentations
of all the concepts involved. Following biological terminology, connected solutions are also called
complexes.

An injection φ between solutions S and S′ is an embedding if for all a, b ∈ S, i, j ∈ S:

λ(a) = λ′(φ(a)) names are preserved
σ(a) ⊆ σ′(φ(a)) sites are preserved
µ(a)(i) = v ⇒ µ′(φ(a))(i) = v internal states are preserved
(a, i), (b, j) ∈ S ⇔ (φ(a), i), (φ(b), j) ∈ S′ edges are preserved

conditioned on the participants states, and resulting in redefining states and subsequent interaction offers for each partic-
ipants. The implied dynamics may or may not be synchronous, and may or may not have a quantitative aspect such as
defining a stochastic process or a differential system. Interactions may include two agents or more, agents may split in
concurrent continuations and may dynamically create new means of interaction (one refers to this as mobility sometimes
although no actual movement in space is implied). Note that processes are defined in terms of continuations subsequent to
an interaction, so that their identity and lineage can be tracked through the evolution of a system. Agent-based models of
biological systems are therefore naturally testable with respect to queries pertaining to the lineage of a biological entity, and
causal dependencies in order to reach a given observable of interest.

3



A signature map is an assignment of a finite set of sites to each agent name. A solution S is said to
be complete with respect to such a map σ : A → ℘(S), if for all A ∈ A, a ∈ S, if λ(a) = A, then
σ(a) = σ(A).

We suppose such a signature map fixed once and for all.

Atomic actions one wishes to perform on a solution S are: changing the value of some site, cre-
ating/deleting an edge between two sites, and creating/deleting an agent. Deletion of an agent
entails deleting all edges the node may share.

An action over S is a sequence of such atomic actions over S. A rule is a pair (S, α) of a solution S

(the rule pattern, or left hand side) and an action α over S (the rule action). The result of applying
the rule action to the rule guard is written α · S (the rule result, or right hand side).

A rule (S, α) is said to be atomic if α is atomic; connected if either S, or α · S is; binary if S has at
most two agents; monotonic if α uses no edge or agent deletion, and anti-monotonic if α uses no
edge or agent creation.

Given an embedding φ : S → S′, an action α on S transfers over to S′ in the obvious way, and
one writes φ(α) · S′ for the result of the action α on S′ via φ. Since S may have automorphisms,
specifying only the domain of φ does not suffice to determine in general the result.

Definition 1 A set R of rules defines a labelled transition relation over complete solutions:

S′ −→S,α
φ φ(α) · S′ (1)

with (S, α) ∈ R, and φ an embedding from S into S′.

A rule instance, or a rule application, therefore consists in identifying an embedding φ of the rule
pattern into a solution, and applying the rule action with its domain being renamed by φ.

2.1 A biological example

Fig. 2 displays a sample set of biologically plausible and atomic rules, where rule actions are rep-
resented as dotted lines. Specifically, directed edges represent modifications (phosphorylation in-
duced by the receptor kinase domain represented as a red circle, and inducing a state change
represented as a solid black circle); undirected ones represent bindings. Those rules are drawn
from a simplified model of the early EGFR (epidermal growth factor receptor) pathway [1].

Fig. 1 shows an example of a complex which can be constructed using the said rules, eg starting with
a set of unphosphorylated disconnected agents (a reasonable initial state for a signalling cascade).
The actual system is known to have about ten variant signals (EGF) and receptors (EGFR) [14], so
the model is really a simplification of the pathway.

We use sometimes an in-text process notation for solution and rules, eg the first two rules in the left
column of Fig. 2 are written:

EGFR(l, r) + EGF(r)→ EGFR(lx, r) + EGF(rx)
EGFR(lx1 , ry, Y 1148u) + EGF(rx1) + EGFR(lx2 , ry) + EGF(rx2)→
EGFR(lx1 , ry, Y 1148p) + EGF(rx1) + EGFR(lx2 , ry) + EGF(rx2)

4



shc

sosgrb2

egfregfr

egfr egfr

Y317

PTB

sh2 sh3

Y1148

ll
r r

Figure 1: Nodes correspond to proteins, sites correspond to protein domains or/and amino-acid
residues susceptible of post-translational modifications (solid black).

egf

r

egfr

l

r

egfr

l

r

egfr

l

r

l
r

egfr

l
r

Y1148

egfr

y1148

shc

PTB

egfr

y1148

shc

PTB y317

sosgrb2

sh3

grb2
sh2

shc

y317

egfr

egfegf

egf egf

Figure 2: The left column includes signal/receptor binding, receptor phosphorylation, phosphory-
lation of the adaptor Shc; the right column shows receptor dimerisation, binding of the adapter
Shc, binding of Grb2, and binding of Sos. The EGFR kinase site responsible for the various phos-
phorylations is represented as a solid white circle.

In that notation bindings and internal states are indicated as superscripts to their sites, the rule

5



pattern is the left hand side, and the rule action is to be deduced as the difference between the
right and left hand sides. For instance in the first rule, the action consists in creating an edge,
which is represented here by the name x being shared as a superscript by sites l in EGFR, and r in
EGF.

Both notations carry almost the same information. Actually, one needs to add to the process nota-
tion a mapping from the left hand side agents to the right hand side ones, so the graphical notation
is both more intuitive and more precise. Furthermore the graphical notation makes it easy to add
some biologically meaningful information such as the EGFR kinase site (solid white in Fig. 2) being
responsible for the flipping of the internal state associated to EGFR(Y1148), and Shc(Y317) (see the
graphical version of the second, and third rule in the first column above). That information is lost
in the process notation, however it is not needed for the semantics. Although the process notation
is heavier it is sometimes convenient, and closer to the notation used in the implementation.

3 Self-assembly

From a process calculus point of view, where each agent is thought of as an independent com-
putation, κ allows for arbitrary many agents to synchronise in a rule (eg four agents are needed
in the EGFR dimerisation rule above). A natural question is whether one could obtain the same
behaviours, using only binary or unary rules. This is not unlike asking in chemistry how one de-
composes a complex reaction in elementary ones, which is something one usually does for the sake
of assigning kinetics to that complex reaction.

3.1 Turing machines

Before we embark on this reduction to binary interactions, and as an exercise, let us show how
one can encode Turing machines using only binary or unary rules. This also stresses the fact that
the expressivity result we are after has little to do with the traditional way of assessing sequential
computational complexity. It is all about restricting the communication means.

