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Abstract

Given any infinite structure M with a decidable first-order theory, we
give a sufficient condition in terms of the Gaifman graph of M, which
ensures that M can be expanded with some non-definable predicate in
such a way that the first-order theory of the expansion is still decidable.

LACL Technical Report 2007-06

1 Introduction

Elgot and Rabin ask in [2] whether there exist maximal decidable structures, i.e.
structures M with a decidable elementary theory and such that the elementary
theory of any expansion of M by a non-definable predicate is undecidable.

Soprunov proved in [8] (using a forcing argument) that every structure in
which a regular ordering is interpretable is not maximal. A partial order (B, <)
is said to be regular if for every a € B there exist distinct elements b1,by € B
such that by < a, by < a, and no element ¢ € B satisfies both ¢ < by and ¢ < bs.
As a corollary he also proved that there is no maximal decidable structure if we
replace “elementary theory” by “weak monadic second-order theory”.

In [1] we considered a weakening of the Elgot-Rabin question, namely the
question of whether all structures M whose first-order theory is decidable can
be expanded by some constant in such a way that the resulting structure still
has a decidable theory. We answered this question negatively by proving that
there exists a structure M whose monadic second-order theory is decidable and
such that any expansion of M by a constant has an undecidable elementary
theory.

In this paper we address the initial Elgot-Rabin question, and provide a
criterion for non-maximality. More precisely, given any structure M with a
decidable first-order theory, we give in Section 3 a sufficient condition in terms
of the Gaifman graph of M, which ensures that M can be expanded with some
non-definable predicate in such a way that the first-order theory of the expansion



is still decidable. The condition is the following: for every natural number r and
every finite set X of elements of the base set | M| of M there exists an element
x € |M] such that the Gaifman distance between x and every element of X
is greater than r. This condition holds e.g. for the structure (N,S), where S
denotes the graph of the successor function, and more generally for any labelled
infinite graph with finite degree and whose elementary theory is decidable, i.e.
any structure M = (V, E, Py, ..., P,) where V is infinite, F is a binary relation
of finite degree, the P;’s are unary relations, and the elementary theory of M is
decidable. Unlike Soprunov’s condition, our condition expresses some limitation
on the expressive power of the structure M.

In Section 2 we recall some important definitions and results. Section 3 deals
with the main theorem. We conclude the paper with related questions.

2 Preliminaries

In the sequel we consider first-order logic with equality. We deal only with
relational structures. Given a language £ and a L—structure M, we denote
by | M| the base set of M. For every symbol R of £ we denote by RM the
interpretation of R in M. As usual we shall sometimes confuse symbols and
their interpretation. We denote by FO(M) the first-order (complete) theory of
M, i.e. the set of first-order L—sentences true in M. By “definable in M ” we
mean “first-order definable in M without parameters”.

We denote by gr(¢) the quantifier rank of the formula ¢, defined inductively
by gr(¢) = 0 if ¢ is atomic, qr(—=F) = qr(F), qr(FaG) = max(qr(F),qr(G))
for @ € {A,V,—}, and ¢r(3zF) = qr(VzF) = qr(F) + 1. We define FO, (M)
as the set of L—sentences F' such that ¢r(F) <n and M = F.

We say that the elementary diagram of a structure M is computable if there
exists an injective map f : |M| — N such that the range of f, as well as the
relations {(f(a1),..., f(an)) | a1,...,a, € (M| and M = R(as,...,a,)} for
every relation R of L, are recursive (see e.g. [7]).

Let us recall useful definitions and results related to the Gaifman graph
of a structure [3] (see also [5]). Let £ be a relational language, and M be a
L—structure. The Gaifman graph of M, which we denote by G(M), is the
undirected graph whose set of vertices is | M|, and such that for all z,y € |M]|,
there is an edge between x and y if and only if x = y or if there exist some
n—ary relational symbol R € £ and some n—tuple ¢ of elements of | M| which
contains both = and y and satisfies £ € RM.

The distance d(z,y) between two elements x,y € | M| is defined as the usual
distance in the sense of the graph G(M). We denote by B,(x) the r—sphere
with center z, i.e. the set of elements y of |[M| such that d(x,y) < r. It should
be noted that for every fixed r the binary relation “y € B,.(z)” is definable in
M. For every X C | M| we define B,.(X) as B.(X) = ,cx Br(z).

