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THE INTRINSIC FUNDAMENTAL GROUP OF A

LINEAR CATEGORY∗

Claude Cibils, Maŕıa Julia Redondo and Andrea Solotar

Abstract

We provide an intrinsic definition of the fundamental group of a lin-
ear category over a ring as the automorphism group of the fibre functor
on Galois coverings. We prove that this group is isomorphic to the in-
verse limit of the Galois groups associated to Galois coverings. Moreover,
the graduation deduced from a Galois covering enables us to describe
the canonical monomorphism from its automorphism group to the first
Hochschild-Mitchell cohomology vector space.

2000 Mathematics Subject Classification : 16E40, 18H15, 16W50
Keywords: Fundamental group, quiver, presentation, linear category, Hochschild-Mit-
chell.

1 Introduction

The purpose of this work is to provide a positive answer to the question of the existence
of an intrinsic and canonical fundamental group π1 associated to a k-category B, where
k is a commutative ring. The fundamental group we introduce takes into account
the linear structure of the category B, it differs from the fundamental group of the
underlying category obtained as the classifying space of its nerve ([21, 20, 22]).

The fundamental group that we define is intrinsic in the sense that it does not
depend on the presentation of the k-category by generators and relations. In case
a universal covering exists, we obtain that the fundamental groups constructed by R.
Mart́inez-Villa and J.A. de la Peña (see [17], and [3, 11, 1]) depending on a presentation
of the category by a quiver and relations are in fact quotients of the intrinsic π1 that
we introduce. Note that those groups can vary according to different presentations of
the same k-category (see for instance [1, 4, 15]) while the group that we introduce

∗This work has been supported by the projects CONICET-CNRS, PICS, UBA-
CYTX169 and PIP-CONICET 5099. The second and third authors are research members
of CONICET (Argentina) and the third author is a Regular Associate of ICTP Associate
Scheme.
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is intrinsic, since we define it as the automorphisms of the fibre functor of the Galois
coverings over a fixed object.

In fact if a universal covering U : U → B exists, the fundamental group that we
define is isomorphic to the automorphism group AutU . Otherwise we show that the
fundamental group is isomorphic to the inverse limit of the automorphisms groups of
the Galois coverings of B. In case each connected component of the category of the
Galois coverings admits an initial object – in other words if ”locally” universal coverings
exist – the intrinsic group π1 that we define is isomorphic to the direct product of the
corresponding automorphism groups. Particular cases of this fact have been noticed
before by several authors, see for instance [4]. We also prove that changing the base
object provides isomorphic intrinsic fundamental groups.

The methods we use are inspired for instance in the topological case considered in R.
Douady and A. Douady’s book [7]. They are closely related to the way the fundamental
group is considered in algebraic geometry after A. Grothendieck and C. Chevalley. The
present paper is very much indebted to the pioneer work of P. Le Meur in his thesis
[16], see also [14]. He has shown that under some hypotheses on the category, there
exists an optimal fundamental group in the sense that all other ”fundamental groups”
deduced from different presentations are quotients of the optimal one. His method
consists mainly in tracing all the possible presentations of a given category, and relating
the diverse resulting ”fundamental groups”. As already quoted, we adopt a different
point of view in this paper.

In Section 2 we provide the definition of a covering of a k-category and we prove
properties about morphisms between coverings as initiated in [14, 16]. In Section 3 we
define Galois coverings and next we study some properties of this kind of coverings.
The main results are Theorem 3.7 which describes the structure of Galois coverings
and Theorem 3.9 which concerns morphisms between Galois coverings and the relation
between the associated groups of automorphisms. We provide the definition of the
universal covering in the category of Galois coverings of a fixed k-category B. In
a forthcoming paper we will study the behaviour of Galois coverings through fibre
products, as well as a criterion for a covering to be Galois or universal. Differences with
the usual algebraic topology setting will appear, since the fibre product of coverings of
k-categories do not provide in general a covering through the projection functor.

Finally we suppose that k is a field and that the endomorphism algebra of each
object of the k-category is reduced to k. We recover in a simple way the canonical
k-linear embedding (see [1, 19, 6]) of the abelian characters of the automorphism group
of a Galois covering to the first Hochschild-Mitchell cohomology vector space of the
category. We use our description of Galois coverings as well as the canonical graduation
of the k-category deduced from a Galois covering, as obtained in [5]. This way Euler
derivations are considered, see also [8, 9].

Note that it will be interesting to explore the behaviour of the intrinsic fundamental
group with respect at least to Morita equivalences of k-categories. As expected the
fundamental group is an invariant of the equivalence class of a k-category but not of
its Morita class. Of course in case the category admits a unique basic representative in
its Morita class, the fundamental group attached to this category can be considered as
the canonical fundamental group of the Morita equivalence class.
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2 k-categories, stars and coverings

Let k be a commutative ring. A k-category is a small category B such that each
morphism set yBx from an object x ∈ B0 to an object y ∈ B0 is a k-module, the
composition of morphisms is k-bilinear and k-multiples of the identity at each object
are central in the endomorphism ring of the object. Note that such k-categories are
also called linear categories over k. In particular each endomorphism set of an object
is a k-algebra, and yBx is a yBy − xBx-bimodule.

