Pierre-Louis Curien

Sequential algorithms as bistable maps

We exhibit Cartwright-Curien-Felleisen's model of observably sequential algorithms as a full subcategory of Laird's bistable biorders, thereby reconciling two views of functions: functions-as-algorithms (or programs), and functions-as-relations. We then characterize affine sequential algorithms as affine bistable functions in the full subcategory of locally boolean orders.

Introduction

This paper reconciles two views of functions: functions-as-algorithms (or programs), and functions-as-relations. Our functions-as-algorithms are the observably sequential algorithms on sequential data structures of Cartwright, Curien and Felleisen [START_REF] Cartwright | Observable sequentiality and full abstraction[END_REF][START_REF] Cartwright | Fully abstract semantics for observably sequential languages[END_REF][START_REF] Curien | On the symmetry of sequentiality[END_REF], and our functions-as-relations are Laird's bistable and pointwise monotonous functions on bistable biorders [START_REF] Laird | Bistability: an extensional characterization of sequentiality[END_REF]. We exhibit a full embedding from the former to the latter.

Since the moment when the first version of these notes has circulated privately, Laird has further improved the understanding of the connection by defining a full sub-category of bistable biorders, the category of locally boolean domains, whose intensional behaviour may be "synthesized" through decomposition theorems. A consequence of these theorems is that every locally boolean domain is isomorphic to a sequential data structure. Hence the results presented here actually yield an equivalence of categories (and another one between the respective subcategories of affine morphisms).

In order to make the paper relatively self-contained, we provide the necessary definitions in sections 2 and 3. The main full embedding result is proved in section 4, and the affine case is addressed in section 5.

Sequential data structures

We define sequential data structures, which are concrete descriptions of partial orders whose elements are called strategies (there is indeed a game semantical reading of these structures, see e.g. [START_REF] Curien | On the symmetry of sequentiality[END_REF]). 1 Definition 2.1 A sequential data structure (sds) [START_REF] Amadio | Domains and Lambda-calculi[END_REF] is a triple S = (C, V, P), where

• C is a set of cells,
• V is a set of values (C and V disjoint),

• P is a prefix-closed set of non-empty alternating sequences c 1 v 1 c 2 . . . (with the c i 's in C and the v i 's in V), which are called positions,

• Q (resp. R) is the subset of sequences of odd (resp. even) length of P , which are called queries (resp. responses).

One moreover assumes two special values ⊥ and ⊤, not in V (nor in C) (in earlier work [START_REF] Cartwright | Fully abstract semantics for observably sequential languages[END_REF], ⊤ was called error, and in ludics [START_REF] Girard | Locus Solum[END_REF] it is called demon). We let w range over V ∪ {⊥, ⊤}.

Definition 2.2 A strategy is a set x ⊆ R ∪ {q⊤ | q ∈ Q} ∪ {q⊥ | q ∈ Q}
which satisfies the following properties:

• x is closed under (even length) prefixes,

• whenever qw 1 , qw 2 ∈ x, then w 1 = w 2 ,

• whenever r ∈ x, then for all c such that rc ∈ Q, there exists w such that rcw ∈ x.

The second condition is the crucial one: it tells that queries are answered uniquely in a strategy. The other conditions are there for technical convenience.

Here is a syntax for the strategies of a sds:

rc ∈ Q c⊥ : strat(rc) rc ∈ Q c⊤ : strat(rc) rc 0 v 0 ∈ R x c : strat(rc 0 v 0 c) (rc 0 v 0 c ∈ Q) c 0 v 0 {x c | rc 0 v 0 c ∈ Q} : strat(rc 0) x c : strat(c) (c ∈ Q) {x c | c ∈ Q} : strat A strategy is a set x = {x c | c ∈ Q} : strat.
The strategy-as-set-of-responses associated to a strategy-as-term is defined as {r | r ∈ x}, where r ∈ x is defined by the following rules:

c⊥ ∈ c⊥ c⊤ ∈ c⊤ r 1 ∈ x c 1 c 0 v 0 r 1 ∈ c 0 v 0 {x c | rc 0 v 0 c ∈ Q} c 0 v 0 ∈ c 0 v 0 {x c | rc 0 v 0 c ∈ Q} r ∈ x c r ∈ {x c | c ∈ Q}
This defines an injection, whose image is easily seen to be the set of strategies x that do not have any infinite branch, in the sense that there is no sequence

c 1 v 1 c 2 v 2 . . . c n v n . . .
whose even prefixes all belong to x. We shall call such strategies finitary.

