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We provide an intrinsic definition of the fundamental group of a linear category over a ring as the automorphism group of the fibre functor on Galois coverings. If the universal covering exists, we prove that this group is isomorphic to the Galois group of the universal covering. The grading deduced from a Galois covering enables us to describe the canonical monomorphism from its automorphism group to the first Hochschild-Mitchell cohomology vector space.

Introduction

The purpose of this work is to provide a positive answer to the question of the existence of an intrinsic and canonical fundamental group π 1 associated to a kcategory B, where k is a commutative ring. The fundamental group we introduce takes into account the linear structure of the category B, it differs from the fundamental group of the underlying category obtained as the classifying space of its nerve ( [START_REF] Segal | Classifying spaces and spectral sequences[END_REF][START_REF] Quillen | Higher algebraic K-theory. I. Algebraic K-theory[END_REF][START_REF] Schwede | An exact sequence interpretation of the Lie bracket in Hochschild cohomology[END_REF]).

The fundamental group that we define is intrinsic in the sense that it does not depend on the presentation of the k-category by generators and relations. In case a universal covering exists, we obtain that the fundamental groups constructed by R. Martínez-Villa and J.A. de la Peña (see [START_REF] Martínez-Villa | The universal cover of a quiver with relations[END_REF], and [START_REF] Bongartz | Covering spaces in representation-theory[END_REF][START_REF] Gabriel | The universal cover of a representation-finite algebra[END_REF][START_REF] Assem | The fundamental groups of a triangular algebra[END_REF]) depending on a presentation of the category by a quiver and relations are in fact quotients of the intrinsic π 1 that we introduce. Note that those groups can vary according to different presentations of the same k-category (see for instance [START_REF] Assem | The fundamental groups of a triangular algebra[END_REF][START_REF] Bustamante | Fundamental groups and presentations of algebras[END_REF][START_REF] Le Meur | The fundamental group of a triangular algebra without double bypasses[END_REF]) while the group that we introduce is intrinsic, since we define it as the automorphisms of the fibre functor of the Galois coverings over a fixed object.

In fact if a universal covering U : U → B exists, the fundamental group that we define is isomorphic to the automorphism group AutU , and in this case changing the base object provides isomorphic intrinsic fundamental groups.

The methods we use are inspired in the topological case considered for instance in R. Douady and A. Douady's book [START_REF] Douady | Algèbre et théories galoisiennes[END_REF]. They are closely related to the way in which the fundamental group is considered in algebraic geometry after A. Grothendieck and C. Chevalley.

In algebraic topology a space has a universal cover if it is connected, locally path-connected and semi-locally simply connected. In other words, usually a space has a universal cover. By contrast, linear categories do not have in general universal coverings.

Our work is very much indebted to the pioneer work of P. Le Meur in his thesis [START_REF] Le Meur | Revêtements galoisiens et groupe fondamental d'algébres de dimension finie[END_REF], see also [START_REF] Le Meur | The universal cover of an algebra without double bypass[END_REF]. He has shown that under some hypotheses on the category, there exists an optimal fundamental group in the sense that all other "fundamental groups" deduced from different presentations are quotients of the optimal one. His method consists mainly in tracing all the possible presentations of a given category, and relating the diverse resulting "fundamental groups". As already quoted, we adopt a different point of view in this paper.

In Section 2 we recall the definition of a covering of a k-category and we prove properties about morphisms between coverings as initiated in [START_REF] Le Meur | The universal cover of an algebra without double bypass[END_REF][START_REF] Le Meur | Revêtements galoisiens et groupe fondamental d'algébres de dimension finie[END_REF]. In Section 3 we define Galois coverings and next we study some properties of this kind of coverings. The main results are Theorem 3.7, which describes the structure of Galois coverings and Theorem 3.10, which concerns morphisms between Galois coverings and the relation between the associated groups of automorphisms. We provide the definition of the universal covering in the category of Galois coverings of a fixed k-category B. In a forthcoming paper we will study the behaviour of Galois coverings through fibre products, as well as a criterion for a covering to be Galois or universal. Differences with the usual algebraic topology setting will also appear, since the fibre product of coverings of k-categories does not provide in general a covering through the projection functor.

In Section 4 we define the intrinsic fundamental group π 1 (B, b 0 ) and we prove some properties of this new object. If the universal covering exists, we prove that this group is isomorphic to the Galois group of the universal covering. In [START_REF] Cibils | Connected gradings and fundamental group[END_REF] we provide explicit computations of the intrinsic fundamental group of some algebras. In particular we compute the fundamental group of M p (k), where p is prime and k an algebraically closed field of characteristic zero, which is the direct product of the free group on p -1 generators with the cyclic group of order p. The fundamental group of triangular matrix algebras is the free group on n -1 generators. The fundamental group of the truncated polynomial algebra k[x]/(x p ) in characteristic p is the product of the infinite cyclic group and the cyclic group of order p. In case k is a field containing all roots of unity of order 2 and 3, we prove that π 1 (k 3 ) = C 2 × C 3 , while if k contains all roots of unity of order 3 and 4, we obtain that π

1 (k 4 ) = (C 2 * C 2 ) × C 6 × C 4 × C 2 .
In section 4 we also show that if the universal covering exists the fibre functor induces an equivalence between the category of Galois coverings of B and the subcategory of π 1 (B, b 0 )-Sets whose objects are sets with a transitive action of the group π 1 (B, b 0 ) such that the isotropy group of an element is invariant.