Each k-algebra A provides a single object k-category BA with endomorphism ring
A. The structure of A can be described more precisely by choosing a finite set E
of orthogonal idempotents of A, such that

∑
e∈A e = 1 in the following way: the k-

category BA,E has set of objects E and morphisms from e to f the k-module fAe.
Note that BA,{1} = BA. This approach is meaningful since clearly the category of left
A-modules is isomorphic to the category of k-functors from BA,E to the category of k-
modules, where a k-functor is a functor which is k-linear when restricted to morphisms.

Definition 2.1 The star Stb0B of a k-category B at an object b0 is the direct sum of
all the morphisms with source or target b0 :

Stb0B =


 ⊕

y∈B0

yBb0


 ⊕


 ⊕

y∈B0

b0By


 .

Note that this k-module counts twice the endomorphism algebra at b0.

Definition 2.2 Let C and B be k-categories. A k-functor F : C → B is a covering of B
if it is surjective on objects and if F induces k-isomorphisms between the corresponding
stars. More precisely, for each bo ∈ B0 and each x in the non-empty fibre F−1(b0), the
map

F x
b0

: StxC −→ Stb0B.

induced by F is a k-isomorphism.

Remark 2.3 Each star is the direct sum of the source star St−b0B =
⊕

y∈B0
yBb0 and

the target star St+b0B =
⊕

y∈B0
b0By. Since St− and St+ are preserved under any

k-functor, the condition of the definition is equivalent to the requirement that the cor-
responding target and source stars are isomorphic through F .
Moreover this splitting goes further : for b1 ∈ B0, the restriction of F to

⊕
y∈F−1(b0) yCx

is k-isomorphic to the corresponding k-module b1Bb0 . The same holds with respect to
the target star and morphisms starting at all objects in a single fibre.
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Remark 2.4 The previous facts show that Definition 2.2 coincides with the one given
by K. Bongartz and P. Gabriel in [3].

To each small category A one may associate its linearization kA in the following
way: objects of kA are the objects of A, while morphisms are free k-modules on the
sets of morphisms of A. Such linearized k-categories are rather special, since they
admit by construction a multiplicative basis of morphisms, in fact they are free k-
categories. Any usual covering F : C → B of categories provides by linearization a
covering kF : kC → kB.

Example 2.5 [14] Not all the coverings of a linearized category are obtained in the
preceding way. Consider the following k-categories C and B obtained by linearization
of the categories given by the corresponding diagrams:

C :

x0

y0 y1

x1

...................................................................................
.......
..

...........
.....

.......................................................................................
.....
.......
.......
..

........
.........

.........
........

........
.........

.........
........

........................
................

........
.........
.........
........
........
.........
.........
........
........................
................

α0 β0

β1 α1

B : b c.................................................................................................................... ................

.................................................................................................................... ................

α

β

and the covering F : C −→ B given by

F (x0) = F (x1) = b, F (y0) = F (y1) = c

F (α0) = α+ β

F (α1) = α, F (β0) = F (β1) = β.

Definition 2.6 Given k-categories B, C,D, the set Mor(F,G) from a covering F :
C → B to a covering G : D → B is the set of k-linear functors g : C → D such that
Gg = F . The group of automorphisms AutF of a covering F is the group of invertible
endomorphisms of F . The category of coverings of B and morphisms of coverings will
be denoted Cov(B).

Our purpose is to show that the automorphism group of a connected covering acts
freely on each fibre.

Definition 2.7 A k-category B is connected if any two objects b and c of B can be
connected by a finite walk made by non zero morphisms, more precisely there exist a
finite sequence of objects x1, . . . , xn and non zero morphisms ϕ1, . . . , ϕn such that
x1 = b, xn = c, where ϕi belongs either to xi+1

Bxi
or to xi

Bxi+1
.
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Proposition 2.8 Let F : C −→ B be a covering of k-categories. If C is connected,
then B is connected.

Proof. Let b and c be objects in B0, and let x0 and y0 be two objects respectively
chosen in their fibres. Consider a walk of non zero morphisms connecting x0 and y0
in C. Since F induces k-isomorphisms at each star, the image by F of a non zero
morphism is a non zero morphism in B. ⋄

Proposition 2.9 [14] Let F : C −→ B and G : D −→ B be coverings of k-linear
categories. Assume C is connected. Two morphisms g and h from F to G which
coincide on some object are equal.

Proof. Let g be a morphism of coverings, let x0 be an object of C and consider the
map between stars induced by g:

gx0

g(x0)
: Stx0

C −→ Stg(x0)D.

Observe that Gg(x0) = F (x0). There is a commutative diagram

Stx0
C Stg(x0)D

StF (x0)B

...................................................................................................................................................................................................................................... ................