We denote the set of strategies by D ⊤ (S), and we use D(S) for the set of strategies obtained by removing the rule introducing c⊤. We write:

• q ∈ A(x) if q⊥ ∈ x, • q ∈ F (x) if qv ∈ x for some v ∈ V or if q⊤ ∈ x, and
• x < q y when q ∈ A(x) and q ∈ F (y).

If q 1 = r 1 c 1 , . . . , q n = r n c n ∈ A(x), we denote by x[q 1 ← x 1 , . . . , q n ← x n] the strategy obtained by replacing c i ⊥ by x i : strat(q i), for all i, in x. We shall abbreviate q = rc ← c⊥ as q ← ⊥, and similarly with ⊤. We shall use the convention that writing x = x[q 0 ← ⊥, . . . , q n ← ⊥] means that A(x) = {q 0 , . . . , q n }.

Definition 2.3

We define four orders ≤ s (stable), ≤ c (costable) , ≤ (bistable), and ⊑ (pointwise) as the congruence closures of, respectively:

for ≤ s : rc ∈ Q x ∈ strat(rc) c⊥ ≤ s x for ≤ c : x ∈ strat(rc)
x ≤ c c⊤ for ≤:

rc ∈ Q c⊥ ≤ c⊤ for ⊑: rc ∈ Q x ∈ strat(rc) c⊥ ⊑ x rc ∈ Q x ∈ strat(rc)
x ⊑ c⊤

By congruence closure, we mean, say for ⊑, the following rules:

rc 0 v 0 ∈ R x c ⊑ y c (rc 0 v 0 c ∈ Q) c 0 v 0 {x c | rc 0 v 0 c ∈ Q} ⊑ c 0 v 0 {y c | rc 0 v 0 c ∈ Q} x c ⊑ y c (c ∈ Q) {x c | c ∈ Q} ⊑ {y c | c ∈ Q}
In words, replacing a ⊥ by a (correctly typed) tree results in a stable increase, while removing a subtree and replacing it by ⊤ results in a costable increase. The bistable order is the intersection of the stable and the costable order: an increase in this order consists only in changing ⊥'s to ⊤'s. The bistable order turns out to play a crucial role in the axiomatization (see section 3). The pointwise order is the order generated by the union of the stable and the costable orders.

Streicher has remarked that ⊑ and ≤ make an sds a bistable biorder. This is an easy check left to the reader (after reading of section 3). Here, we extend this to a full and faithful embedding of the category of sds's and sequential algorithms into the category of bistable and ⊑-monotonous maps. Therefore, we now move on to define the relevant categories [START_REF] Amadio | Domains and Lambda-calculi[END_REF][START_REF] Laird | Bistability: an extensional characterization of sequentiality[END_REF]. Definition 2.4 Given sets A, B ⊆ A, for any word w ∈ A * , we define w⌈ B as follows:

ǫ⌈ B = ǫ (wm)⌈ B = w⌈ B if m ∈ A\B (w⌈ B)m if m ∈ B .
Definition 2.5 Given two sds's S = (C, V, P) and S ′ = (C ′ , V ′ , P ′), we define S ⊸ S ′ = (C ′′ , V ′′ , P ′′) as follows. The sets C ′′ and V ′′ are disjoint unions:

C ′′ = C ′ ∪ V V ′′ = V ′ ∪ C .
P ′′ consists of the alternating positions s starting with a c ′ , and which are such that: s⌈ S ′ ∈ P ′ , (s⌈ S = ǫ or s⌈ S ∈ P), and s has no prefix of the form scc ′ .