In the last section we suppose that k is a field and that the endomorphism algebra of each object of the k-category is reduced to k. We recover in a simple way the canonical k-linear embedding (see [START_REF] Assem | The fundamental groups of a triangular algebra[END_REF][START_REF] De La Peña | On the first Hochschild cohomology group of an algebra[END_REF][START_REF] Cibils | Cartan-Leray spectral sequence for Galois coverings of categories[END_REF]) of the abelian characters of the automorphism group of a Galois covering to the first Hochschild-Mitchell cohomology vector space of the category. As an immediate consequence, if there exists a Galois covering whose group is isomorphic to the fundamental group, the abelian characters of the fundamental group embed into the cohomology of degree one. For this, we use our description of Galois coverings as well as the canonical grading of the k-category deduced from a Galois covering, as obtained in [START_REF] Cibils | Skew category, Galois covering and smash product of a k-category[END_REF]. In this way Euler derivations are considered, see also [START_REF] Farkas | Diagonalizable derivations of finite-dimensional algebras[END_REF][START_REF] Farkas | Diagonalizable derivations of finitedimensional algebras[END_REF].

Note that it will be interesting to explore the behaviour of the intrinsic fundamental group with respect at least to Morita equivalences of k-categories. As expected the fundamental group is an invariant of the equivalence class of a kcategory but not of its Morita class. Of course in case the category admits a unique basic representative in its Morita class, the fundamental group attached to this category can be considered as the canonical fundamental group of the Morita equivalence class.

k-categories, stars and coverings

Let k be a commutative ring. A k-category is a small category B such that each morphism set y B x from an object x ∈ B 0 to an object y ∈ B 0 is a k-module, the composition of morphisms is k-bilinear and k-multiples of the identity at each object are central in the endomorphism ring of the object. Note that such k-categories are also called linear categories over k. In particular each endomorphism set of an object is a k-algebra, and y B x is a y B yx B x -bimodule.

Each k-algebra A provides a single object k-category B A with endomorphism ring A. The structure of A can be described more precisely by choosing a finite set E of orthogonal idempotents of A, such that e∈A e = 1 in the following way: the k-category B A,E has set of objects E and morphisms from e to f the k-module f Ae. Note that B A,{1} = B A . This approach is meaningful since clearly the category of left A-modules is isomorphic to the category of k-functors from B A,E to the category of k-modules, where a k-functor is a functor which is k-linear when restricted to morphisms. 

St b0 B =   y∈B0 y B b0   ⊕   y∈B0 b0 B y   .
Note that this k-module counts twice the endomorphism algebra at b 0 . 

∈ B 0 , the restriction of F to y∈F -1 (b1) y C x , for all x ∈ F -1 (b 0 ) is k-isomorphic to the corresponding k-module b1 B b0 .
The same holds with respect to the target star and morphisms starting at all objects in a single fibre.

Remark 2.4. The previous facts show that Definition 2.2 coincides with the one given by K. Bongartz and P. Gabriel in [4].

To each small category A one may associate its linearization kA in the following way: objects of kA are the objects of A, while morphisms are free k-modules on the sets of morphisms of A. Such linearized k-categories admit by construction a multiplicative basis of morphisms, which is not usually the case, see for instance [START_REF] Bautista | Representation-finite algebras and multiplicative bases[END_REF]. Hence a k-category is not in general the linearization of a small category. Note that any usual covering F : C → B of categories provides by linearization a covering kF : kC → kB.

Example 2.5. [START_REF] Le Meur | The universal cover of an algebra without double bypass[END_REF] Consider the following k-categories C and K obtained by linearization of the categories given by the corresponding diagrams (K is called the Kronecker category):

s 0 α0 y y s s s s s s β0 % % u u u u u u C : t 0 t 1 s 1 β1 e e u u u u u u α1 9 9 s s s s s s K : s α / / β / / t
and the three following coverings F 0 , F 1 and F 2 : C -→ K given by

F i (s 0 ) = F i (s 1 ) = s, F i (t 0 ) = F i (t 1 ) = t, F i (β 0 ) = F i (β 1 ) = β, for i = 0, 1, 2 while • F 0 (α 0 ) = F 0 (α 1 ) = α • F 1 (α 0 ) = F 1 (α 1 ) = α + β • F 2 (α 0 ) = α + β, F 2 (α 1 ) = α
Note that F 0 is the linearization of a covering of small categories, and F 1 is F 0 followed by an automorphism of K. We will observe that F 0 and F 1 are in fact Galois coverings (see Definition 3.1), while F 2 is not.

Definition 2.6. A morphism from a covering F : C → B to a covering G : D → B is a pair of k-linear functors (H, J) where H : C → D, J : B → B are such that J is an isomorphism, J is the identity on objects and GH = JF . The category of coverings of B is denoted Cov(B).