.......................................................................................................................................................................................
.....
........
......
..

....................................................................................................................................................................................
......
..

...........
.....

gx0

g(x0)

F x0

F (x0) G
g(x0)
Gg(x0)

where the morphisms F x0

F (x0) and G
g(x0)
F (x0)

are k-isomorphisms. Consequently g is an

isomorphism at each star level, determined by F and G. In case g and h are morphisms
verifying g(x0) = h(x0), the k-linear maps Stx0

C −→ Stg(x0)D = Sth(x0)D induced by
g and h are equal, hence g and h coincide on morphisms starting or ending at x0, in
particular g and h coincide on objects related to x0 by a non-zero morphism. Since C
is connected, it follows that g and h coincide on every object and on every morphism
of C. ⋄

Corollary 2.10 The group of automorphisms of a connected covering of k-linear cat-
egories acts freely on each fibre.

3 Galois and universal coverings

We start this section with the definition of a Galois covering in order to study properties
of this kind of coverings. The main results are the description of the structure of Galois
coverings, and the relation between Galois coverings and the group of automorphisms.
Finally we consider the definition of the universal covering in the category of Galois
coverings of a fixed k-category B.
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Definition 3.1 A covering F : C −→ B of k-categories is a Galois covering if C is
connected and if AutF acts transitively on some fibre.

It is natural to expect that the automorphism group should act transitively at each
fibre whenever it acts transitively on a particular one. In order to prove this fact, we
shall use a construction introduced in [11, 3], see also [6].

Definition 3.2 Let G be a group acting by k-autofunctors on a k-category C, such
that the action on the objects is free, meaning that if sx = x for some object, then
s = 1. The set of objects of the categorical quotient C/G is the set of G-orbits of C0.
The k-module of morphisms from an orbit α to an orbit β is

β
(C/G)α =


 ⊕

x∈α, y∈β

yCx


 /G

where for a kG-module X we denote X/G the k-module X/(Ker ǫ)X , which is the
quotient of X by the augmentation ideal, where ǫ : kG → k is given by ǫ(s) = 1 for
all s ∈ G.

Remark 3.3 One can easily check that the previous definition provides a k-category:
the composition is well defined precisely because the action of G on the objects is free.

Proposition 3.4 Let G be a group acting by k-autofunctors on a connected k-category
C, and assume that the action on the objects is free. Then the projection functor
P : C −→ C/G is a Galois covering with automorphism group G.

Proof. The projection functor is a covering since it is surjective on objects. For each
choice of an object x0 ∈ α and y0 ∈ β we clearly have k-isomorphisms

⊕

y∈β

yCx0
→

β
(C/G)α and

⊕

x∈α

y0
Cx →

β
(C/G)α

which can be assembled in order to provide the required isomorphism of stars. Observe
that the fibres of P are the orbits sets by construction, therefore the action of AutP = G
is transitive on each fibre.

Consider now g ∈ AutP and let x0 ∈ C0. Since the action of G on C0 is free, there
exists a unique s ∈ G such that sx0 = g(x0). By definition, the element s provides
an autofunctor of C which verifies Ps = P . Both automorphisms of the connected
covering P coincide on an object, consequently they are equal as automorphisms of P
by Proposition 2.9. ⋄

Lemma 3.5 Let F : C −→ B be a connected covering of k-categories and suppose
there exists a singleton fibre. Then every fibre is a singleton and F is an isomorphism
of k-categories.
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Proof. Let b ∈ B0 be an object such that F−1(b) = {x}. Since C is connected
it is enough to show that for a non zero morphism in C with target or source x, the
other extreme object y is such that F−1(F (y)) = {y}. We denote c = F (y). Assume
ϕ ∈ yCx is non-zero and let y′ ∈ F−1(c), then ϕ ∈ StxC and F (ϕ) ∈ StbB. Moreover,

F (ϕ) belongs to StcB. Since F induces an isomorphism F y′

c : Sty′C −→ StcB, there is
a unique k-linear combination

∑
z y′hz of morphisms from the fibre of b to y′ such that

F y′

c (
∑

z y′hz) = F (ϕ). Now the fibre of b is reduced to x, which means that there is a
non-zero morphism ψ ∈ y′Cx such that Fψ = Fϕ. Note that ψ also belongs to StxC,
and recall that F x

b is an isomorphism between the corresponding stars. Hence ϕ = ψ
and in particular their ending objects are the same, namely y = y′. Finally since all the
fibres are singletons, the star property of a covering implies immediately that F is an
isomorphism. ⋄

We are now able to prove the following proposition.

Proposition 3.6 Let F : C −→ B be a Galois covering. Then AutF acts transitively
on each fibre.

Proof. First consider the categorical quotient P : C −→ C/AutF . There is a unique
functor F ′ : C/AutF −→ B such that F ′P = F , defined as follows: let α be an object
of C/AutF , that is, an orbit of C0 under the action of AutF . Choose an object x ∈ α
and define F ′α = Fx. Clearly F ′ is well defined on objects. In order to define F ′ on
morphisms, let α and β be objects in C/AutF , and recall that

β
(C/AutF )α =


 ⊕

x∈α, y∈β

yCx


 /AutF.