The strategies of S ⊸ S ′ are called observably affine sequential algorithms from S to S ′ .

A typical response of S ⊸ S ′ is thus of the form

c ′ c 1 v 1 . . . c n v n v ′ ,
and reads as follows: the initial query c ′ of the output prompts a query c 1 to the input. If the answer to this query is v 1 , then the strategy wants to further explore the input and asks the query c 1 v 1 c 2 , and so on, until enough of the input is known to answer the query c ′ .

We next move on to define observably sequential algorithms (not necessarily affine). Our model follows linear logic's decomposition S → S ′ = (!S) ⊸ S ′ [START_REF] Girard | Linear logic[END_REF]. The decomposition for sequential algorithms on sequential data structures was discovered by Lamarche [START_REF] Lamarche | Sequentiality, games and linear logic[END_REF][START_REF] Curien | On the symmetry of sequentiality[END_REF]. Definition 2.6 (exponential -sds) Let S = (C, V, P) be a sds. The following recursive clauses define a set P ! of alternating words over Q ∪ R = P :

(r = ǫ or r ∈ P !) q ∈ A(state(r)) rq ∈ P ! q ∈ P ! and state(qr) ∈ D(S) qr ∈ P !
where state is the following function mapping responses (or ǫ) of P ! to strategies of M:

state(ǫ) = {c⊥ | c initial} q = r 1 c 1 r = qv 1 state(rqr) = state(r)[q ← c 1 v 1 {c⊥ | rc ∈ Q}] The sds (Q, R, P !) is called !S.
The above definition looks technical, but it just amounts to say that the cells and values of !S are the queries and the responses of S, and that the queries and responses of !S are sequences obtained from some tree traversal of the strategies of S. This is in spirit similar to the coherence space semantics of linear logic [START_REF] Girard | Linear logic[END_REF]. Definition 2.7 Given two sds's S and S ′ , the strategies of !S ⊸ S ′ are called observably sequential algorithms from S to S ′ .

Despite their appearance, observably sequential algorithms are (in bijection with) functions: this key insight did not wait for Laird's work, and was indeed one of the contributions of Cartwright and Felleisen [START_REF] Cartwright | Observable sequentiality and full abstraction[END_REF][START_REF] Cartwright | Fully abstract semantics for observably sequential languages[END_REF][START_REF] Amadio | Domains and Lambda-calculi[END_REF] to the older work of Berry and Curien on sequential algorithms on concrete data structures [START_REF] Berry | Sequential algorithms on concrete data structures[END_REF]. Definition 2.8 Let f be an observably sequential algorithm from S to S ′ and x an observable strategy of S. We define f • x (also written f (x)) as the normal form of f | | x for the following rewriting system, which is easily seen to be confluent (no critical pairs) and terminating on finitary strategies.