So suppose given an alphabet Σ, a state space Q, and a transition function δ. To represent a tape
unit element, we use one agent type, which we keep nameless, with ‘left’ and ‘right’ binding sites
l, and r, and ‘up’ and ‘down’ sites u, d used to hold a value in Σ × (Q + {∗}) and kept free at all
time. See Fig. 3. Both the alphabet Σ and the state space Q are finite sets so it is possible to encode
them as internal states. The tape is represented as a finite chain of agents. We write B for the blank
symbol, use ∗ as an idleness flag, and the q value both as a representation of the current state, and
an activity flag. Only one tape element is active at a time (the one the ‘head’ currently points at),
or to be more precise, the set of rules below preserves this invariant.

A left transition (see also Fig. 3) and a right transition, δ(a, q) = (b, q′,→), and δ(a, q) = (b, q′,←)

6



a

q

a

*

a

q
*

b

q'
*

Figure 3: Tape unit elements (top row): the upper site is used store the machine state, when the
tape unit is active (as in the left agent), when it is not ones uses ∗ (as in the right agent); the lower
site is there to hold a tape symbol; the left and right sites are used to chain together tape unit
elements. Left transition rule (bottom row): only internal states are modified, and the rule is not
atomic since it modifies at least two internal states.

translate respectively in process notation as:

〈∗, rx〉+ 〈lx, da, uq〉 → 〈uq′

, rx〉+ 〈lx, db, ∗〉

〈da, q, rx〉+ 〈lx, ∗〉 → 〈db, ∗, rx〉+ 〈lx, uq′

〉
〈r〉+ 〈l, uq〉 → 〈rx〉+ 〈lx, uq〉
〈uq, r〉+ 〈l〉 → 〈uq, rx〉+ 〈lx〉
→ 〈l, u∗, dB , r〉

The three other rules are there to handle unbounded computations, providing means to extend the
tape on both sides, and to produce more blank tape unit elements. Those last three rules could
be combined with the upper two to cope with the case where there is no left (right) neighbour to
move the head to.

In the latter case the encoding halts effectively when the machine does, else the tape will still grow
on both ends although the head (ie the activity token) will no longer move. Were there more than
one active agent on the tape, the system would behave as an asynchronous multiheaded TM, with
heads being on the same tape.3 Since the encoding is really simple, one can think of binary κ as
embedding Turing machines, and that is sometimes a useful thing to keep in mind.

3.2 mκ

Since one can encode Turing machines in binary κ, it seems encoding κ itself should be easy. How-
ever, as said above, one should not confuse sequential expressiveness in the sense of Turing ma-

3Mind that if one was not testing for the activity token in the two tape extension rules, a cyclic tape could form by tying
both ends. Note also that rules are using only radius 1 agent views here, but crucially the first two rules are not atomic, else
information could not be passed around so easily.

7



chines, and the more elusive notion of communication expressiveness we have to deal with here.
Actually, we have not been able to produce such an encoding without enriching first the agents
range of behaviour. There may be very good reasons for this, and we will return to discussing this
in the last section.

For now, the agent enrichment is the following. Firstly, one adds in a countable set G of group

names, and allows agents to include in their internal states one of these group names. Graphically
this is expressed as an additional label to the agent. Secondly, a rule action can now incorporate
the creation of a new group name. This is the key and only additional computational feature
needed.4

We call that new language mκ.

3.3 Scenarios

The compilation below includes as a first step a translation of κ solutions into mκ ones. That
translation preserves the natural granularity, introduces no auxiliary agents, and in fact represents
a solution as itself, just enlarging the agent internal state space. The second and trickier step is to
break down a rule into a set of binary rules.

Here is an account of the method we use, which we then proceed to describe in details, and to
prove correct in the next section. Suppose first that the rule under consideration is connected and
monotonic. The idea is to replace the instantaneous recognition of the rule pattern, as provided by
the embedding φ in (1), by a gradual and distributed construction of such an embedding. Group
names, as the name suggests, are used at that point to build a transient cooperative structure
corresponding to a partial embedding, partially acted on by the rule, as new nodes and edges are
being recruited. Specifically, the group name is created by some agent initiating the exploration,
and at any point during exploration, agents of a same group embed a (connected) subgraph of the
rule right hand side (this statement is formalised later as lemma 4). If and when that embedding is
eventually completed, agents shed their group names, ie leave the group, and the solution is there
again an ordinary κ solution, and the net effect is that the rule was applied. To cater for the case
where that gradual exploration fails to recognise the intended rule pattern, all rules the success of
which is not guaranteed are made reversible.

To organise the construction of that partial embedding one uses a scenario, which is a statically
defined structure that is not defined in a unique way, depends on the rule of interest, and will
define how to pass information around, and in particular who is to initiate the exploration.

Definition 2 (Scenario) Let (S, α) be a monotonic connected rule, a scenario for S, α is a triple

(F , T , in) such that:

- F is an acyclic orientation of α · S
- T is a tree spanning F which is a sub directed graph of F
- in is the common root of F and T
- and in is in S

4For the readers familiar with π-calculus, no computation can be done on names, further than comparing them for
equality. So this additional feature is easily represented in π.

8



Such scenarios always exist, since α · S is connected, and any such graph admits an acyclic orien-
tation which can be obtained, for instance, by choosing an arbitrary root, constructing a depth-first
tree spanning the graph, and directing all remaining edges according to the obtained tree ordering.
The last stipulation, namely that in be in S, prevents a scenario from choosing an agent which is to
be created by the rule (so only exists in α · S).

The acyclic F places a constraint on how the partial embedding is gradually extended: it will start
at in, and then proceed following the ordering implied by F . The spanning tree T serves as a way
of constraining further this ordering, and imposes a ‘parental priority’ whereby a node of F can
only be included in the embedding under construction by its unique parent in T .

One could generalise scenarios to use more than one initiator. One could also perhaps dispense
with the spanning tree. We discuss this later.

The directed graph F can be presented as a map over sites, defined as:

F(a, i) = (b, j) if there is an edge from (a, i) to (b, j) in F
F(a, i) = ⊥ if (a, i) is free in F

We write F∗ for the inverse of F , and use the same notations for T .

Definition 3 (Inputs and outputs) A site is an output if it belongs to the domain of F , and a (prin-

cipal) input if it belongs to the range of (T ) F . In other words, a site (a, i) is called an output if

F(a, i) 6= ⊥, an input if F∗(a, i) 6= ⊥, and a principal input if T ∗(a, i) 6= ⊥.