Next observe that the morphism

F :
⊕

x∈α, y∈β

yCx → F ′(β)BF ′(α)

verifies F (sϕ) = F (ϕ) for any ϕ ∈
⊕

x∈α, y∈β yCx and any s ∈ AutF . Finally the
commutative triangle of morphisms between corresponding stars shows that F ′ is indeed
a covering.
Since F is a Galois covering, there exists a fibre where the action of AutF is transitive,
which means that the corresponding fibre of F ′ is a singleton. Since F is a Galois
covering, C is connected as well as C/AutF by Proposition 2.8. The preceding Lemma
asserts that all the fibres of F ′ are singletons, which exactly means that the action of
AutF is transitive on each fibre of F . ⋄

As a consequence we obtain the following description of Galois coverings.

Theorem 3.7 Let F : C −→ B be a Galois covering. Then F is isomorphic to the
categorical quotient of C by AutF , more precisely there exists a unique isomorphism of
categories F ′ : C/AutF −→ B such that F ′P = F , where P : C −→ C/AutF is the
Galois covering given by the categorical quotient.
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Proof. The proof of the preceding results provides the covering F ′, which has a
singleton fibre. Then all the fibres of F ′ are singletons and F ′ is an isomorphism. ⋄

The following example shows that coverings are not Galois coverings in general.

Example 3.8 Consider F : C → B as in Example 2.5. This covering has trivial au-
tomorphism group, as an easy computation shows. Consequently this covering is not
Galois, since each fibre has two objects. This fact has been observed by Le Meur
[14, 16].

Next we recall a result of P. Le Meur concerning factorizations of Galois coverings.

Theorem 3.9 [14, 16] Let F : C −→ B and G : D −→ B be Galois coverings,
and let H be a morphism from F to G. Then there is an epimorphism of groups
λ : AutF → AutG and Kerλ = AutH . Moreover H is a Galois covering.

Proof. First we assert that for each f ∈ AutF there exists a unique element λ(f) ∈
AutG such that λ(f)H = Hf . For this purpose, let c0 be an object of C. Then
GHfc0 = Ffc0 = Fc0 = GHc0, hence Hfc0 and Hc0 are in the same G-fibre.
Then there exists a unique automorphism of G, which we denote λ(f), such that
Hfc0 = λ(f)Hc0. Moreover both functors λ(f)H and Hf are morphisms from F
to G which coincide on c0, hence they are equal. The uniqueness of λ(f) and the
equalities

λ(f1f2)H = Hf1f2 = λ(f2)Hf1 = λ(f1)λ(f2)H

imply that λ is a group morphism. Moreover λ is an epimorphism. Let g ∈ AutG. In
order to find f ∈ AutF such that gHc0 = Hfc0, let c be an element in the H-fibre of
gHc0. A simple computation shows that c and c0 are in the same F -fibre. Since F is
a Galois covering, there exists f ∈ AutF such that fc0 = c, and Hfc0 = Hc = gHc0.
Note that f ∈ Kerλ if and only if Hf = H which means precisely that f ∈ AutH .

In order to prove that H is a Galois covering, let us first prove that H is surjective
on objects. Let y ∈ D0 and let x be an object in the F -fibre of Gy. Clearly Hx
and y are in the same G-fibre, hence there exists g ∈ AutG such that y = gHx. Let
f ∈ AutF such that λ(f) = g. We assert that Hfx = y. Indeed, Hf = λ(f)H , hence
Hfx = λ(f)Hx = gHx = y.

The functor H induces isomorphisms between stars since GH = F , hence the same
equality is valid at the stars level where F and G induce k-isomorphisms.
We have proven that H is a covering. In order to obtain that H is Galois, let x and x′

be in the same H-fibre. They are also in the same F -fibre, hence there exists f ∈ AutF
such that fx = x′. We assert that in fact f ∈ AutH : indeed, Hf and H are both
morphisms from F to G with the same value on x, hence they are equal by Proposition
2.9. ⋄
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Definition 3.10 Let B be a k-category and let b0 be a fixed object. The category
Gal(B, b0) of pointed Galois coverings of (B, b0) is defined as follows: objects are triples
(C, x0, F ), where F : (C, x0) −→ (B, b0) is a Galois covering of B verifying F (x0) = b0.
Morphisms from (C, x0, F ) to (D, y0, G) in Gal(B, b0) are pointed morphisms, i.e. k-
functors H : (C, x0) −→ (D, y0) such that H(x0) = y0 and GH = F .

We recall that a small category is called thin if there is at most one morphism from
x to y for any couple of objects. Note that this definition concerns usual categories
without k-structure as the category of Galois coverings Gal(B, b0).