c ′ v ′ {x ′′ i | i ∈ I} | | x → c ′ v ′ { x ′′ i | | x | i ∈ I} c ′ ⊥ | | x → c ′ ⊥ c ′ ⊤ | | x → c ′ ⊤ c ′ q{x ′′ r | r ′′ c ′ qr ∈ Q ′′ } | | x → c ′ ?(x ′′ r 0 | | x) (r 0 ∈ x) (in strat(r ′′ c ′)) c ′ q{x ′′ r | r ′′ c ′ qr ∈ Q ′′ } | | x → c ′ ⊥ (q⊥ ∈ x) (in strat(r ′′ c ′)) c ′ q{x ′′ r | r ′′ c ′ qr ∈ Q ′′ } | | x → c ′ ⊤ (q⊤ ∈ x) (in strat(r ′′ c ′)) r 0 q{x ′′ r | r ′′ r 0 qr ∈ Q ′′ } | | x → x ′′ r 1 | | x (r 1 ∈ x) (in strat(r ′′ r 0)) ?(r 0 q{x ′′ r | r ′′ r 0 qr ∈ Q ′′ } | | x) → ⊥ (q⊥ ∈ x) (in strat(r ′′ r 0)) ?(r 0 q{x ′′ r | r ′′ r 0 qr ∈ Q ′′ } | | x) → ⊤ (q⊤ ∈ x) (in strat(r ′′ r 0)) ?(rv ′ {x ′′ i | i ∈ I} | | x) → v ′ { x ′′ i | | x | i ∈ I} ?(r⊥ | | x) → ⊥ ?(r⊤ | | x) → ⊤ For example, if c ′ c 1 v 1 . . . c n v n v ′ c ′ 1 c v v ′ 1 ∈ f and c 1 v 1 . . . c n v n c v ∈ x, then c ′ v ′ c ′ 1 v ′ 1 ∈ f • x.
(The reader should have in mind here that potentially f (resp. x) branches after c 1 , . . . , c n , c (resp. after v 1 , . . . , v n), and that the strategies's choices determine alternately which branch to choose.) Definition 2.9 Let S and S ′ be two sds's. A ≤ s -monotonous function f : D ⊤ (S) → D ⊤ (S ′) is called sequential at x if for any q ′ ∈ A(f (x)) one of the following properties hold:

1. ∀ y ≥ s x q ′ ∈ F (f (y)).

∃ q

∈ A(x) ∀ y > x (f (x) < c ′ f (y) ⇒ x < c y).
A query q satisfying condition (2) is called a sequentiality index of f at (x, q ′). The index is called strict if (1) does not hold. If (1) holds, then any q in A(x) is a (vacuous) sequentiality index.

If q is a sequentiality index at (x, q ′) and if moreover q ′ ⊤ ∈ f (x[q ← ⊤]), then we say that f is observably sequential at x, q ′ , with index q (note then that the index is strict and that there can be no other sequentiality index).

The function f is called sequential (resp. observably sequential) from S to S ′ if it is sequential (resp. observably sequential) at all points.

With the notation introduced above and using the ≤ s monotonicity, we can rephrase the definition more symmetrically as follows, at x = x[q 1 ← ⊥, . . . , q n ← ⊥]:

∀x 1 , . . . , x i-1 , x i+1 , . . . , x n q ′ ⊥ ∈ x[q 1 ← x 1 , . . . q i-1 ← x i-1 , q i ← ⊥, q i+1 ← x i+1 , . . . , q n ← x n] ∀x 1 , . . . , x i-1 , x i+1 , . . . , x n q ′ ⊤ ∈ x[q 1 ← x 1 , . . . q i-1 ← x i-1 , q i ← ⊤, q i+1 ← x i+1 , . . . , q n ← x n]
Or, alternatively, using instead the ⊑-monotonicity (which is established below), we get the following quantifier-free definition:

q ′ ⊥ ∈ x[q 1 ← ⊤, . . . q i-1 ← ⊤, q i ← ⊥, q i+1 ← ⊤, . . . , q n ← ⊤] q ′ ⊤ ∈ x[q 1 ← ⊥, . . . q i-1 ← ⊥, q i ← ⊤, q i+1 ← ⊥, . . . , q n ← ⊥]
Theorem 2.10 Observably sequential algorithms and observably sequential functions are in one-to-one correspondence, and under the bijection, the pointwise (resp. the stable) (resp. the bistable) ordering defined above indeed becomes the pointwise ordering (resp. Berry's stable ordering [START_REF] Berry | Stable models of typed lambda-calculi[END_REF]) (resp. Laird's bistable ordering [START_REF] Laird | Bistability: an extensional characterization of sequentiality[END_REF]):

f ⊑ g ⇔ (∀ x f • x ⊑ g • x) f ≤ s g ⇔ (f ⊑ g and (∀ x, y (x ≤ s y ⇒ f (x) = f (y) ∧ s g(x)))) f ≤ g ⇔ (f ⊑ g and (∀ x, y (x ≤ y ⇒ f (x) = f (y) ∧ g(x)
) and g(y) = f (y) ∨ g(x)))

(the notation ∧ s denotes the greatest lower bound with respect to the stable ordering).