Our next purpose is to show that the automorphism group of a connected covering acts freely on each fibre. Definition 2.7. A k-category B is connected if any two objects b and c of B can be linked by a finite walk made of non zero morphisms, more precisely there exist a finite sequence of objects x 1 , . . . , x n and non zero morphisms ϕ 1 , . . . , ϕ n such that x 1 = b, x n = c, where

ϕ i belongs either to xi+1 B xi or to xi B xi+1 . Proposition 2.8. Let F : C -→ B be a covering of k-categories. If C is connected, then B is connected.
Proof. Let b and c be objects in B 0 , and let x 0 and y 0 be two objects respectively chosen in their fibres. Consider a walk of non zero morphisms connecting x 0 and y 0 in C. Since F induces k-isomorphisms at each star, the image by F of a non zero morphism is a non zero morphism in B. Proposition 2.9. [START_REF] Le Meur | The universal cover of an algebra without double bypass[END_REF] Let F : C -→ B and G : D -→ B be coverings of k-linear categories. Assume C is connected. Two morphisms (H 1 , J), (H 2 , J) from F to G such that H 1 and H 2 coincide on some object are equal.

Proof. Let (H, J) be a morphism of coverings, let x 0 be an object of C and consider the map between stars induced by H:

H x0 H(x0) : St x0 C -→ St H(x0) D.
Observe that GH(x 0 ) = JF (x 0 ). There is a commutative diagram

St x0 C H x 0 H(x 0 ) / / F x 0 F (x 0 ) St H(x0) D G H(x 0 ) G(H(x 0 )) St F (x0) B J F (x 0 ) J(F (x 0 )) / / St JF (x0) B
where the morphisms

F x0 F (x0) , J F (x0) J(F (x0)) and G H(x0) G(H(x0)) are k-isomorphisms.
Consequently H is an isomorphism at each star level, determined by F , J and G. In case H 1 and H 2 are morphisms such that 

H 1 (x 0 ) = H 2 (x 0 ), the k-linear maps St x0 C -→ St H1(x0) D = St H2(x0) D induced

Galois and universal coverings

We start this section with the definition of a Galois covering in order to study properties of this kind of coverings. The main results are the description of the structure of Galois coverings, and the relation between Galois coverings and the group of automorphisms. Finally we consider universal objects in the category of Galois coverings of a fixed k-category B.

Definition 3.1. A covering

F : C -→ B of k-categories is a Galois covering if C is connected and if Aut 1 F
acts transitively on some fibre. We denote Gal(B) the full subcategory of Cov(B) whose objects are the Galois coverings of B.

It is natural to expect that Aut 1 F should act transitively on each fibre whenever it acts transitively on a particular one. In order to prove this fact, we shall use a construction introduced in [START_REF] Gabriel | The universal cover of a representation-finite algebra[END_REF][START_REF] Bongartz | Covering spaces in representation-theory[END_REF], see also [START_REF] Cibils | Cartan-Leray spectral sequence for Galois coverings of categories[END_REF]. Definition 3.2. Let G be a group acting by k-isomorphisms on a k-category C, such that the action on the objects is free, meaning that if sx = x for some object, then s = 1. The set of objects of the categorical quotient C/G is the set of G-orbits of C 0 . The k-module of morphisms from an orbit α to an orbit β is

β (C/G) α =   x∈α, y∈β y C x   /G
where for a kG-module X we denote X/G the k-module of coinvariants X/(kerǫ)X, which is the quotient of X by the augmentation ideal, where ǫ : kG → k is given by ǫ(s) = 1 for all s ∈ G.

Remark 3.3. The previous definition provides a k-category: the composition is well defined precisely because the action of G on the objects is free.

Proposition 3.4. Let G be a group acting by k-isomorphisms on a connected k-category C, and assume that the action on the objects is free. Then the projection functor P : C -→ C/G is a Galois covering with Aut 1 (P ) = G.

Proof. The projection functor is a covering since it is surjective on objects. For each choice of an object x 0 ∈ α and y 0 ∈ β we clearly have k-isomorphisms

y∈β y C x0 → β (C/G) α and x∈α y0 C x → β (C/G) α
which can be assembled in order to provide the required isomorphism of stars.

Observe that the fibres of P are the orbits sets by construction, therefore the action of Aut 1 P = G is transitive on each fibre. Consider now (H, 1) ∈ Aut 1 P and let x 0 ∈ C 0 . Since the action of G on C 0 is free, there exists a unique s ∈ G such that sx 0 = H(x 0 ). By definition, the element s provides an isomorphism of C such that P s = P . The isomorphisms (s, 1), (H, 1) of the connected covering P coincide on an object, consequently they are equal as isomorphisms of P by Proposition 2.9. Lemma 3.5. Let F : C -→ B be a connected covering of k-categories and suppose there exists a singleton fibre. Then every fibre is a singleton and F is an isomorphism of kcategories.

Proof. Let b ∈ B 0 be an object such that F -1 (b) = {x}. Since C is connected it is enough to show that for a non zero morphism in C with target or source x, the other extreme object y is such that F -1 (F (y)) = {y}. We denote c = F (y). Assume ϕ ∈ y C x is non-zero and let

y ′ ∈ F -1 (c), then ϕ ∈ St x C and F (ϕ) ∈ St b B. Moreover, F (ϕ) belongs to St c B. Since F induces an isomorphism F y ′ c : St y ′ C -→ St c B, there is a unique k-linear combination z y ′ h z of morphisms from the fibre of b to y ′ such that F y ′ c ( z y ′ h z ) = F (ϕ)
. Now the fibre of b is reduced to x, which means that there is a non-zero morphism ψ ∈ y ′ C x such that F ψ = F ϕ. Note that ψ also belongs to St x C, and recall that F x b is an isomorphism between the corresponding stars. Hence ϕ = ψ and in particular their ending objects are the same, namely y = y ′ . Finally since all the fibres are singletons, the star property of a covering implies immediately that F is an isomorphism.