Lemma 3.11 The category Gal(B, b0) is thin. Moreover morphisms are Galois cover-
ings of k-categories.

Proof. Since Galois coverings are connected by definition and morphisms in Gal(B, b0)
are pointed, the result follows from Proposition 2.9. The preceding Theorem shows that
morphisms are Galois coverings. ⋄

Lemma 3.12 Given two isomorphic k-linear pointed categories (B, b0) and (B′, b′0),
the categories Gal(B, b0) and Gal(B′, b′0) are isomorphic.

Proof. Let ϕ : B → B′ be the isomorphism of categories, such that ϕ(b0) = b′0. The
left composition with ϕ of each pointed covering of B gives a pointed covering of B′.⋄

Definition 3.13 A universal covering U is an initial object in Gal(B, b0). In other words
U is a pointed Galois covering U : (U , u0) −→ (B, b0) such that for any pointed Galois
covering F there exists a unique morphism from U to F .

Remark 3.14 In case of existence, a universal covering is unique up to a unique iso-
morphism of pointed Galois coverings.

The following example shows that there exist k-categories which do not admit
universal covering. It has been obtained by Geiss and de la Peña in [12]:

Example 3.15 Let k be a field and char(k) = 2. Consider the k-linear categories

C1 :

x0

x1

y0

y1

z0

z1

........................................................................................................................................ ................

........................................................................................................................................ ................

................................................................................................................................................................ ........
.......
.

..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
....................
................

........................................................................................................................................ ................

........................................................................................................................................ ................

................................................................................................................................................................ ........
.......
.

..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
....................
................

α0

β0

α1

β1

γ0

δ0

γ1

δ1

B : x y z........................................................................................................................................ ................

........................................................................................................................................ ................
........................................................................................................................................ ................

........................................................................................................................................ ................
α

β

γ

δ
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with C1 satisfying all commutativity relations and B satisfying the relations

γα = δβ, γβ = δα.

It is clear that C1 is a Galois covering of B. Since char(k) = 2, if we set a = α+β, b =
β, c = γ + δ, d = δ, we get that B satisfies the relations

ca = 0, cb = da.

In this case,

C2 :

x−1

x0

x1

...

y−1

...

y0

y1

...

z−1

...

z0

z1

a0

d1

b0

c0

a−1

d0

b−1

c−1

...................................................................................... ................ ...................................................................................... ................

...................................................................................... ................ ...................................................................................... ................

...................................................................................... ................ ...................................................................................... ................

......................................................................................

......
....

......

......
....

......................................................................................

......
....

......

......
....

......................................................................................

......
....

......

......
....

......................................................................................

......
....

......

......
....

with all commutativity relations and ciai−1 = 0, is also a Galois covering of B. Now
C1 and C2 admit no proper Galois covering since they are simply connected, see [17, 2],
and there is no morphism between them.

4 Fundamental group

As quoted in the Introduction, our main purpose is to provide an intrinsic definition of
the fundamental group π1 of a k-category, where k is a commutative ring. Previous
definitions, provided for instance by J.A. de la Peña and R. Martinez-Villa [17], see
also K. Bongartz and P. Gabriel [3], depend on the presentation of the category as a
quotient of a free k-category by an ideal generated by some set of minimal relations.
Different presentations of the same k-category may provide different groups through
this construction, see for instance [1, 4, 15].

We will prove the following facts concerning the group π1 that we will define:

• if the universal covering exists, its group of automorphisms is isomorphic to the
group π1; in this case any group obtained through the presentation construction
is a quotient of π1;

• π1 is the direct limit of the automorphism groups of the class of all Galois
coverings of a given k-category.

Definition 4.1 Let (B, b0) be a pointed k-category and consider Gal(B, b0) the cate-
gory of Galois coverings. Let Φ : Gal(B, b0) → Sets be the fibre functor which associates
to each Galois covering F the F -fibre F−1(b0). We define

π1(B, b0) = AutΦ.
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Remark 4.2 The fundamental group π1(B, b0) is the group of natural isomorphisms
σ : Φ → Φ. In other words an element of the fundamental group is a family of
invertible set maps σF : F−1(b0) → F−1(b0) for each Galois covering F , which are
compatible with morphisms of Galois coverings; namely for each morphism H : F → G
in Gal(B, b0) the corresponding square

F−1(b0) F−1(b0)

G−1(b0) G−1(b0)

...................................................................................................................................................................... ................

...................................................................................................................................................................... ................

............................................................................................

......
....

......

......
....

............................................................................................

......
....

......

......
....

σF

σG

H H

is commutative.

We have already proven that the category Gal(B, b0) is thin. For the convenience
of the reader we recall some easy facts concerning inverse limits over thin categories.
Let L be a functor from a thin category  L to the category of groups. The inverse limit
lim
←
L of L is given by

lim
←
L =



(si) ∈

∏

i∈ L0

L(i) | sj = L(jfi)(si)





which is clearly a subgroup of
∏

i∈ L0
L(i). ⋄

The following result is immediate.