Clearly this obtains for any node in F a partition of its sites into the principal input, the secondary
inputs, and the outputs. Any of these three classes may be empty, but there must at leat one site for
each agent (because F is connected).

We will use the following ordering on sites in the proof of correctness.

Definition 4 (signal ordering) Define a binary relation over F sites, written ≺, as the smallest tran-

sitive relation such that:

F(a, i) = (b, j) ⇒ (a, i) ≺ (b, j)
(a, i) input, (a, j) output ⇒ (a, i) ≺ (a, j)

3.4 The rules

We suppose now given a monotonic connected rule and a scenario (S, α,F), and give a graphical
description of the associated set of mκ rules. To make notations less daunting, we suppose further
that neither S nor α · S have loops (edges from a node to itself), that α contains no state modifica-
tion, and that F has no free sites. The techniques described here adapt easily to those cases, since
loops, free site testing, and state modifications are purely local to an agent.

As said, the agents have no notion of their context, and have to explore it and see whether the κ rule
applies. There is a first phase of recruitment, and a subsequent phase of completion. Recruitment
begins with the initiator being activated via rule init; then contact rules fc and lc are used to extend
the initial embedding, and the response rules resp to report success back to the initiator. At the end
of this first phase, the initiator knows there is a suitable embedding for S, and α has taken place.

9



So it shifts to the completion phase using rule ps, and the news is shipped to the other agents using
rule pp until every agent finally exits using rule exit .

The recruitment phase may never come to a successful end, either because the embedding sought
for does not exist (if it does, then it does uniquely per connected component of S), or because its im-
age is partly recruited into other groups (competition with other rule instances). Therefore all rules
within that phase are made reversible, and the system never gets trapped in partial inconclusive
explorations (deadlocks).

The formal compilation is described in the following paragraphs:
- the unique initial rule: init (§3.4.1)
- the recruitment rules where signal flows down T : fc (§3.4.2)
- the secondary recruitment rules where signal flows down F r T : lc (§3.4.3)
- the response rules where signal flows back up F : resp (§3.4.4)
- the unique phase-shift rule: ps (§3.4.1)
- the post phase shift propagation rules: pp (§3.4.4), and exit (§3.4.1)

The mκ rules are represented in the left/right hand side manner, which is better suited to handle
several modifications at each step; reversible rules use double sided arrows.

There is a number of conventions used in the graphics. The group name is written g, other names a,
b, stand for agents of F , and are referred to as roles. For any agent with role a, those sites that are
represented in its rules are those being bound in F , and the internal numerical states they bear are
referred to as logs. To save space, agent names are not represented (they can be uniquely retrieved
from their role in F), and the site names are only defined in the explanation of the rule. Directed
edges are as in F .

Both the fc and lc (described right below) rules distinguish in the bottom agent input sites the
principal one and the secondary ones, represented respectively as the agent top site, and the agent
side sites. In the remaining rules, there is no need for such a distinction, and top sites represents
any input, principal or not. Bottom sites always stand for the agent outputs.

Finally, and importantly, agent sites coloured grey are quantified universally, that is to say the
relevant internal state condition or modification bears on all sites of the same sort, secondary
inputs, or all inputs, or all outputs. For instance in the right hand side of rule init , all outputs of in

are set to 0.

3.4.1 Initiation, phase shift, and exit

The first two rules init , and ps are specific to the initiator in in F .

The left one is the initiation rule and is reversible. Since the agent is the root in F , it has no
secondary inputs. It does not have a principal one either, but we introduce here a fictitious site
to make the formulation of invariants used in the correctness proof easier (see below). It is set
to 1, while all outputs are set to 0. The group name g is created by the rule and assumed to be
unique.

The middle rule is the phase shift. The root has collected all success signals (all the outputs are at
2) and shifts to the next phase; success is guaranteed here so the rule is not reversible.

10



The right rule is the exit rule whereby when it has received and sent all termination messages (all
the inputs and outputs are at 3), an agent leaves the group and all logs are erased. That rule is
available to all agents with a role a in F .

init g,in

1

0

g,in

1

g,in

3

22

g,a exit

3

3

ps

3.4.2 First contacts

A ‘first contact’ rule applies when T (a, i) = (b, j), where i is the top site, and j the bottom one.
Those come in three different types: in fc1 nothing is created, only logs are changed, whereas in
fc2 one has in addition to create the edge as stipulated by α, and in fc3 one also has to create the
b node.

In all three cases, all of the top agent inputs have to be at 1, and the (a, i) output log is set to 1,
the newly recruited bottom agent has its principal input log set to 1, while its other logs (secondary
inputs and outputs) are all set to 0. The bottom agent is also labelled by its role b in F , and the
current group name g.

fc1

g,a g,a

g,b

fc2

g,a g,a

g,b

fc3g,a

g,a

g,b

1

0

1

1

1

0

0

1

0

1

1

1

0

0

1

0

1

1

1

0

0

3.4.3 Later contacts

A ‘later contact’ rule applies when F(a, i) = (b, j), while T (a, i) = ⊥. So, an lc rule differs from an
fc rule since it involves an edge to a secondary input of the bottom agent. As in the fc case all of
the agent inputs must have log 1. Depending on whether that edge already exists in S, or not, one
uses lc1 , or lc2 . In both cases the (a, i) output log and the (b, j) input log are set to 1. There is no
third rule since by definition the node to connect to would already have been created at that stage
by an fc3 rule. Still by definition the bottom agent has already been recruited, and importantly the
rule checks that both agents belong to the same group.

Such rules are not needed if α · S has no cycles.

11



lc1

g,a

1

0

g,b

1

0

0

lc2

g,a

1

0

g,b

1

0

g,a

1

1

g,b

1

00

1

g,a

1

1

g,b

1

0

1

3.4.4 Responses, and propagation

The left rule is the response rule and is used to propagate upwards the local success signal (log 2)
to the root. It makes no difference whether this signal is shipped back via a principal or secondary
input of the bottom agent, so here there is no distinction between the principal input and the other
inputs, and the bottom agent top site is any input. For the rule to apply, all the bottom agent outputs
have to be at 2, and all the top agents input have to be at 1.

The right rule is dual to the left one, and propagates downwards the global success signal (log 3).
For the rule to apply, all the bottom agent outputs have to be at 2, and all the top agent inputs at 3.
Since one cannnot fail at that point, it is not reversible.