We are now able to prove the following result. Proposition 3.6. Let F : C -→ B be a Galois covering. Then Aut 1 F acts transitively on each fibre.

Proof. First consider the categorical quotient P : C -→ C/Aut 1 F . There is a unique functor F ′ : C/Aut 1 F -→ B such that F ′ P = F , defined as follows: let α be an object of C/Aut 1 F , that is, an orbit of C 0 under the action of Aut 1 F . Choose an object x ∈ α and define F ′ α = F x. Clearly F ′ is well defined on objects. In order to define F ′ on morphisms, let α and β be objects in C/Aut 1 F , and recall that

β (C/Aut 1 F ) α =   x∈α, y∈β y C x   /Aut 1 F.
Next observe that the morphism

F : x∈α, y∈β y C x → F ′ (β) B F ′ (α)
is sucht that F (sϕ) = F (ϕ) for any ϕ ∈ x∈α, y∈β y C x and any s ∈ Aut 1 F . Finally the commutative triangle of morphisms between corresponding stars shows that F ′ is indeed a covering. Since F is a Galois covering, there exists a fibre where the action of Aut 1 F is transitive, which means that the corresponding fibre of F ′ is a singleton. Since F is a Galois covering, C is connected as well as C/Aut 1 F by Proposition 2.8. The preceding Lemma asserts that all the fibres of F ′ are singletons, which exactly means that the action of Aut 1 F is transitive on each fibre of F .

As a consequence we obtain the following description of Galois coverings.

Theorem 3.7. Let F : C -→ B be a Galois covering. Then there exists a unique isomorphism of categories F ′ : C/Aut 1 F -→ B such that F ′ P = F , where P : C -→ C/Aut 1 F is the Galois covering given by the categorical quotient.

Proof. The proof of the preceding results provides the covering F ′ , which has a singleton fibre. Then all the fibres of F ′ are singletons and F ′ is an isomorphism.

Example 3.8. [START_REF] Le Meur | The universal cover of an algebra without double bypass[END_REF][START_REF] Le Meur | Revêtements galoisiens et groupe fondamental d'algébres de dimension finie[END_REF] An easy computation shows that Aut 1 (F 2 ) is trivial for the covering F 2 in Example 2.5. However each fibre has two objects, hence the action of the trivial group is not transitive on the fibres, consequently F 2 is not Galois. Observe that F 0 and F 1 are Galois coverings.

Next we recall a result of Patrick Le Meur concerning factorizations of Galois coverings. Lemma 3.9. Let F : C -→ B and G : D -→ B be Galois coverings, and let (H, J) be a morphism from F to G. Then H is surjective on objects.

Proof. Let H(c) = d ∈ D 0 be an object which is in the image of H. First we prove that any object d ′ linked to d by a non-zero morphism is also in the image of H. Let for instance 0 = f ∈ d ′ D d . Note that GH is a covering since JF = GH. Considering G(f ), there exists a finite set of morphisms (f i ) starting at c and ending at objects

x i such that GH( f i ) = G(f ), hence G( H(f i )) = G(f ). Note that H(f i ) is a morphism from d to H(x i ).
Since G is a covering and f is a morphism starting at d, we infer f = H(f i ). This implies that all the H(x i ) coincide with d ′ , hence d ′ is in the image of H.

Finally, using that D is connected we conclude that any object of D is in the image of H. Theorem 3.10. [START_REF] Le Meur | The universal cover of an algebra without double bypass[END_REF][START_REF] Le Meur | Revêtements galoisiens et groupe fondamental d'algébres de dimension finie[END_REF] Let F : C -→ B and G : D -→ B be Galois coverings, and let (H, J) be a morphism from F to G. Then there is a unique surjective group morphism Λ : Aut 1 F → Aut 1 G with Λ(f, 1) = (λ(f ), 1) such that λ(f )H = Hf for each (f, 1) ∈ Aut 1 F . Moreover kerΛ = Aut 1 H and H is a Galois covering.

Proof. Given J, we assert that the set of morphisms (H ′ , J) from F to G is in one-to-one correspondence with Aut 1 G through the map which assigns (gH, J) to each g ∈ Aut 1 G. Firstly each (gH, J) is a morphism from F to G. Secondly if (H ′ , J) is such a morphism, given an object c 0 of C, both H ′ (c 0 ) and H(c 0 ) are in the same G-fibre. Since the action of Aut 1 G is free and transitive on the fibres, there exists a unique g ∈ Aut 1 G such that gH(c 0 ) = H ′ (c 0 ). Consequently (H ′ , J) and (gH, J) are equal by Proposition 2.9.