A r—local formula ¢(x1,...,x,) is a formula whose quantifiers are all rela-
tivized to B,.({x1,...,7,}). We shall use the notation ¢(") to indicate that ¢
is r—local.



Let us state Gaifman’s theorem about local formulas.

Theorem 1 (/3]) Let & = (x1,...,2,) and (&) be a L—formula. From ¢
one can compute effectively a formula which is equivalent to ¢ and is a boolean
combination of formulas of the form:

. U@
o drp... 3w (Ajcics ™ (z;) A Ni<icj<s d(@i,xj) > 2r)

where s < qr(¢) +n and r < 7.
Moreover if ¢ is a sentence then only sentences of the second kind occur in
the resulting formula.

3 A sufficient condition for non-maximality

The aim of this section is to prove the following theorem.

Theorem 2 Let L be a finite relational language, and M be an infinite count-
able L—structure which satisfies the following conditions:

1. FO(M) is decidable
2. every element of (/M| is definable in M

3. for every finite set X C |M| and every r € N, there exists a € | M| such
that d(a, X) > r.

Then there exists a unary predicate symbol R & L and a (L U {R})—expansion
M’ of M such that :

o FO(M') is decidable
e the set R™M' is not definable in M.

e the elementary diagram of M’ is computable.

Let us consider a few examples.

e The structure M = (N;5), where S denotes the graph of the function
x +— x + 1, satisfies all conditions of Theorem 2. Indeed Langford [4]
proved that FO(M) is decidable. Moreover condition 2 is easy to prove,
and condition 3 is a straightforward consequence of the fact that d(x,y) =
| — y| for all natural numbers z, y.

e The same holds for any structure of the form M = (N; S, Py, ..., P,) where
the P;’s denote unary predicates and FO(M) is decidable. Note that
expanding a structure by unary predicates does not change its Gaifman
graph.



e More generally Theorem 2 applies to any infinite labelled graph with finite
degree, more precisely to any structure of the form M = (V; E, Py, ..., P,)
where V is infinite, F is a binary relation with finite degree, the P;’s
denote unary predicates, FO(M) is decidable, and every element of V' is
definable in M. In this case the Gaifman graph of M has finite degree,
which implies condition 3. Note that Theorem 2 also applies to some
structures for which the degree of the Gaifman graph is infinite — see the
last example.

e The structure M = (N; <) does not satisfy condition 3 of Theorem 2 since
d(z,y) <1 for all z,y € N. Observe that FO(M) is decidable [4], and
moreover M is not maximal: consider e.g. the structure M’ = (N; <, +)
where + denotes the graph of addition; FO(M') is decidable [6], and +
is not definable in M since in M one can only define finite or co-finite
subsets of N.

One can prove actually that for every infinite structure M in which some
linear ordering of elements of |[M]|, condition 3 does not hold. However
the next example shows that Theorem 2 can be applied to some structures
in which an infinite linear ordering is interpretable.

e Consider the disjoint union of w copies of (N; <) equipped with a successor
relation between copies, i.e. the structure M = (N x N; <, Suc) where

— (z,y) < (z',y') if and only if (x = 2’ and y < y/);
— Suc((z,y), (2',y')) if and only if 2’ =z + 1

then M satisfies the conditions of Theorem 2: the first condition comes
from the fact that FO(M) reduces to FO(N; <) and the two other con-
ditions are easy to check.

Let us explain informally the structure of the proof of Theorem 2. Given M
which satisfies the conditions of Theorem 2, we define RM' by marking gradu-
ally elements of | M|, some in RM’ and some in its complement. More precisely
we define by induction on n the sequence (X, )neny with X,, = (Ry, Sn, Tn, Fr)
where R, corresponds to a set of elements of RM,(WG will say “marked posi-
tively”), S, corresponds to a set of elements marked in the complement of RM'
(we will say “marked negatively”), T, roughly corresponds to a set of spheres
whose elements are marked in the complement of RM', and F,, denotes the set
of formulas of quantifier rank < m which will be true in M’. At each step n,
the partial marking X,, ensures that any subsequent marking will lead to a set
RM' not definable by any formula of quantifier rank n. Moreover X,, also fizes
FO,(M’). Finally RM will be defined as the union of the sets R,. In the
construction we impose some sparsity condition on RM/; this condition ensures
that there are few elements of RM in each r—sphere, which allows to express
with L-sentences whether a r—sphere of M can be marked conveniently, and
then use the condition that FO(M) is decidable in order to extend the marking
in an effective way.