Proof. Except for the last equivalence, the theorem is proved in [START_REF] Cartwright | Fully abstract semantics for observably sequential languages[END_REF]. We check here only that if f, g are observably sequential, f ≤ g, and x ≤ y, then g(y) = g(x) ∨ f (y). Suppose that g(y) > g(x) ∨ f (y). Let q ′ filled in g(y) and accessible from g(x) ∨ f (y). It follows that q ′ is accessible from g(x) and from f (y). The only way for g to make the difference w.r.t. f on input y is to use one of its additional ⊤'s, say, q ′ ⊤, in the interaction with y. More precisely, one of the ⊤'s of g is responsible for the filling of q ′ . But the interaction of g with y is the same as with x. Hence q ′ must be filled in g(x), contrarily to our assumption.

As an illustration of what is going on, suppose that f 1 , f 2 : S → S ′ are ≤ s -minimal observably sequential algorithms such that

c ′ c 1 (c 1 v 1) c 2 (c 2 v 2) c ∈ f 1 c ′ c 2 (c 2 v 2) c 1 (c 1 v 1) c ∈ f 2
It looks like f 1 and f 2 define the same function (and indeed they do define the same function from D(S) to D(S ′)), but on x = {c 1 ⊥, c 2 ⊤} we have:

f 1 • x = {c ′ ⊥} f 2 • x = {c ′ ⊤}
Here, both ⊥ and ⊤ act very much like colors used in chemical experiments: they track the presence of a proper value in c 1 and c 2 , respectively. The special values ⊥ and ⊤ play entirely symmetric role as long as no infinite computations take place.

If we allow general, non finitary strategies, the abstract machine of definition 2.8 may well diverge (i.e. not terminate). Following Scott-Ershov's tradition, a non-terminnating computation receives ⊥ as value, and then ⊥ and ⊤ cease to be symmetrical, since ⊥ has become overloaded: it is both a symbol for non-termination, and an explicit symbol for a special error value that could be called "stop by lack of information". The other error value ⊤ could be called "deliberate stop" (see [START_REF] Curien | Symmetry and interactivity in programming[END_REF][START_REF] Girard | Locus Solum[END_REF][START_REF] Curien | Introduction to Linerar logic and ludics, parts I and II[END_REF]).

Bistable biorders

So far, so good: we have a charaterization of our notion of functions-as-algorithms as functions-as-relations. But still, the definition of sequential function (originally due to Kahn and Plotkin [START_REF] Kahn | Concrete domains[END_REF]) requires a rather concrete, "algorithmic" definition of domain (here, sequential data structures). We can get rid of this too, using Laird's notion of bistability, which can be defined more abstractly. In this section, we recall Laird's definitions [START_REF] Laird | Bistability: an extensional characterization of sequentiality[END_REF]. Definition 3.1 A bistable biorder is a set (D, ≤, ⊑) equipped with two partial orders, such that whenever x, y have a lower or an upper bound for ≤ then x ∨ y and x ∧ y exist (for ≤), and then x ∨ y = x ⊔ y and x ∧ y = x ⊓ y, i.e. the two orders coincide for ≤-connected components. Moreover ∧ and ∨ distribute over each other in each component. One writes x y when x, y have a ≤-upper bound (or equivalently a ≤-lower bound). A bistable function is a ≤-monotonous function such that for any x y:

f (x ∧ y) = f (x) ∧ f (y) f (x ∨ y) = f (x) ∨ f (y)
(we refer to the two halves of this property as ∧-bistability and ∨-bistability, rexpectively).

We observe (for the reader with some linear logic culture) that the preservation of ∨ in the above definition is not a requirement of linearity, as it is taken with respect to ≤, not ≤ s .

In [START_REF] Laird | Bistability: an extensional characterization of sequentiality[END_REF] the following theorem is proved:

Proposition 3.2
The category of bistable biorders and bistable and ⊑-monotonous functions is cartesian closed.