Proposition 4.3 Let  L and L be as above and assume that  L has an initial object u.
Then lim

←
L = L(u)

The following theorem provides a characterization of the fundamental group π1.

Theorem 4.4 Let B be a connected k-category, let b0 be an object of B and let
Aut : Gal(B, b0) → Grp be the functor which associates to each pointed Galois covering
its group of automorphisms. Then

π1(B, b0) ≃ lim
←

Aut

.

Proof. In order to simplify notation, we denote (F, x) a Galois covering F : C → B
such that F (x) = b0. Note that Aut(F, x) denotes the group AutF of non-pointed
morphisms.
Let σ be an automorphism of the fibre functor Φ and consider σ(F,x) : F−1(b0) →
F−1(b0) for each Galois covering. There exists a unique gσ,(F,x) ∈ Aut(F, x) such that

σ(F,x)x = gσ,(F,x)x.
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We define α : π1(B, b0) →
∏

(F,x) Aut(F, x) by α(σ) =
(
gσ,(F,x)

)
and we assert that

α(σ) belongs to the inverse limit lim
←

Aut.

Indeed let H ∈ Mor ((F, x), (G, y)) be such that Hx = y, and let λH be the morphism
of groups obtained in Theorem 3.9 defined by the property Hg = λH(g)H for any
g ∈ AutF . We have to show that

λH(gσ,(F,x)) = gσ,(G,y),

in other words we have to verify that Hgσ,(F,x) = gσ,(G,y)H . This last equality is true
since σ is an automorphism of the fibre functor, see Remark 4.2.
In fact α is a group antimorphism: we have α(σσ′) = α(σ′)α(σ) since

σ′(F,x)σ(F,x)x = σ′(F,x)gσ,(F,x)x = gσ,(F,x)σ
′
(F,x)x = gσ,(F,x)gσ′,(F,x)x = gσσ′,(F,x)x,

where the second equality follows from Remark 4.2. Of course since α is just an
antimorphism, the right map to consider in order to have a group morphism is α
followed by the inverse group map. This morphism is injective: let σ be such that
gσ,(F,x) = 1 for all (F, x). Then σ(F,x)x = x. For each y ∈ F−1(b0) there exists
s ∈ AutF such that y = sx because F is Galois. Using Remark 4.2 with H = s we get
that σ(F,x)y = sσ(F,x)x = sx = y. Hence σ = Id.

Finally α is surjective: let (lF ) ∈ lim
←

Aut, that is, (lF )(F,x)∈Gal(B,b0)0 verifies

lG = λH(lF ) for each morphism H from F to G. We wish to obtain σ ∈ π1 such
that α(σ) =

(
gσ,(F,x)

)
= (lF ). Let σF : F−1(b0) → F−1(b0) be defined on x by

σF (x) = lF (x), while for y ∈ F−1(b0) there exists a unique s such that y = sx.
We define σF (y) = s[lF (x)]. In order to prove that σ is natural with respect to any
morphism H ∈ Mor((F, x), (G, y)), note that

lG(y) = lG(H(x)) = λH(lF )(H(x)) = H(lF (x)).

⋄

The following result is now immediate using Proposition 4.3.

Corollary 4.5 Suppose that a pointed connected k-category (B, b0) admits a universal
covering U . Then

π1(B, b0) ≃ AutU.

Corollary 4.6 Let B be a k-category admitting a universal covering, and consider a
presentation of B given by a quiver Q and an admissible two-sided ideal I provided with
a minimal set of generators R given by parallel paths. Let π1(Q,R, b0) be the group of
the presentation as defined in [17], with respect to a vertex b0. Then there is a group
surjection π1(B, b0) −→ π1(Q,R, b0).

Proof. In [17] it is proven that the group π1(Q,R, b0) can be realized as the auto-
morphism group of a Galois covering. Then the universal covering U of B provides an
epimorphism from the automorphism group of U to π1(Q,R, b0). ⋄
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Our next purpose is to show the invariance of the fundamental group with respect
to the base point. This will be a consequence of the following easy result on inverse
limits over thin categories.

Proposition 4.7 Let  L and  L′ be thin categories, let L :  L → Grp and L′ :  L′ → Grp be
two functors, and let E :  L →  L′ be an isomorphism of categories such that L′E = L.
Then the inverse limits lim

←
L and lim

←
L′ are isomorphic.

Lemma 4.8 Let F : C → B and G : D → B be Galois coverings of a connected
k-category B and assume that there is a morphism H from F to G. Let b0 be an
object of B. Then for any couple of objects x ∈ F−1b0 and y ∈ G−1b0 there exists a
unique morphism H ′ from F to G such that H ′x = y.

Proof. The uniqueness is provided by Proposition 2.9. Since G is a Galois covering
and since y and Hx are in the same G-fibre, there exists a unique u ∈ AutG such that
y = uHx. Define H ′ = uH . ⋄

Theorem 4.9 Let B be a connected k-category and let b0 and b1 be two objects. Then
π1(B, b0) and π1(B, b1) are isomorphic.