Proof of Theorem 2.

Assume that M is a L—structure which satisfies the conditions of the the-
orem. Let R ¢ L be a unary predicate symbol. For every X C |M| we shall
denote by M(X) the (£ U {R})—expansion of M defined by interpreting R by

X.

Throughout the proof we shall use the following interesting consequences of
conditions 1 and 2:

e the elementary diagram of M is computable. Indeed since L is finite we

can enumerate all formulas ¢(x) with one free variable. Let us denote by
(pi(2))i>0 such an enumeration. Then the application f : M| — N which
maps every element e of | M| to the least integer i such that o; defines e is
injective; moreover the range of f, and the relations {(f(a1),..., f(an)) :
M E Q(ay,...,a,)} for every symbol Q of L, are recursive.

if ¢(z) is a formula with one free variable and M = 3z (z) then one can
find in an effective way the first integer ¢ who belongs to the range of f
and such that M |= Jz(p;(z) A ¢(x)). That is, one can find effectively
some element x € | M| for which ¢(x) holds in M.

every finite or co-finite subset A C |M]| is definable in M. This will allow
to use shortcuts such as “z € A” when we write formulas in the language

L.

We now define by induction on n the sequence (X, ),en such that for every
n, X, = (R, Sp, Ty, F,) where

1.
2.

3
4.

R,, Sp, T, are finite subsets of |[M|;

R, NS, =g,

. F, is a set of (£ U {R})—sentences with quantifier rank < n;

d(Rn; Rn-i—l \Rn) Z 7n+1;
d(z,y) > 7T for every pair of distinct elements of R, 11\ Ry;

for every R’ C | M| such that R,, C R’ and

RN ((SaU | Bri(Ti) \ Ry) = 2,

i<n
R’ is not definable by any £—formula of quantifier rank < n;

For every R’ C | M| such that R,, C R/,

R0 ((SnU | Br(Th)\ Ry) = 2,

i<n



d(R',R'\ R,) > 7"

and d(x,y) > 7" whenever z, y are distinct elements of R'\ R,,, we have

FO,(M(R")) = F,.

Induction hypothesis: assume that (X;);<, is defined and satisfies the
required conditions.

Let us define X,,. The definition consists in two main steps: during the first
step we extend the marking in order to ensure that RM’ will not be definable by
any formula with quantifier rank n; this is the easiest step, and it uses condition
(3) of the theorem. During the second step, we extend again the marking in
order to fix FO,(M’).

We set r = 7".

First step: during this step we mark a finite number of elements in order to

ensure that RM’ will not be definable by any L—formula with quantifier rank
n.

Since we deal with a finite relational language, there exist up to equivalence
finitely many formulas with quantifier rank n. From £ one can compute an
integer k, and a finite set of L—formulas {a,(z) : 1 < i < k,} such that
every L—formula with quantifier rank n is equivalent to a disjunction of some
of the ay;’s, and moreover such that the formulas «,; are incompatible. For
i =1,...,ky, let us denote by E, ; the subset of | M| defined by a, ;(z). By
construction the sequence (E,1,...,FE,,) is a partition of |[M|, and every
subset of |[M| definable by a formula of quantifier rank n is a finite union of
some of the subsets F, ;.

We shall mark elements in order that for some i, the subset E, ; contains
at least an element marked positively and another element marked negatively.
This will ensure that condition 6 is satisfied. More precisely, for i = 1,..., k,,
we mark positively (respectively negatively) at most one new element of E,, ;.
We define the sets R, ; (resp. S ;) such that R, ; contains the set of new
elements to mark positively (resp. negatively) in E,, ; (each of the sets R/, ; and
S;m» is either empty or reduced to a singleton). We proceed as follows:

o if there exists some element of E,, ; which is not marked yet, and moreover
all marked elements of F,, ; are marked positively, then we mark negatively
the first unmarked element of F,, ;.