Full embedding

From now on, for simplicity, we limit ourselves to finite strategies.. Clearly, the finite strategies are the finitary strategies x with finite branching, i.e. such that

∀ r ∈ x {rc | rc ∈ Q} is finite .
Of course, if the sds is finite, i.e. has only finitely many cells, values, and positions, then all strategies are finite.

In this section, we show that the category of observably sequential algorithms embeds fully in Laird's category of bistable biorders and bistable and ⊑-monotonous functions. This amounts to the following proposition: Theorem 4.1 Given two sds's S and S', a function f : D ⊤ (S) to D ⊤ (S ′) is observably sequential if and only if it is bistable and ⊑-monotonous.

Proof. The proof of (f ⊑-monotonous and bistable ⇒ f sequential) follows the steps of (and generalizes) Laird's proof of this property at x = ⊥ [START_REF] Laird | Bistability: an extensional characterization of sequentiality[END_REF]. Suppose that q ′ is accessible from f (x) (with x = x[q 0 ← ⊥, . . . , q n ← ⊥]), and suppose moreover that none of the q i 's is a sequentiality index. Then by ⊑ monotonicity we have that q ′ is filled in all of the f (x[q 0 ← ⊤, . . . , q i-1 ← ⊤, q i ← ⊥, q i+1 ← ⊤, . . . , q n ← ⊤]). By ≤-monotonicity it is also filled in f (x[q 0 ← ⊤, . . . , q n ← ⊤]), and hence it is filled with the same value in all of the f (x[q 0 ← ⊤, . . . , q i-1 ← ⊤, q i ← ⊥, q i+1 ← ⊤, . . . , q n ← ⊤]). Now, by ∧-bistability, it should also be filled in f (x) since x = i=1...n

x[q 0 ← ⊤, , . . . , q i-1 ← ⊤, q i ← ⊥, q i+1 ← ⊤, . . . , q n ← ⊤] .

We show that if f is ⊑-monotonous and bistable, then it is observably sequential. That is, we have to show that if f has, say, q 0 as sequentiality index at (x, q ′), then q ′ ⊤ ∈ f (x[q 0 ← ⊤]). Suppose not. Then, if y is such that x ≤ s y and q ′ is filled in f (y), we have y ⊑ y[q 0 ← ⊤] and x[q 0 ← ⊤] ≤ y[q 0 ← ⊤]. Since by pointwise monotonicity q ′ is filled in f (y[q 0 ← ⊤]), there exists a sequentiality index q 1 for f at (x[q 0 ← ⊤], q ′). Continuing in this way, we would exhaust all the ⊥'s of x. So we get that q ′ is filled in, say, f (x[q 0 ← ⊤, q 1 ← ⊤, . . . , q n ← ⊤]), and hence by ∨-bistability in one of the f (x[q i ← ⊤]). But it cannot be an i > 0 since q 0 is a sequentiality index at x, hence it is i = 0, which contradicts the assumption.

Conversely, if f observably sequential, we first show that f is ⊑-monotonous. It is enough to check that if x ≤ c y then f (x) ≤ c f (y). To show this -actually, the natural thing to show is that more generally if f ≤ c g and x ≤ c y then f (x) ≤ c f (y) -, we extend the definition of ≤ c by congruence to all the terms involved in the rewriting system of Definition 2.8. It is straightforward to show, for each of the rules of the rewriting system, that if t ≤ c t ′ and t ′ → t ′ 1 then there exists t 1 such that t → t 1 . Informally, the only difference of behaviour is that g | | y might terminate before f | | x , because of a new ⊤ in g or y. Notice that this argument is the same as the one used in the separation theorem of ludics (and, by the way, Girard's designs also form a bistable biorder) [START_REF] Girard | Locus Solum[END_REF][START_REF] Curien | Introduction to Linerar logic and ludics, parts I and II[END_REF].