Proof. From Proposition 4.7, it is enough to construct an isomorphism of categories
E : Gal(B, b0) → Gal(B, b1) such that Autb1 E = Autb0 . For each Galois covering F
choose objects x0,F and x1,F in the fibre of b0 and b1 respectively. Let F : (C, x) −→
(B, b0) be a pointed Galois covering. Since the action of AutF on the fibre of b0
is free and transitive, there exists a unique s ∈ AutF such that x = sx0,F . We
define E(F ) ∈ Gal(B, b1) as the Galois covering F : (C, sx1,F ) −→ (B, b1). Moreover,
let H be a morphism of pointed Galois coverings from F : (C, x) −→ (B, b0) to
G : (D, y) −→ (B, b0). Let s ∈ AutF such that x = sx0,F and let t ∈ AutG
such that y = tx0,G. Let E(H) be the morphism from F : (C, sx1,F ) −→ (B, b1)
to G : (D, tx1,G) −→ (B, b1) verifying E(H)(sx1,F ) = tx1,G. The existence and
uniqueness of E(H) are insured by the lemma above. This argument also proves that
E is a functor. Clearly E commutes with the Aut functor. ⋄

We state now another result concerning inverse limits over thin categories. Recall
that a usual category is called connected if two objects can be connected by a finite
walk of morphisms. In other words the k-linearization of the category is connected in
the sense of Definition 2.7.

Proposition 4.10 Let  L be a thin category and let ( Li)i∈I be its connected compo-
nents. Let L be a covariant functor from  L to groups, and let Li be the restriction of
L to  Li. Then

lim
←
L ≃

∏

i∈I

lim
←
Li.
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Corollary 4.11 Let (B, b0) be a connected pointed linear k-category and consider
Gal(B, b0)

⋆, the category of Galois coverings without the trivial Galois covering. Let
(Gal(B, b0)i)

⋆
i∈I be the connected components admitting an initial object Ui, and let

π̃1 be the inverse limit of the Galois groups on the union of components without initial
objects. Then

π1(B, b0) ≃
∏

i∈I

AutUi × π̃1.

5 First Hochschild cohomology and Galois groups

In this section our main purpose is to provide a canonical embedding from the additive
characters of the intrinsic π1 that we have defined to the first Hochschild-Mitchell
cohomology vector space of B. This will be achieved in case k is a field and assuming
that the endomorphism of each object of the category is reduced to k.

First we will provide an intrinsic and direct way of describing the injective morphism
from the additive characters of the group of automorphisms of a Galois covering to the
first Hochschild-Mitchell cohomology vector space of B.

Assem and de la Peña have described this map in [1] when G is the fundamental
group of a triangular finite dimensional algebra presented by a quiver with relations. In
[19] de la Peña and Saoŕın noticed that the triangular hypothesis is superfluous. This
map has also been obtained in a spectral sequence context in [6].

In order to provide the canonical morphism, we first recall (see [13, 5]) that a
Galois covering of B provides a graduation for each choice of objects in the fibres. As
expected another choice of objects provides a conjugated grading. We will translate in
this setting the connectivity hypothesis of the Galois covering. Finally the definition of
Hochschild-Mitchell derivations as well as the inner ones will provide the context for a
natural definition of the required map.

Definition 5.1 Let B be a k-category, where k is a ring. A G-graduation Z of B by a
group G is a decomposition of each morphism space as a direct sum of vector spaces
Zs indexed by G. For each couple of objects b and c we have cBb = ⊕s∈GZs (cBb) and

Zt (dBc)Zs (cBb) ⊂ Zts (dBb) ,

where elements of Zs (cBb) are called homogeneous morphisms of degree s from b to
c.

The following result is clear:

Proposition 5.2 Let B be a k-category as above, equipped with a G-graduation Z.
Let (tb)b∈B0

be a family of elements of G associated to the objects of B. Define
Ys (cBb) = Ztcstb

−1 (cBb). Then Y is also a G-graduation of B.

Theorem 5.3 [5] Let C → B be a Galois covering of categories. Let (xb)b∈B0
be a

choice of objects of C, where xb belongs to the F -fibre of b for each b ∈ B0. Then there
is an AutF -graduation of B. Another choice of fibre objects provides a graduation with
the same homogeneous components as described in the preceding Proposition.
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Proof. Since F is a covering, each morphism space of B is equipped with a direct
sum decomposition ⊕y∈F−1cF (yCxb

). Moreover since F is Galois, for each y in the
F -fibre of c there exists a unique automorphism s such that y = sxc. This element s
will provide the degree of the direct summand, more precisely

Zs (cBb) = F (sxc
Cxb

) .