Formally, assume that the sets R, ; and S}, ; have been defined for every
j <1, and let

Zni=Rn 1 U|JR,;USn a0 JS, ;U] Ban(T)

j<i j<i i<n



If
M = Fz(an,i(x) A & Zyi)

and moreover

M (BpiN Zn;) C (Rua U\ J R, )

g<i

(this set-theoretic property is expressible as a L—sentence) then we set
S,, ; as the singleton set consisting in the first x such that

M EFz(an () Nx & Z,,5).
Otherwise we set S;L’i =g.

e Then, if all currently marked elements of E,, ; are marked negatively, and
moreover there exists some unmarked element z of E,, ; at distance > 7l
from already marked elements, then we mark positively the first such
element .

Formally, let
Zy i =ZniUS,

If
M (BpiN(Rya U\ R, ) =2
j<i

and moreover
M E Jz(api(z) Ad(z, Z;”) > 7t

then let R}, ; be the singleton set consisting in the first such z. Otherwise
we set R , = @.

Note that the previous procedure is effective (see the remarks at the begin-
ning of the proof).

Second step: during this step we extend the marking in order to fix FO,,(M").

Up to equivalence, there exist finitely many (LU{R})—formulas F such that
gr(F) = n. By Proposition 1 every such formula F' is equivalent to a boolean
combination of formulas of the form

Jzq .. Tz ( /\ o (z;) A /\ d(z;,xj) > 2r).

1<i<s 1<i<j<s

Consider an enumeration Gy, 1,...,Gn m, of all formulas of the previous form
which arise when we apply Theorem 1 to formulas F such that ¢gr(F) = n.

During this step we shall fix which formulas G,, ; will be true in M’, which
will suffice (using again Theorem 1) to fix which formulas F' with quantifier rank
n will be true in M’.



The first idea is to check, for every j, whether there exists R’ C |M] which
extends in a convenient way the current marking and such that M(R') = G, ;
If the answer is positive, then we shall extend our marking just enough to
ensure that every subsequent extension of the marking will satisfy M’ = G,, ;.
If the answer is negative, then we do not extend the marking, and then every
subsequent extension of the marking will satisfy M’ = =G, ;.

We define by induction on j < m,, the sets R} ; and T}, ;, such that R
contains new elements to mark positively, and TT/L,' contains the centers of neW
r—spheres whose elements are marked negatively.

We proceed as follows. Fix j, and assume that the sets R} ; and T}, ; have
been defined for every i < j. We have

Gr,j i3y ... Fxs ( /\ a(r) (z;) A /\ d(z;, x;) > 2r)

1<i<s 1<i<j<s

for some r—local formula a( i (formally s depend on n and j, but we omit the
subscripts for the sake of readability).
Let Rj; ; be the set of elements currently marked positively, i.e.

Rl =R, U |JR,,ulJR,

i<kn i<j

and let R, ; be the set of elements currently marked negatively, that is

R, = (S0 |J 8,0l Ba(@) Ul Ban (T, )\ R,

i<kn <n 1<j

Let P, = Rf UR, .
We want to check whether there exists R’ C |M] such that

L. M(R/) ': Gn,j;
2. RZ,J‘ C R and R, ;NR' =0 (iLe. R extends the current marking);

3. d(R},,R'\ R} ;) > 1" ;

n j ’
4. d(z,y) > 7"F! for every pair of distinct elements of R’ \ R:Lr’]

Let us denote by (*) the conjunction of these four conditions. Let us prove
that one can express (x) with a £—sentence.

Assume first that there exists R’ which satisfies (). Let x1,...,z5 € |M|
be such that

MEYVE(N all@yn N daizg) > 2r)

1<i<s 1<i<j<s

Conditions 3 and 4 of (%) imply that each sphere B,.(z;) contains at most one
element of R’ \RJr and moreover that if such an element exists, it is the unique



element of R’ in B,(z;). Thus we can assume without loss of generality that
there exist t < s and y1,...,y: € | M| such that

By (zi) N (R'\ Ry, ;) = {vi}

for every ¢ < t, and
Bp(zi) N (R'\ R} ;) =

for every i > t. Condition (3) yields d(R:{} o Yi) > 77+ for every i, and condition
(4) yields d(y;,y;) > 7! for all distinct integers i, j.