Then for each (f, 1) ∈ Aut 1 F there exists a unique element Λ(f, 1) ∈ Aut 1 G such that λ(f )H = Hf . The uniqueness of Λ(f ) and the equalities

λ(f 1 f 2 )H = Hf 1 f 2 = λ(f 1 )Hf 2 = λ(f 1 )λ(f 2 )H imply that Λ is a group morphism.
Moreover Λ is surjective. Let (g, 1) ∈ Aut 1 G. Using the previous Lemma consider an object c in the H-fibre of gHc 0 . A simple computation shows that c and c 0 are in the same F -fibre. Since F is a Galois covering, there exists (f, 1) ∈ Aut 1 F such that f c 0 = c, then Hf c 0 = Hc = gHc 0 . Then Hf = gH and λ(f ) = g.

Note that (f, 1) ∈ kerΛ if and only if Hf = H which means precisely that (f, 1) ∈ Aut 1 H.

In order to prove that H is a Galois covering, we already know that H is surjective on objects. The functor H induces isomorphisms between stars since GH = JF , hence the same equality is valid at the stars level where F , J and G induce k-isomorphisms. This proves that H is a covering. In order to show that H is Galois, let x and x ′ be in the same H-fibre. They are also in the same Ffibre, hence there exists (f, 1) ∈ Aut 1 F such that f x = x ′ . We assert that in fact (f, 1) ∈ Aut 1 H: indeed, (Hf, J) and (H, J) are both morphisms from F to G with the same value on x, hence they are equal by Proposition 2.9.

Remark 3.11. Two isomorphic k-linear categories have isomorphic categories of Galois coverings.

Definition 3.12. A universal covering U : U → B is an object in Gal(B) such that for any Galois covering F : C → B, and for any u 0 ∈ U 0 , c 0 ∈ C 0 with U (u 0 ) = F (c 0 ), there exists a unique morphism (H, 1) U to F such that H(u 0 ) = c 0 .

In case of existence, a universal covering is unique up to isomorphisms of Galois coverings. In general universal coverings do not exist, as the following Example shows. It has been obtained by Geiss and de la Peña in [START_REF] Geiss | An interesting family of algebras[END_REF]: Example 3.13. Let k be a field and char(k) = 2. Consider the k-linear categories 

C 1 : x 0 α0 / / β0 & & x x x x x x x x x x x x x y 0 γ0 / / δ0 & & x x x x x x x x x x x x x z 0 x 1 α1 / / β1 8 
It is clear that C 1 is a Galois covering of B. Since char(k) = 2, if we set a = α + β, b = β, c = γ + δ, d = δ, we get that B satisfies the relations ca = 0, cb = da.
In this case, . . . . . .

x -1 b-1 / / a-1 y -1 / / c-1 z -1 C 2 : x 0 b0 / / a0 y 0 d0 / / c0 z 0 x 1 b1 / / y 1 d1 / / z 1 . . . . . .

9

with all commutativity relations and c i a i-1 = 0, is also a Galois covering of B. Now C 1 and C 2 admit no proper Galois covering since they are simply connected, see [START_REF] Martínez-Villa | The universal cover of a quiver with relations[END_REF][START_REF] Assem | On some classes of simply connected algebras[END_REF], and there is no morphism between them. Now we will study the Kronecker category K. Recall that this category is given by two objects s, t, one-dimensional morphism spaces s K s and t K t while dim k t K s = 2 and s K t = 0. Observe that for each choice of a vector basis of t K s , the category K is presented by the quiver

s α / / β / / t
We start with a description of all Galois coverings of the category K up to isomorphisms.

Let {a, b} be a of t K s . Let C {a,b} be the free k-category presented by the quiver . . . . . .

s 1 a1 / / @ @ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ t 1 s 0 a0 / / b0 ? ? ~t0 . . . @ @ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ . . .
and let F {a,b} : C {a,b} → K be given by

• F {a,b} (s i ) = s, • F {a,b} (t i ) = t, • F {a,b} (a i ) = a, • F {a,b} (b i ) = b.
Proposition 3.14. Let {a, b} be a fix chosen basis of t K s . Then any Galois covering of K is isomorphic to F {a,b} if it has infinite Galois group, and to a quotient of it otherwise.

Proof. It can be seen that any Galois covering of K is isomorphic to F {c,d} or a quotient of it, where {c, d} is a basis of t K s . Now F {c,d} ≃ F {a,b} with an isomorphism of type (1, J).

Note that the Kronecker category has no universal covering since the Definition of a universal covering only takes into account morphisms of type (H, 1).

Fundamental group

As quoted in the Introduction, our main purpose is to provide an intrinsic definition of the fundamental group π 1 of a k-category, where k is a commutative ring. Previous definitions, provided for instance by J. A. de la Peña and R. Martínez-Villa [START_REF] Martínez-Villa | The universal cover of a quiver with relations[END_REF], see also K. Bongartz and P. Gabriel [START_REF] Bongartz | Covering spaces in representation-theory[END_REF], depend on the presentation of the category as a quotient of a free k-category by an ideal generated by some set of minimal relations. Different presentations of the same k-category may provide different groups through this construction, see for instance [START_REF] Assem | The fundamental groups of a triangular algebra[END_REF][START_REF] Bustamante | Fundamental groups and presentations of algebras[END_REF][START_REF] Le Meur | The fundamental group of a triangular algebra without double bypasses[END_REF].