Note that both rules apply in particular when the bottom agent is a leaf in F and has no out-
puts.

resp

g,a

1

1

g,b

1

g,a

1

2

g,b

2

22

pp

g,a

3

2

g,b

2

g,a

3

3

g,b

3

22

3.5 Discussion

All the forward and backward rules above involve at most two agents as should be. Even though
rules are modifying at most one edge at a time, they modify several logs, and except in the case of
an especially simple F will not be atomic.

Except for fc2 , fc3 , and lc2 , none of the rules have any impact on the underlying graph, and are
merely passing information around by affecting only the agents internal states (the logs). Apart
from name creation in init , only modification actions are used for this, so overall the compilation
of a rule does not introduce any new edge/node creation or deletion (we will see that one may add
some new edges when the rule is not connected). It is also interesting to notice that the agents

12



don’t ‘know’ which global κ rule is being attempted, all they know is how the embedding in S looks
in their immediate (radius 1) neighbourhood, and the local modifications implied by α. A final
thing to observe is that none of the rules but init and fc2 have any inherent non-determinism, in
the sense that once the top agent is chosen, the rule applies in a unique way (if it does at all).

The special fictitious input introduced for the initiator eases the correctness argument given in the
next section. Apart from this, considering a special input for the root (and symmetrically a special
output at leaves) is quite natural in view of a modular development of our techniques. Here we
introduce only this site at the root, which is enough for our present purpose.

Finally, we also notice that the notion of group name can be replaced everywhere by a simple
busy/free Boolean flag, except for the lc rules which test whether the two participants belong to
the same group. One can therefore dispense with the group names if the rule under consideration
is such that α · S has no (undirected) cycle.

4 Correctness of self-assemby

We now discuss the mathematical properties of self-assembly, which culminate in the desired proof
of correctness.

Let us write [S] for the mκ translation of a solution S, which is obtained by adding to each agent in
S an empty internal state to hold the group name, and role during exploration, and a fictitious site
to be used in the init rule.

We also write pre-ps for the set of forward rules init , fc, lc, and resp; pre-ps∗ for the set of backward
rules init∗, fc∗, lc∗, and resp∗; and post-ps for the set of rules pp, and exit .

The transition relations→c and→mκ are defined respectively as the union of pre-ps∗ and post-ps,
and as the union of pre-ps, ps, and post-ps (that is to say the union of all forward rules). The
transition relation generated by all rules is simply written →. For all of those relations, eg the last
one, we denote its transitive closure as→∗ (not to be confused with backward rules, eg fc∗).

A weak form of correctness was obtained earlier, namely that S →κ S1 implies [S]→∗ [S1], using a
subset of the rules above. This is easy to prove, one just applies the set of mκ-rules in algorithmic or-
der: initiate, recruit, signal success to the root, signal success to all participating agents [4].5

It was also proved beforehand that, in a suitable sense, the compilation could not produce any
wrong rewriting. However the one thing which was not proved, and which was actually clearly not
true for the simplified rules, was that mκ computations could not deadlock. With the present full
compilation including the pre-ps∗ rules, we can now seek a stronger correctness property, namely,
that any generated mκ computation can at any moment be completed, either by undoing some
steps of computation, or by bringing some others to their conclusion. This implies in particular the
absence of deadlocks, and is formalized below (corollary 2).

5Group names, or reversible rules are not needed for simulation since one has free choice of the scheduling. Perhaps a
useful way to think about the algorithm is to think about an NP problem; the simulation is similar to the verification of a
solution, while the exploration part is internalising the search for a candidate solution. Correctness then consists in proving
that a solution is always found if there is one, and no false solution is being discovered.

13



To make the reading easier we will denote κ solutions using symbols derived from S, while mκ

solutions will be written using symbols derived from T .

4.1 The relation→c is confluent

We start by establishing the confluence of→c.

Lemma 1 (Strong Normalization) The relation→c is strongly normalizing.

Proof: Let T be a solution, with ni occurrences of log i (i = 0, 1, 2, 3),and set ρ(T ) = p0n0 +p1n1 +
p2n2 +p3n3, for some natural numbers p0, p1, p2, p3 such that 0 < p0 < p1 < p2 > p3 > 0. It is easily
checked that if T →c T ′ then ρ(T ′) < ρ(T ), and strong normalization follows. �

Lemma 2 (Local Confluence) The relation→c is locally confluent.

Proof: Suppose T →c T1, and T →c T2. If the rules instances are such that their respective
embedding codomains in T , say T1, and T2 are disjoint, then they clearly commute, because their
associated actions have disjoint supports. The only non obvious case is fc3 ∗ since this involves
erasing an agent, which could potentially affect all neighbours by breaking edges to it, but the rule
requires the bottom agent only connection to be that with the top agent, so no such interference
can happen.

We have now to enumerate overlaps. One thing to notice is that agents of T1 and T2 are all holding
one and the same group name: this is because all rules in →c have their lhs agents labelled by a
group name, which is the same in case the rule is binary, and since the two sets of agents intersect,
the conclusion follows.

Let us prove first that none of the unary rules can overlap with any other one.
- Suppose T1 matches the lhs of rule init∗, then the agent is the root of F , so could only match a
top agent in fc∗, lc∗, resp∗, which is impossible because of its output logs being at 0, or a top agent
in pp, which is impossible because of the (fictitious) input log being at 1, or the unique agent of
exit , which is impossible for the same reason. Therefore init∗ does not overlap.
- Suppose now T1 matches the lhs of rule exit , then none of the other rules in→c has an input log
at 3, except pp but then the outputs are not all at 3. So exit cannot overlap either.

The remaining rules in→c are binary, and deal each with one specific edge of F . The ways in which
those rules can overlap is restricted. Specifically, an agent that matches a bottom agent in a binary
rule cannot at the same time match a top agent of any other rule.
- The bottom agent in rule pp has one input log at 2 which prevents him to embed as the top agent
of another instance of pp (because one needs all inputs at 3), or as the top agent of all other binary
rules in→c (because those require all inputs at 1).
- The same argument can be made for the other binary rules fc∗, lc∗, resp∗.

Hence the only form of overlap is between binary rules, and both binary rules either share the same
top agent (i), or the same bottom one (ii), or both (iii).