Finally, we show that if f is observably sequential then it is bistable. One proves that f is ≤-monotonous much in the same way as for ⊑-monotonicity. The argument for ∧bistability is standard. One proves actually the preservation of all ≤ s compatible binary ≤ s glb's. Suppose that x, y ≤ s z and f (x ∧ s y) < s f (x) ∧ s f (y). Let q ′ be accessible from f (x ∧ s y) and filled in f (x) and f (y). Let q be a sequentiality index at x ∧ s y, c ′ . Then by sequentiality q is filled in both x and y, and with the same value since x, y have a ≤ s upper bound. But then q is also filled in x ∧ s y, contrarily to the assumption. This shows a fortiori ∧-bistability since x y implies a fortiori that x, y have a ≤ s -upper bound, and that x ∧ y = x ∧ s y.

As for ∨-bistability, suppose that f (x) ∨ f (y) < f (x ∨ y). Let q ′ be accessible from f (x) ∨ f (y) and filled in f (x ∨ y). Then q ′ must be already accessible from f (x ∧ y), as the order ≤ does not add new queries. Let q be the sequentiality index for q ′ at x ∧ y. Then we have that q is filled in x ∨ y by sequentiality, i.e. it is filled in either x or y, say, in x. By definition of ≤, since q is accessible from x ∧ y, q must be filled with ⊤ in x. But then q ′ is filled with ⊤ in f (x) (and a fortiori in f (x ∨ y)), by observable sequentiality: contradiction. Proof. This is an easy corollary of theorem 4.1, proposition 3.2, and theorem 2.10. Indeed, all we have to check for a full subcategory of a cartesian closed category to be itself cartesian-closed is that the (product and) function space construction of the larger category, when applied to objects of the smaller, yields an object of the smaller. Laird's function space D(S) → D(S ′) is the set of bistable and ⊑-monotonous functions, equipped with the pointwise and bistable orderings, which is isomorphic to D(S → S ′).

A direct proof of proposition 4.2 is given in [START_REF] Cartwright | Fully abstract semantics for observably sequential languages[END_REF], but it is more complicated than the proof of proposition 3.2.

We end the section by briefly sketching what adjustments have to be made to remove the finiteness restriction (both in this section and in the following one). This is rather standard domain theory: bistable biorders have to be directed complete, and bistable functions have to be Scott-continuous. We refer to [START_REF] Laird | Bistability: an extensional characterization of sequentiality[END_REF] for the relevant definitions. With a little care, all our arguments go through, making use of the continuity assumption. For example, to prove observable sequentiality, we used the finiteness assumption when writing this paper for the definition, which takes as primitive an operation of involution which in terms of sds's consists in exchanging ⊥' with ⊤'). In fact, as Laird shows by means of elegant abstract decompositions, every locally boolean domain is isomorphic to a sds, so that we end up with an equivalence (actually two equivalences) of categories.

Proposition 5.3 The categories of sds's and (observably) sequential algorithms and of locally boolean domains and ⊑-monotonous and bistable functions are equivalent. This equivalence cuts down to an equivalence between the respective subcategories of affine morphisms (Definitions 2.5 and 5.1).

Proof. Propositions 4.1 and 5.2 have established full embeddings. The equivalence of categories follows from the fullness on objects of the functors co-restricted to locally boolean domains.

Since both in [START_REF] Lamarche | Sequentiality, games and linear logic[END_REF][START_REF] Curien | On the symmetry of sequentiality[END_REF] and [START_REF] Laird | Locally boolean domains[END_REF] the comonads leading to models of (affine) linear logic are defined as adjoint to the inclusion functor, the two linear decompositions are the same up to isomorphism. In other words, Laird's work provides completely a traditional domain theory account of Berry-Cartwright-Curien-Felleisen-Lamarche's sequential algorithms model of (affine) linear logic.

Finally, we mention two properties which add to the ambiant symmetry: The proofs are not difficult and are in the same vein as the ones given above.