We will prove the following fact concerning the group π 1 that we will define: if the universal covering U exists, then the group Aut 1 U is isomorphic to π 1 ; in this case any group obtained through the presentation construction is a quotient of π 1 . Definition 4.1. Let B be a k-category, and let b 0 be a fixed object in B 0 . Consider Gal(B, b 0 ) the subcategory of GalB with the same objects and morphisms (H, J) with J(b 0 ) = b 0 . Let Φ : Gal(B, b 0 ) → Sets be the fibre functor which associates to each Galois covering F the F -fibre F -1 (b 0 ). We define

π 1 (B, b 0 ) = AutΦ. Remark 4.2. This fundamental group π 1 (B, b 0 ) is the group of natural isomorphisms σ : Φ → Φ.
In other words an element of the fundamental group is a family of invertible set maps σ F : F -1 (b 0 ) → F -1 (b 0 ) for each Galois covering F , which are compatible with morphisms of Galois coverings; namely for each morphism (H, J) :

F → G in Gal(B, b 0 ) the corresponding square F -1 (b 0 ) σF / / H F -1 (b 0 ) H G -1 (b 0 ) σG / / G -1 (b 0 ) is commutative.
In case the universal covering exists, our purpose is to prove that the fundamental group is isomorphic to its automorphism group. This is an action by the definition of composition of automorphisms of the fibre functor.

Let us first prove that the action is free. Assume σu = u. Let F be a Galois covering and let c be an object in F -1 (b 0 ). Consider the unique morphism (H, 1) from U to F such that Hu = c. Using Remark 4.2 we obtain σ F (c) = c.

In order to prove transitivity, let u and u ′ be objects in U -1 (b 0 ). We are going to define an automorphism σ of Φ such that σ U (u) = u ′ . Let F be a Galois covering and c some element in F -1 (b 0 ), and let (H, 1) be the unique morphism such that Hu = c. We define σ F (c) = H(u ′ ).

Proof. First we assert that the action of Aut 1 (U ) on Hom Gal1(B,b0) (U, F ) is transitive. Let X, X ′ ∈ Hom Gal1(B,b0) (U, F ), let t 0 ∈ U 0 and let t 1 ∈ U 0 such that X(t 0 ) = X ′ (t 1 ). Let g be the unique endomorphism of U such that g(t 1 ) = t 0 , which exists since U is universal. Moreover, g belongs to Aut 1 U with inverse given by the endomorphism g ′ sending t 1 to t 0 , and Xg = X ′ since they coincide on t 1 .

Observe that in general the action is not free since t 1 is not uniquely determined. Moreover this action has invariant isotropy group: let X ∈ Hom Gal1(B,b0) (U, F ) and g ∈ Aut 1 U such that Xg = X. For any h ∈ Aut 1 U , using Theorem 3.10, we have Xhgh

-1 = λ X (h)Xgh -1 = λ X (h)Xh -1 = Xhh -1 = X.
Next we prove that S is faithful. Let F and G be Galois coverings, and let H, H ′ ∈ Hom Gal1(B,b0) (F, G) such that S(H) = S(H ′ ), that is, HX = H ′ X for any X ∈ Hom Gal 1 (B,b0) (U, F ), a non-empty set. Then H and H ′ coincide on some object, and hence they are equal.

In order to prove that S is full, let f : Hom Gal1(B,b0) (U, F ) → Hom Gal1(B,b0) (U, G) be an Aut 1 U -morphism. We are looking for a morphism H ∈ Hom Gal1(B,b0) (F, G) such that S(H) = f , that is, f (X) = HX for any X ∈ Hom Gal1(B,b0) (U, F ). Given X let H be the unique morphism from F to G such that H(X(t 0 )) = f (X)(t 0 ). It is clear that f (X) = HX since they coincide on some object. For any other X ′ , we know that there exists g ∈ Aut 1 U such that Xg = X ′ . Then

f (X ′ )(t 0 ) = f (Xg)(t 0 ) = f (X)g(t 0 ) = f (X)(gt 0 ) = HX(gt 0 ) = HXg(t 0 ) = HX ′ (t 0 )
and hence f (X ′ ) = HX ′ .

Finally we prove that S is dense. Let E ∈ Σ r (Aut 1 U ), I the isotropy group of any element in E. Let P : U → U/I be the projection functor, and let F : U/I → B as constructed in the proof of Proposition 3.6. We define Aut 1 U /I → Hom Gal1(B,b0) (U, F )

given by g → P g. This map is well-defined and injective. In order to prove that it is surjective, let H ∈ Hom Gal1(B,b0) (U, F ). Since Aut 1 U acts transitively on Hom Gal1(B,b0) (U, F ), there exists g ∈ Aut 1 U such that P g = H. On the other hand, the map Aut 1 U/I → E given by g → ge is an isomorphism in Σ r (Aut 1 U ). 

Proof.

From the previous Proposition, it is enough to see that Φ and S are naturally isomorphic.

Let t 0 be a fixed element in U -1 (b 0 ) and let γ : π 1 (B, b 0 ) → Aut 1 (U ) be the anti-isomorphism defined by the equality σ U (t 0 ) = γ(σ)(t 0 ) (see Lemma 4.5). The functor Σ(γ) induced by γ is a natural isomorphism from Σ r (Aut 1 U ) to Σ l (π 1 (B, b 0 )).