In the special double overlap case (iii), unless they are identical, the two rules must apply to two
distinct edges. Indeed:
- an fc∗ edge cannot be another fc∗ edge since those edges are partitioned according to α, nor can

14



it be an lc∗ one because an edge either belongs to T or not, nor can it be a resp∗ edge since the
edge logs are either 1 or 2, or a pp one for the same reason;
- likewise an lc∗ edge cannot be another lc∗ edge because of α, nor can it be a resp∗ or a pp edge
because of the edge logs;
- a resp∗ edge cannot be another resp∗ edge, they would be the same rule instance, or be a pp edge
because of the top inputs logs.

In addition, rule fc3 ∗ can overlap only in mode (i), since its bottom agent has only one bound
site.

Let us consider the ‘top’ overlap case (i) first.
- Suppose one of the rules is pp. The top agent inputs are all at 3 for pp, and all at 1 in other
rules (and there is always such an input site even if the top agent is the initiator), so pp can only
top-overlap with itself, and that is a clearly confluent configuration.
- Suppose one of the rules is fc∗. Then the two bottom agents are distinct: fc∗ cannot doubly
overlap with another fc∗ because there is by definition only one principal input per agent, nor with
an lc∗ because bottom secondary inputs are all at 0, nor with a resp∗ because all bottom inputs are
at 0 or 1, and resp∗ demands that one of them is at 2. Now, in all such cases the two top agent
embeddings intersect (and agree) exactly on the top agent input sites (which have to be set to 1),
and their actions have disjoint support; therefore they commute.6

- Suppose one of the rules is lc∗. This time the two bottom agents can coincide resulting in a double
overlap if the other rule is an lc∗, or a resp∗ (in the very specific case where the bottom agent is
a leaf), in both cases confluence is immediate. Likewise if the two bottom agents are distinct, the
same overlaps are possible and the rules commute.
- Finally suppose one of the rules is resp, then the only remaining case to consider is an overlap
with itself, and it is readily seen to result in commuting rules.

We have now to consider the ‘bottom’ overlap case.
- Suppose then one of the rules is fc∗, then it cannot overlap with another fc∗ since there is only one
bottom principal input, nor can it overlap with any other rule since it fixes the bottom secondary
inputs at 0, and all other kinds of rules ask for a bottom input site at 1 or 2.
- Suppose one of the two rules is pp. The other can be an lc∗ (if the bottom agent is a leaf) or a resp∗,
in which case the top agents are distinct, or another pp, and any such configurations commute.
- Suppose one of the two rules is an lc∗, then the other can be an lc∗ too, or a resp∗, resulting in
commuting configurations; all other cases were covered in the preceding subcases. �

Lemmas 1 and 2 obtain an interesting corollary.7

Corollary 1 (Confluence) The relation→c is confluent.

We will write c(T ) for the unique→c normal form of T .

6It is interesting by the way to notice that a backward first contact and a backward response in such a configuration can
share a top agent, on the contact branch the recruitment signal is working backward, ie upwards, while on the response
branch it is working backwards, ie downwards; this shows how asynchronous the propagation can be. Another noteworthy
fact is that the two rules don’t just happen to commute, they are concurrent according to the traditional residual-based
definition of concurrency.

7This corollary implies in particular that the internal backtrack mechanism implemented by the set of backward rules
pre-ps∗ is correct in the technical sense of Ref [3].

15



Local confluence being of the one-one type, as can be seen from the proof, it is enough to ensure
(global) confluence, so strong normalisation is not really needed, and all→c reductions to normal
form have same length.8

4.2 The principal lemma

Say an mκ solution T is nice if an agent in T has a group name iff it has a role iff it has no empty
logs; and if any site i in T with a log in {1, 2}, is bound to a site j with the same log.

Lemma 3 The relation→ preserves niceness.

Proof: For the first invariant, one notices that the only means of including an agent in a group are
init , and fc. In all cases the recruited (perhaps created) agent is given a role and all its sites in F
are set to some value. After that, no roles or logs are erased except via init∗, and exit , which also
erase the group name.

For the second invariant, one sees that all rules but init , ps and exit are about replacing simultane-
ously the (identical) logs at the two ends of an edge by a new log. So the invariant is maintained.
The remaining rules init , ps and exit do no set logs 2 or 1 on edges. (For the sake of this argument
the root fictitious input is taken to be self-bound.) �

We suppose thereafter that all solutions are nice, so one can now say an edge has log 1 or 2,
meaning both ends do, or equivalently one does.

Let g be a group name, define T (g) (resp. T2(g)), as the following subsolution of T :
- agents are those labelled with g in T

- among edges from the induced subgraph, only those set at 1 or 2 (resp. at 2) are kept.

Obviously T2(g) ⊆ T (g); one uses T (g) to measure the progress of the recruitment signal, together
with the partial embedding of the rule pattern, while one uses T2(g) to measure the progress of the
local success signal back to the root.

We write T
g
→

∗

T1 if the only group name used in the trace (a sequence of transitions) is g.

Lemma 4 Suppose [S]
g
→

∗

pre−ps T , then:

- T (g) embeds into α · S, the embedding being given by the roles;

- T (g) is ≺ downward closed;

- T2(g) is ≺ upward closed.

Proof: A first thing to notice is that because T is nice, agents in T (g) also have a role, and therefore
the first clause makes sense. In the next two clauses it is understood that the closure is with respect
to the order as inherited from the signal ordering ≺ defined on F via the embedding defined in the
first clause.

We prove the three clauses by induction on the trace.

8Another information one can extract from the local confluence proof is that all sub relations defined by reducing further
the type of rules allowed will still be confluent, since no commutation involved in the proof changes the type of rule under
inspection.

16



Suppose the last rule is init , then it must be the first rule too, since the group name created is by
definition unique. In which case the three clauses are trivially satisfied.

Suppose the last rule is an fc, then by definition of the rules, the bottom agent is given its role b

(uniquely determined from F), and the attendant edge (a, i), (b, j) verifies T (a, i) = (b, j), and is
set to 1, so the first clause follows. The second one holds too since all immediate ≺ predecessors
are already at 1, and therefore by induction already in the partial embedding codomain. The third
trivially does since no 2 were added.

Suppose the last rule is an lc, then by definition, the bottom agent has already role b and therefore
is already in the embedding codomain (this is crucial as can be seen in the simple ‘triangle’ example
in the next section), and the attendant edge (a, i), (b, j) verifies F r T (a, i) = (b, j) and is set to 1,
so the first clause follows. And so do the other two for the same reasons as above.