It is straightforward to verify that this is indeed an AutF -graduation. Moreover, a
different choice of objects in the fibres (tbxb)b∈B0

where (tb)b∈B0
is a family of elements

of AutF provides another graduation, which is precisely the graduation described in the
proposition above. ⋄

Remark 5.4 In [5] the converse is obtained: in case B is G-graded where G is an
arbitrary group, the smash group category construction provides a Galois covering with
automorphism group G. As expected, one recovers the original graduation as the
graduation induced by the smash Galois covering as defined in [5].

Definition 5.5 An homogeneous walk w in a G-graded k-category from an object b to
an object c is a sequence of non zero homogeneous paths. It consists of a sequence of
objects x1 = b, . . . , xi . . . , xn = c, a sequence of signs ǫ1, . . . , ǫn where ǫi ∈ {−1,+1},
and non-zero homogeneous morphisms ϕ1, . . . , ϕn such that if ǫi = 1 then ϕi ∈ xi+1

Bxi

while if ǫi = −1 then ϕi ∈ xi
Bxi+1. The degree of w is the following ordered product

of elements of G:

degw = (degϕn)ǫn · · · (degϕi)
ǫi · · · (degϕ1)

ǫ1

Remark 5.6 Note that an homogeneous non zero endomorphism involved in an ho-
mogeneous walk at position i intervenes with its degree, or the inverse of its degree,
according to the value of ǫi.

Definition 5.7 Let B be a G-graded k-category. The grading is called connected if
for any couple of objects b and c of B and for any element s ∈ G, there exists an
homogeneous walk from b to c of degree s.

Theorem 5.8 Let F : C → B be a Galois covering. Then the induced grading on B is
connected.

Proof. Let (xb) be a choice of an object in each F -fibre, providing a graduation of
B. Note that a morphism ϕ in C from sxb to txc has homogeneous image of degree
s−1t, since Fϕ = Fs−1ϕ. This observation shows that a walk in C from xb to some
sxd projects to an homogeneous walk from b to d of degree s. Since C is connected,
the theorem is proved. ⋄

Let us briefly recall the definition of Hochschild-Mitchell cohomology in degree one
(see for instance [18]). This cohomology coincides with usual Hochschild cohomology
of algebras in case the k-category has a finite number of objects.
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Definition 5.9 Let B be a k-category. A derivation of B is a collectionD = (cDb)c,b∈D0

of k-linear endomorphisms of each k-module of morphisms cBb, such that D(gf) =
gD(f) +D(g)f . More precisely if dgc and cfb are morphisms of B, then

dDb(gf) = gcDb(f) + dDb(g)f.

An inner derivation Dα associated to a collection α of endomorphisms at each object
(αb)a∈B0

is obtained in the usual way, namely

Dα (cfb) = αcf − fαb.

The first Hochschild cohomology k-module H1(B,B) is the quotient of the k-module
of derivations by the inner ones.

Theorem 5.10 Let k be a field and let B be a k-category such that the endomorphism
ring of each object is reduced to k. Let F : C → B be a Galois covering. Then there
exists a canonical injective morphism

∆ : Hom(AutF, k+) −→ H1(B,B).

Proof. Let χ : AutF → k+ be an abelian character of AutF . In order to define
∆χ as a k-endomorphism of each k-module of morphisms of B, we define ∆χ on the
homogeneous components of a graduation induced by the covering F . Let f be a
morphism of degree s. By definition ∆χ(f) = χ(s)f .

A standard computation shows that ∆χ is indeed a derivation, which corresponds
to the well known construction of Euler derivations, see also [8, 9]. Moreover if the
graduation is changed through a different choice of objects in the fibres according to
Theorem 5.3, the derivation ∆χ is modified by an inner derivation, hence the morphism
∆ is canonic.

Assume ∆χ is an inner derivation. Let f be a non-zero homogeneous morphism of
degree s, then χ(s)f = αcf − fαb = (αc − αb) f since αb ∈ k for each object b. Since
k is a field and f is a non zero element of a vector space, χ(s) = αc − αb. Moreover
if w is an homogeneous walk of degree s from b to c, we also have χ(s) = αc − αb by
an easy computation. Finally since F is Galois, we know by Theorem 5.8 that for each
automorphism s there exist an homogeneous walk from an object b to itself of degree
s. Consequently χ(s) = 0 for every s and ∆ is injective. ⋄

The abelian characters of the automorphisms of the Galois coverings provide a
contravariant functor from the thin category of Galois coverings to the category of
vector spaces. Moreover the family of canonical linear maps that we have obtained
commutes with the maps between abelian characters. Note that if  L is a thin category
and L is a contravariant functor from  L to the category of vector spaces, the direct
limit is

lim
→
L =

⊕

i∈ L0

L(i) / {L (ifj) (si) − L (ifk) (si) | i, j, k ∈  L0, si ∈ L(i)} .

Finally we state the following result
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Theorem 5.11 Let B be a k-category where k is a field and such that the endomor-
phisms of each object is reduced to k. Then there is a canonical morphism

lim
→

Hom(Aut, k+) −→ H1(B,B).
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de dimension finie. Ph.D. thesis, Université Montpellier 2 (2006).
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