Given F ∈ Gal 1 (B, b 0 ) one must prove that Σ(γ)(Hom Gal1(B,b0) (U, F )) is naturally isomorphic to F -1 (b 0 ) as left π 1 -sets. Let e be the map defined by e(X) = X(t 0 ) for X ∈ Hom Gal 1 (B,b0) (U, F ). Since U is universal, e is a bijection which is clearly natural. We assert that e commutes with the left action of π

1 (B, b 0 ). Let σ ∈ π 1 (B, b 0 ), then e(σX) = e(Xγ(σ)) = (Xγ(σ)) (t 0 ) = X(γ(σ)(t 0 )) = Xσ U (t 0 ).
On the other hand σe(X) = σX(t 0 ) = σ F (X(t 0 ).

Both elements are equal by means of Remark 4.5.

First Hochschild cohomology and Galois groups

In this section our main purpose is to provide a canonical embedding from the additive characters of the intrinsic π 1 that we have defined to the first Hochschild-Mitchell cohomology vector space of B. This will be achieved in case k is a field and assuming that the endomorphism ring of each object of the category is reduced to k, and that there exists a Galois covering whose group is isomorphic to the fundamental group (for instance if there exists a universal covering). First we will provide an intrinsic and direct way of describing the injective morphism from the additive characters of the group of automorphisms of a Galois covering to the first Hochschild-Mitchell cohomology vector space of B.

Assem and de la Peña have described this map in [START_REF] Assem | The fundamental groups of a triangular algebra[END_REF] when G is the fundamental group of a triangular finite dimensional algebra presented by a quiver with relations. In [START_REF] De La Peña | On the first Hochschild cohomology group of an algebra[END_REF] de la Peña and Saorín noticed that the triangular hypothesis is superfluous. This map has also been obtained in a spectral sequence context in [START_REF] Cibils | Cartan-Leray spectral sequence for Galois coverings of categories[END_REF].

In order to provide the canonical morphism, we first recall (see [START_REF] Green | Graphs with relations, coverings, and group-graded algebras[END_REF][START_REF] Cibils | Skew category, Galois covering and smash product of a k-category[END_REF]) that a Galois covering of B provides a grading for each choice of objects in the fibres. As expected another choice of objects provides a conjugated grading. We will translate in this setting the connectivity hypothesis of the Galois covering. Finally the definition of Hochschild-Mitchell derivations as well as of the inner ones will provide the context for a natural definition of the required map. Proof. Since F is a covering, each morphism space of B is equipped with a direct sum decomposition ⊕ y∈F -1 c F ( y C x b ). Moreover since F is Galois, for each y in the F -fibre of c there exists a unique automorphism s such that y = sx c . This element s will provide the degree of the direct summand, more precisely

Z s ( c B b ) = F ( sxc C x b ) .
It is straightforward to check that this is indeed an Aut 1 F -grading. Moreover, a different choice of objects in the fibres (t b x b ) b∈B0 where (t b ) b∈B0 is a family of elements of Aut 1 F provides another grading, which is precisely the grading described in the proposition above.

Remark 5.4. In [START_REF] Cibils | Skew category, Galois covering and smash product of a k-category[END_REF] the converse is obtained: in case B is G-graded where G is an arbitrary group, the smash product category construction provides a Galois covering with automorphism group G. As expected, one recovers the original grading as the one induced by the smash Galois covering as defined in [START_REF] Cibils | Skew category, Galois covering and smash product of a k-category[END_REF]. Definition 5.5. A homogeneous walk w in a G-graded k-category from an object b to an object c is a sequence of non zero homogeneous paths. It consists of a sequence of objects x 1 = b, . . . , x i . . . , x n = c, a sequence of signs ǫ 1 , . . . , ǫ n where ǫ i ∈ {-1, +1}, and non-zero homogeneous morphisms ϕ 1 , . . . , ϕ n such that if ǫ i = 1 then ϕ i ∈ xi+1 B xi while if ǫ i = -1 then ϕ i ∈ xi B xi+1 . The degree of w is the following ordered product of elements of G:

deg w = (deg ϕ n ) ǫn • • • (deg ϕ i ) ǫi • • • (deg ϕ 1 ) ǫ1
Remark 5.6. Note that a homogeneous non zero endomorphism involved in a homogeneous walk at position i appears with its degree, or the inverse of its degree, according to the value of ǫ i . Proof. Let (x b ) be a choice of an object in each F -fibre, providing a grading of B.

Note that a morphism ϕ in C from sx b to tx c has homogeneous image of degree s -1 t, since F ϕ = F s -1 ϕ. This observation shows that a walk in C from x b to some sx d projects to a homogeneous walk from b to d of degree s. Since C is connected, the theorem is proved.