Finally, suppose the last rule is resp, the first two clauses are unchanged; the third one holds because
the additional edge set at 2 has immediate successors already at 2. �

Here is now the principal lemma:

Lemma 5 Suppose [S]
g
→

∗

pre−ps T
g
→ps T1, then S → S1, with [S1] = c(T1).

Proof: Since ps applies, all outputs of the root are at 2.

Pick an agent with role a in T (g), which is not the root; that agent must have been recruited by
some fc rule (since this is the only way to enter a group while not being the root), at which time
the edge to its principal input was set at 1; logs can only increase under pre-ps, so a’s principal
input edge is in T (g). By down closure there is a path down to the root using only principal inputs
and edges of log 1, or 2, and reaching to a root output at 2 (by assumption), and therefore by up
closure, every site in that path has log 2 too, and so do the outputs of a (for the same reason). So
every output site in T (g) is at 2, and therefore so does every input, by niceness, and because by
definition an output links to an input. And since T2(g) embeds in F (up to renaming), T2(g) can
only be equal to F , because F is connected.

So T is no other than α ·S = S1 up to logs (which are all at 2), group names and roles, and so is T1.
Now since →c is confluent, one can choose to apply the remaining rules pp, and exit in any order,
and clearly there is a way to schedule those rewrites so that all logs are erased at the end, eg by
using pp to switch all logs to 3, and only then use exit for all agents. Hence c(T1) = [S1]. �

One sees that the last segment of the trace in fact entirely consists in post-ps rules.

4.3 Bisimulation

Define the relation S ≈ T as c(T ) = [S]. This is a functional relation from mκ solutions to κ

solutions. We are going to prove that it is a weak bisimulation, and conclude to the correctness of
the compilation in the case of monotonic connected rules.

Lemma 6 T →∗

post−ps→
∗

pre−ps c(T ).

Proof: It is enough to prove that any two successive transitions, the first in pre-ps, the second in
post-ps commute, which amounts to saying that two transitions one in pre-ps∗, and the second in

17



post-ps are always commuting (concurrent in fact), which we know for a fact from the confluence
proof of→c above. �

Lemma 7 Suppose S ≈ T , and T
g
→ps T1, then c(T1) = S1, and S → S1 for some S1.

Proof: Suppose first there are some transitions of type post-ps in T →∗

c [S]. By the preceding
lemma, one also has T →post−ps T ′ →∗

c S. Now the transition T →post−ps T is clearly concurrent
to the ps one. Indeed the unique ps agent cannot match the unique exit one (their input logs
disagree), nor can it match the top pp one (same reason), nor the bottom pp one (because it cannot

be the root). Therefore one has T ′
g
→ps T ′

1
, and T1 →post−ps T ′

1
, for some T ′

1
. Now, because →c

is confluent, c(T ′

1
) = c(T1), so piecing everything together, one has S ≈ T ′ (by assumption), and

T ′
g
→ps T ′

1
, which (by induction) gives c(T ′

1
) = c(T1) = S1, and S → S1.

Suppose now the first transition in T →c [S] is of type post-ps, but does not involve agents in group

g, then again this transition is concurrent with T
g
→ps T1. Indeed the ps agent cannot match any

agent in the post-ps∗ rules, because all have a different group (by assumption), and one concludes
as in the preceding case.

The remaining case to consider is when the trace T →c [S] entirely consists in pre-ps∗ rules within
group g, and there one can reverse all these, and apply the principal lemma to conclude. �

Here is the formal definition of bisimulation we are using.9

Definition 5 (Bisimulation) Let {→ℓ1
1

; ℓ1 ∈ L1}, and {→ℓ2
2

; ℓ2 ∈ L2}, be LTSs with label sets L1, L2,

and let f1, f2 be partial functions from L1, L2 to some set L, called observations. Observations extend

naturally as total maps from L∗

1
, L∗

2
to L∗.

Suppose γi is a trace (ie a sequence of successive transitions) in one of the above LTSs, we write ℓ(γi)
in L∗

i for its sequence of labels.

A relation ≈ is an f1, f2-bisimulation if: whenever S ≈ T , and γ1 : S →∗

1
S1, there exists γ2 : T →∗

2
T1

such that f2(ℓ(γ2)) = f1(ℓ(γ1)), and S1 ≈ T1; and symmetrically.

Usually, one fixes the notion of observation by defining τ to be the only non observable label, and
obtain the notion of weak bisimulation. Our variant definition allows for a little more flexibility, in
that one can stipulate in an ad hoc fashion what it is that one observes in a given transition. This
decision is embodied in the maps f1, and f2.

For our application, we consider on the κ side that all transitions are observed, so f1 is a total map,
and one observes which rule is being applied, that is to say f1(S, α, φ) = (S, α). On the mκ side,
we take all transitions in mκ to be ‘silent’, that is to say f2 is undefined, unless the transition is of
the ps type, in which case f2 is defined and its value set to the κ rule (S, α) corresponding to the ps

transition being applied.10

Theorem 1 The relation S ≈ T defined as c(T ) = [S] is a weak bisimulation (wrt→κ, and→).

9The familiar cases are recovered as folows: set L1 = L2 = L, f1 = f2 = Id, for strong bisimulation; and if τ ∈ L, set
f1 = f2 = Id, except f1(τ) = f2(τ) = ⊥, for weak bisimulation.

10This is to prepare the ground for a generalisation of the correctness statement to multiple rules, since we are dealing for
the moment with only one κ rule. One could actually also observe the embedding defined by the role allocation, since by
lemma 4 the two notions correspond.

18



Proof: Suppose S ≈ T , S →κ S1, and T →∗

c [S], then to respond to the challenge one simply
simulates the κ reduction in mκ.

Suppose now one challenges the bisimulation on the mκ side, and has T → T1. If that transition is
not a ps, then it is either a pre-ps one, which one can reverse, and so c(T1) = S, or it is a→c one,
and by confluence, c(T1) = S too. In both cases, c(T1) = [S] and no response is needed on the κ

side, since nothing is observed.

So the only interesting case is when T →ps T1, where one applies the preceding lemma, to obtain
an S1 such that [S1] = c(T1), and S → S1; and that obviously respects the observables as defined
above. �

Since S ≈ [S] one obtains:

Corollary 2 If [S]→∗ T , then S →∗

κ S1 with [S1] = c(T ).