Conclusion

We should note that a restricted version of the full embedding was proved indirectly in Laird's paper [START_REF] Laird | Bistability: an extensional characterization of sequentiality[END_REF]: he proves that the bistable model is fully abstract for the language Λ ⊤ ⊥ (the simply typed λ-calculus with a single base type, and two constants ⊥ and ⊤ of base type). This calculus is essentially the same as Cartwright-Curien-Felleisen's language SPCF with respect to which the model of sequential algorithms is fully abstract [START_REF] Cartwright | Fully abstract semantics for observably sequential languages[END_REF]. Hence, by uniqueness up to isomorphism of fully abstract models, the two models are isomorphic on the simply typed hierarchy. Our result is more general and does not refer to (the interpretation of) types.

As for every correspondence result, there are mutual benefits in the equivalence that we have proved. The algorithmic side provides an operational explanation of the various orders. The abstract domain-theoretic side provides simpler proofs sometimes (for example, of cartesian closedness), and opens the way to extend the coverage of standard domain-theoretic tools for reasoning about sequential languages. Current work of Laird goes in that direction.

Proposition 4 . 2

 42 The category of sds's and observably sequential algorithms is cartesian closed.

Proposition 5.4 1 . 2 .

 12 Observably sequential functions are costable, i.e.: ∀x, y (∃z z ≤ c z and z ≤ c y) ⇒ f (x ∨ c y) = f (x) ∨ c f (y) Affine observably sequential functions are coaffine, i.e. : ∀x, y (∃z z ≤ c z and z ≤ c y) ⇒ f (x ∧ c y) = f (x) ∧ c f (y)

x = x[q 0 ← ⊥, . . . , q n ← ⊥], with n finite. If instead we have x = x[q 0 ← ⊥, . . . , q n ← ⊥, . . . ,] ,

then the proof of sequentiality goes through because by continuity the ∧-bistability extends to preservation of greatest lower bounds of arbitrary subsets of a -component. For the proof of observavle sequentiality, the finiteness of n was essential. But continuity saves us again: by continuity, we can take x, y finite, and we need only care about the q j 's which are filled in y, which are finitely many.

Affine decomposition

In this section, we prove that affine sequential algorithms can also be defined as observably sequential functions that are affine with respect to the stable order, and hence as affine bistable and ⊑-monotonous functions (provided this makes sense, see below). Definition 5.1 An affine function is a function that preserves stable upper bounds of stably compatible elements.

(The difference with linear functions, which may be more familiar to the linear logic oriented reader, is that preservation of ⊥ is not required.) Proposition 5.2 Affine sequential algorithms are in order-isomorphic correspondence with affine observably sequential functions.

Proof. Let f be a sequential algorithm which is not affine. It contains at least a query of the form r c ′ q 1 r 1 q 2 , where r 1 is not a prefix of q 2 . Let x be the input strategy read off along the path from the root up to q 2 . Formally, x = state(r), where r is the projection of r c ′ q 1 r 1 on the input sds. Let y = (x \ {r 1 }) ∪ {q 2 ⊤}. Let q ′ be the projection of rc ′ on the output sds. Then q ′ is filled neither in f (x) nor in f (y), but is filled (with ⊤) in f (x ∨ s y). Conversely, suppose that f is an affine sequential algorithm, and let q ′ w ′ ∈ f (x ∨ s y). Let s be the position of f visited along the normalisation against x ∨ s y towards q ′ w ′ (it is obtained by travelling in f from the root starting with the initial move of q ′ , and solving ambiguities using x ∨ s y and q ′ w ′ when going up after a player's move, cf. definition 2.8). Consider the last input response r on this position of f . Then r belongs to either x or y, say x. But all other responses along the path are prefixes of r, by the constraint of affinity, hence all belong to x. Therefore q ′ w ′ ∈ f (x) (or q ′ w ′ ∈ f (y)).

However, bistable biorders are too poor to express the stable ordering. In further work, Laird [START_REF] Laird | Locally boolean domains[END_REF] has defined the full subcategory of locally boolean domains in which not only the pointwise and bistable orders can be defined, but also the stable one [START_REF] Laird | Locally boolean domains[END_REF] (we refer to