Let us briefly recall the definition of Hochschild-Mitchell cohomology in degree one (see for instance [START_REF] Mitchell | Rings with several objects[END_REF]). This cohomology coincides with usual Hochschild cohomology of algebras in case the k-category has a finite number of objects. 
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 5758 Let B be a G-graded k-category. The grading is called connected if for any couple of objects b and c of B and for any element s ∈ G, there exists a homogeneous walk from b to c of degree s. Let F : C → B be a Galois covering. Then the induced grading on B is connected.
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 59 Let B be a k-category. A derivation of B is a collection D = ( c D b ) c,b∈D0 of k-linear endomorphisms of each k-module of morphisms c B b , such that D(gf ) = gD(f )+ D(g)f . More precisely if d g c and c f b are morphisms of B, then

  by H 1 and H 2 are equal, hence H 1 and H 2 coincide on morphisms starting or ending at x 0 , in particular H 1 and H 2 coincide on objects related to x 0 by a non-zero morphism. Since C is connected, it follows that H 1 and H 2 coincide on every object and on every morphism of C.

d D b (gf ) = g c D b (f ) + d D b (g)f.
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Using the uniqueness of the morphisms starting at the universal covering, one can prove that the family (σ F ) is indeed an automorphism of Φ. Proof. This is an immediate consequence of Remark 4.2.

We recall that an anti-morphism ϕ : G → G ′ is a map such that ϕ(g 1 g 2 ) = ϕ(g 2 )ϕ(g 1 ) for any elements g 1 and g 2 in G. Of, course an anti-morphism ϕ provides a unique usual group morphism ψ given by ψ(g) = ϕ(g -1 ). Lemma 4.5. Let G and G ′ be groups acting freely and transitively on a non empty set X. Assume the actions commute. Then each choice of an element in X determines an anti-isomorphism from G to G ′ .

Proof. Choose an element x ∈ X. Define ϕ : G → G ′ by gx = ϕ(g)x. This map is well defined and bijective. Moreover it is a group anti-morphism precisely because the actions commute. Corollary 4.8. Let B be a k-category admitting a universal covering, and consider a presentation of B given by a quiver Q and an admissible two-sided ideal I provided with a minimal set of generators R given by parallel paths. Let π 1 (Q, R, b 0 ) be the group of the presentation as defined in [START_REF] Martínez-Villa | The universal cover of a quiver with relations[END_REF], with respect to a vertex b 0 . Then there is a group surjection

Proof. In [START_REF] Martínez-Villa | The universal cover of a quiver with relations[END_REF] it is proven that the group π 1 (Q, R, b 0 ) can be realized as Aut 1 F for a Galois covering F . Then the universal covering U of B provides an epimorphism from Aut

For any group Γ, let Σ l (Γ) be the full subcategory of the category of left Γsets whose objects are sets with a transitive left action of the group Γ such that the isotropy group of an element is invariant. Note that in this case the isotropy group of any element is invariant, since the action is transitive. Σ r (Γ) denotes the analogous category, where objects are right Γ-sets.

We will prove that the fibre functor Φ is an equivalence when considered as a functor from Gal 1 (B, b 0 ) to the category Σ l (π 1 (B, b 0 )), where Gal 1 (B, b 0 ) is the subcategory of Gal(B, b 0 ) with same objects and morphisms of type (H, 1). Proposition 4.9. Let B be a k-category admitting a universal covering U : U → B. Let

be the functor given by S(F ) = Hom Gal 1 (B,b0) (U, F ) and defined by composition on morphisms. Then S is an equivalence.

An inner derivation D α associated to a collection α of endomorphisms at each object (α b ) a∈B0 is obtained in the usual way, namely

The first Hochschild cohomology k-module H 1 (B, B) is the quotient of the k-module of derivations by the inner ones. Theorem 5.10. Let k be a field and let B be a k-category such that the endomorphism ring of each object is reduced to k. Let F : C → B be a Galois covering. Then there exists a canonical injective morphism

Proof. Let χ : Aut 1 F → k + be an abelian character of Aut 1 F . In order to define ∆χ as a k-endomorphism of each k-module of morphisms of B, we define ∆ χ on the homogeneous components of a grading induced by the covering F . Let f be a morphism of degree s. By definition ∆χ(f ) = χ(s)f .

A standard computation shows that ∆χ is indeed a derivation, which corresponds to the well known construction of Euler derivations, see also [START_REF] Farkas | Diagonalizable derivations of finite-dimensional algebras[END_REF][START_REF] Farkas | Diagonalizable derivations of finitedimensional algebras[END_REF]. Moreover if the grading is changed through a different choice of objects in the fibres according to Theorem 5.3, the derivation ∆χ is modified by an inner derivation, hence the morphism ∆ is canonic.

Assume ∆χ is an inner derivation. Let f be a non zero homogeneous morphism of degree s, then χ(s

Since k is a field and f is a non zero element of a vector space, χ(s) = α c -α b . Moreover if w is a homogeneous walk of degree s from b to c, we also have χ(s) = α c -α b by an easy computation. Finally since F is Galois, we know by Theorem 5.8 that for each automorphism s there exists a homogeneous walk from an object b to itself of degree s. Consequently χ(s) = 0 for every s and ∆ is injective.

We have already observed that the Kronecker category K does not admit a universal covering, nevertheless there exist Galois coverings of K such that their group of automorphisms are isomorphic to the fundamental group. This observation provides interest to the following result.

Corollary 5.11. Let k be a field and let B be a k-category such that the endomorphism ring of each object is reduced to k. Assume that B admits a Galois covering whose group is isomorphic to π 1 (for instance if B admits a universal covering). Then there exists a canonical injective morphism ∆ : Hom(π 1 (B, b 0 ), k + ) -→ H 1 (B, B).

Observe that for the Kronecker category dim H 1 (K, K) = 3, then in general the above morphism is not an isomorphism.