5 Discussion

5.1 General rules

It is possible to construct a similar decomposition for a general κ rule that will not be monotonic and
connected. Suppose first the rule of interest is antimonotonic and connected, then the compilation
is in the same vein. One checks for the presence of the connected lhs during recruitement. Because
and fc2 , fc3 , and lc2 are not needed, one uses only a subset of the rules above. And then one deals
with the necessary erasures of edges and agents after the phase shift, where there is no possibility
of failing.

To deal with general rules which are neither connected nor (anti-) monotonic, a simple solution is
to add to the scenario enough statically defined edges to form a transitional connected component,
and do the monotonic part of the rule during recruitment, and the anti-monotonic one (including
the breaking of the transitional edges) after the phase shift. One needs enough sites to construct
that fictitious super complex, so one also needs two additional sites for each agent at translation
time (instead of just one as in the connected case).

As for how to deal with a set of rules, it is enough to give disjoint domains to distinct scenarios, so
that one can tell from the role which rule is being attempted, and be sure in this way that there is
no interference between those. The theorem above holds as is.

5.2 Deadlocks

As explained earlier, the use of a spanning tree T makes it possible to statically fix which agent will
recruit a given one, while all the other agents have to use the later contact rules. Barring the use
of reversible rules, some deadlocks of a special kind may happen if we do not do this. Below is an
example of an atomic monotonic κ-rule, which is one of the simplest non binary ones since it has
only three agents, and will give us an example of this particular kind of deadlock.

19



g,a

g,b

c

g,a

g,b

c1

c2

The rule is presented on the left and is attempting to construct a triangle; F is indicated by the
edge orientation. Suppose now one suppresses the spanning tree constraint in the rules, and does
no longer distinguish between a first and a later contact. It may happen that agents a, b attach
to different cs, eg as shown on the right hand side. This creates a self-deadlock, since with the
synchronisation provided by the spanning tree, which here boils down to choosing who from a and
b should start binding a c, that could have been avoided.

The interesting thing here is that the cs will never receive a connection on their other inputs. So
because one has introduced reversible rules, it may be that one can do without such a discipline.
Note however that one would have to modify accordingly the invariant of lemma 4, which is clearly
violated, since the map from the group to the rule rhs is no longer injective.

5.3 Mistakes

What one cannot do without, or so it seems, is the notion of group names. Suppose for a moment
that one leaves group names out, then the rules could lead to outright mistakes. Let us take as an
example a variant of the triangle rule above. In process notation:

a(lx, ry) + b(l, ry) + c(lx, r)→ a(lx, ry) + b(lz, ry) + c(lx, rz)

One sees in Fig. 4 that assuming one takes two copies of each agent in the suitable initial state,
the situation can evolve into b not knowing which c it has to bind to, even in the presence of the
spanning tree discipline. From there the situation can evolve in a completely symmetric way, that
will lead to agreeing on an hexagon, instead of the intended two triangles.

Fig. 5 shows the result of running a stochastic version of the algorithm using ten of each type of
agent. One sees an enneagon has been constructed, where all agents have a local view which is
consistent with belonging to the triangle they should belong to.

This example leads to thinking it may be impossible to do without groups, and one can mount a
general argument that κ cannot be compiled into binary κ. However one would have to spend quite
some time explaining what is allowed in the process of compilation, and what not. For instance, the
translation could introduce an enumeration of the initial solution (assigning unique identifiers) and
obviously break any argument, since unique identifiers are as powerful as group names, at least in
the absence of agent creation. So one would have to ask for compositional translations such that
[S +S′] = [S]+ [S′], where + here means a disjoint sum. Another problem would be that one could

20



a

1

b

1

0

c

1

0

1

a

1

b

1

0

c

1

0

1

Figure 4: Without group names, lc is ambiguous, and b does not know to which c it should connect.

c29 c28

c27

c26

c25

c24

c23

c22

c21

c20

a19

a18

a17

a16

a15
a14

a13

a12

a11 a10

b9

b8

b7

b6

b5

b4

b3

b2

b1

b0

l~2

l~2

l~u

l~u

l~u

l~u

l~u

l~u

l~u

l~u

l~u

l~3

l~u

l~u

l~2

l~2

l~u

l~3

l~u

l~u

r~1

r~1

l~u

r~u

r~u

r~u

r~1

r~1

l~u

r~u

r~u

r~u
l~u

r~u

r~u

r~u

l~u

r~u

r~u

r~u

l~u

r~3

r~u

r~u

l~u

r~u

r~u

r~u

l~u

r~u

r~u

r~u

l~u

r~3 r~u

r~u

Figure 5: The ambiguity of the lc rules, in the absence of group names, is causing other shapes than the

expected triangles to appear. The particular state presented above was obtained by a stochastic simulation

starting with 10 of each agents. A 9-gone has formed already, but the the remaining chains are still active, and

with probability will eventually loop. Note also that the only remaining active agents of type a are the chain

ends.

encode κ connected components by quite arbitrary ones in mκ, so one could also decide only to
admit translations which are perhaps identical up to new internal states, just as the one presented
here is. At the moment, and for want of a clear cut notion of reasonable translation as one can
find in ordinary process algebras [15], we will not venture into proving a negative result, and just
develop an informal argument.

Consider a initial κ solution as in Fig. 4 (but without logs), and suppose now one uses a ‘reasonable
translation’ of the associated rule. Certainly part of being a reasonable translation is the simulation
property, so one can bring the left agents a, b, and c to a triangle. Say the obtained trace decomposes
as γsγ′ where s is the last step where the b, c edge is added (it could be added many times in
principle). Suppose one takes a copy of that complete trace but applied on the remaining right
agents, and runs the two copies concurrently, except that at the time of binding one swaps the two

21



cs. Since the binding rule is binary, and the two traces were identical and coming from isomorphic
initial states, this will works as long as the symmetry is not broken by the very process of translation,
a possibility which we would construe as not being a reasonable translation. Now post composing
with the two copies of γ′ is still possible, since the swap results in a set of local views which is
wholly compatible with being in a triangle. So the remaining copies of γ′ using only binary rules
will not be able to tell the difference either, and obtain an hexagon, which breaks the bisimulation
property.

Importantly, this informal swap argument while valid in particular for a tree-like rule pattern does
not lead to breaking the bisimulation, since the swap does not produce any unintended rewrite in
this case. And indeed one can encode everything binarily, as we saw earlier, since the later contact
rules are not needed. The other nice thing about this particular case being that all there is to do
to define a scenario is to choose the initiator, and hence there is no spanning tree concerns. In
practice, it could well be that all biologically plausible rules are of this form.

6 Conclusion

We have presented a distributed implementation scheme for a certain class of graph rewriting rules
using a specific agent-based language. The distribution is based on binary interactions, and the
implementation seems quite natural, since the grain of distribution is chosen to be the node, that
is to say every node is represented as an individual agent, and no auxiliary agent is introduced.
Having said that, it seems difficult to say mathematically how good or natural the algorithm we
proposed is.

To illustrate this delicate point, consider the following alternate self-assembly described in process
terms. An agent wakes up and decides to apply some rule involving n other agents, he then sends
n recruitment messages on a public channel; receiving agents send back a complete description
of their internal state and bindings with their neighbours (using say a unique name for describing
themselves, and therefore having to communicate with their neighbours to get their unique names
too); when the initiator has collected all answers, he goes on to compose them together (uniquely
since recruited agents uniquely identified themselves) into a complete description, and if that is by
chance the lhs of the rule under consideration, he sends a success message to all waiting recruitees,
or else a failure message. In the former case the needed actions are taken, in the latter, every
agent exits the failed transaction. This informal description can easily be converted into a precise
algorithm, say in π-calculus.

Now the problem is that no matter how unnatural and inefficient (this protocol will almost never
succeed in a probabilistic world with large collection of agents, since it doesn’t follow the extant
bindings) this is, it it certainly correct in the sense ours is correct. Perhaps a dividing line is that
in our self-assembly, no agent knows which rule is being applied, whereas in the example above,
the initiator has to know everything about the rule. Note that, as said earlier, a consequence of
our analysis is that no name creation is needed for tree-like patterns, whereas the ‘star’ algorithm
described above needs one for each agent. Still it remains to see how one can give a mathematically
grounded and robust notion that would clearly separate those two compilations, and whether the
informal case made for the necessity of group names, or for any equivalent mechanism, can be
made a bona fide argument.

22



It remains to discuss briefly how such a study may matter from a biological point of view.

For one thing it is always good to study as we did the abstract mathematical properties of a mod-
elling language, to better understand it, and develop well-grounded environments for modelling.
Before one want to confront the questions of how true or even plausible a model of a pathway
is (there is an estimated four hundred BNG rules needed to model the EGF pathway at the level
of knowledge one has today), and how far one can rely on it to predict correct behaviours under
various perturbations, there is the earthly question of how does one write down such a model in
the first place. There is need for an ad hoc software engineering, and surely a study probing in
the computational limits of the language makes one wiser in this respect. To be more ambitious
and say that this computational enquiry can directly help in understanding the intended systems,
one would have to believe, as we do, that there is a meaningful qualitative (ie non kinetic) way of
studying pathways.

References

[1] Michael L. Blinov, James R. Faeder, Byron Goldstein, and William S. Hlavacek. A network model of

early events in epidermal growth factor receptor signaling that accounts for combinatorial complexity.

BioSystems, 83:136–151, January 2006.

[2] M.L. Blinov, J.R. Faeder, and W.S. Hlavacek. BioNetGen: software for rule-based modeling of signal

transduction based on the interactions of molecular domains. Bioinformatics, 20:3289–3292, 2004.

[3] Vincent Danos, Jean Krivine, and Pawel Sobocinski. General reversibility. In EXPRESS’06, ENTCS. Else-

vier, July 2006. To appear.

[4] Vincent Danos and Cosimo Laneve. Formal molecular biology. Theoretical Computer Science, 325(1):69–

110, September 2004.

[5] J.R. Faeder, M.L. Blinov, Goldstein B., and W.S. Hlavacek. BioNetGen: software for rule-based modeling

of signal transduction based on the interactions of molecular domains. Complexity, 10:22–41, 2005.

[6] J.R. Faeder, M.L. Blinov, and W.S. Hlavacek. Graphical rule-based representation of signal-transduction

networks. Proc. ACM Symp. Appl. Computing, pages 133–140, 2005.

[7] Daniel T. Gillespie. A general method for numerically simulating the stochastic time evolution of coupled

chemical reactions. J. Comp. Phys., 22:403–434, 1976.

[8] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem, 81:2340–

2361, 1977.

[9] W.S. Hlavacek, J.R. Faeder, M.L. Blinov, R.G. Posner, M. Hucka, and W. Fontana. Rules for Modeling

Signal-Transduction Systems. Science’s STKE, 2006(344), 2006.

[10] Kurt W. Kohn. Molecular interaction map of the mammalian cell cycle control and DNA repair systems.

Molecular Biology of the Cell, n. 10:2703–2734, 1999.

[11] Kurt W. Kohn and Mirit I. Aladjem. Circuit diagrams for biological networks. Molecular Systems Biology,

January 2006.

[12] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile process (I and II). Information

and Computation, 100:1–77, 1992.

[13] Kanae Oda and Hiroaki Kitano. A comprehensive map of the toll-like receptor signaling network. Molec-

ular Systems Biology, 2, April 2006.

23



[14] Kanae Oda, Yukiko Matsuoka, Akira Funahashi, and Hiroaki Kitano. A comprehensive pathway map of

epidermal growth factor receptor signaling. Molecular Systems Biology, 1, May 2005.

[15] Catuscia Palamidessi. Comparing the expressive power of the synchronous and the asynchronous pi-

calculus. In POPL ’97: Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of program-

ming languages, pages 256–265, New York, NY, USA, 1997. ACM Press.

[16] Andrew Phillips, Luca Cardelli, and Giuseppe Castagna. A graphical representation for biological pro-

cesses in the stochastic pi-calculus. Transactions on Computational Systems Biology, 4230(7):123–152,

2006.

[17] Corrado Priami, Aviv Regev, Ehud Shapiro, and William Silverman. Application of a stochastic name-

passing calculus to representation and simulation of molecular processes. Information Processing Letters,

2001.

[18] Aviv Regev and Ehud Shapiro. Cells as computation. Nature, 419, September 2002.

[19] Aviv Regev, William Silverman, and Ehud Shapiro. Representation and simulation of biochemical pro-

cesses using the π-calculus process algebra. In R. B. Altman, A. K. Dunker, L. Hunter, and T. E. Klein,

editors, Pacific Symposium on Biocomputing, volume 6, pages 459–470, Singapore, 2001. World Scientific

Press.

[20] Glynn Winskel. Event structure semantics for ccs and related languages. In Proceedings of 9th ICALP,

volume 140 of Springer, pages 561–576. LNCS, 1982.

24