Let us consider first the r—spheres B,.(z;) for ¢ < ¢. By definition of x; we
have M(R') = a(r)( ). Now y; is the unique element of R’ N B,.(x;) thus we

have M = o, (%, y:) where aj, ;(z;,9;) is obtained from ozgz (z;) by replacing

every atomic formula of the form R(z) by (z = y;).
Now consider the r—spheres B,.(z;) for i > t. By definition we have M(R') =

al” )( i), and B,(x;) contains no element of R’ \ R, .. Thus we have M |=

'y,(f; (x;) where 7( )( ;) is obtained from a( )(xl) by replacing every atomic for-

mula of the form R( ) by (z € Br(z;) N R+j)

The previous arguments show that M = G}, ; where G, ; is the L—sentence
Gy, ; defined as follows:

n,j*

G”I’L,j: \/Hn,j,t
t<s

where

Hyje: oy 3w3yn 3w N\ dizy) >2r A )\ dyi,yg) > TrA
1<i<j<s 1<i<j<t

A /\ d(yi, R,y ) > Tr A /\ ﬁff; (@i, i) /\ v(r)
1<i<t 1<i<t t<i<s
with

BN @i yi) + yi € Bo(wi) Ayi & Paj A Brlai) N Rf =9 A 0‘/2‘(%, Yi)-

n,J

Conversely, assume that M = G;L’j. Let t, z1,..., x4, and y1, ...,y be such
that H, j; holds in M. Then if we set R’ = R;j U{y1,..., ¥}, one checks
easily that R’ satisfies ()

Therefore we have shown that the question whether there exists R’ which
satisfies (x) is equivalent to the question whether M [= G, ; for some L—formula
which can be constructed effectively from G, ;.

It M E -G, ; (which can be checked effectively since by our hypotheses
FO(M) is demdable) then we set

A T R
Ryj=Th;=Fn;=

Now if M [= G, ; one can find effectively the least value of ¢ such that M =
H, ., and then z1,...,2, and y1,...,y; for which the formula holds. We set

R’Ti,j ={y1,.- ., U}, Tv/w' ={z1,...,25}, and Fr’L,j ={Gn;}



This completes the second step of the construction of X,.

We can now define X, as follows: we set

R,=R,1U U R, ;U U Ry ;

1<kn j<mp
!
Sp="5.-1U | S,

i<kn

T,= | T,

J<mn

and

In order to define F),, consider a formula F' with quantifier rank n. By Theorem
1, F is equivalent to a formula I which is a boolean combination of formulas
of the form G,, ;. Consider the truth value of F’ determined by setting “true”
all formulas G, ; € I}, ;, and “false” formulas G, ; € F}, ;. Then we define F,
as the union of F,,_; and of all formulas F' for which F”’ is true.

‘We have defined X,,. There remains to show that X,, satisfies all conditions
required in the definition.

e Conditions (1) to (5) are easy consequences of the construction of X,, (and
the induction hypotheses).

e Let us consider condition (6). Let R' C | M| be such that R, C R’ and

R0 ((SyU | Bri(Th) - Ry) = @.

i<n

Let us prove that R’ is not definable by any £—formula of quantifier rank
< n. Since every subset of | M| definable by a £L—formula with quantifier
rank n is the union of some of the sets E, ;, it suffices to prove that R’
and its complement intersect some K, ;.

By construction, the set X = R,,US,UJ,,, T} is finite. Now by hypothesis
M satisfies condition 3 of Theorem 2, thus there exists « € | M| such that
d(X,z) > 7". The element x belongs to some set E, ;. Let us prove that
R’ and its complement intersect E,, ;.

Consider the step of the construction of X, during which we marked ele-
ments of E,, ;. Recall that just before this step the set of marked elements
was
Zni=Rn 1 U|JR,;US, 10 JS, ;U] Ban(T)
j<i j<i i<n

Since z € E,; and d(X,z) > 7", the set E, ; \ Z,, is non-empty. Thus
either E, ; already contained an element marked negatively (and in this
case S, ; = @), or we marked one (from E,; \ Z,;) and put it in S ,.
Therefore the complement of R’ intersects E,, ;.

10



Just after this step, then either F, ; already contained some element
marked positively, or by definition of = there existed an element y of
E, ; at distance > 7" from currently marked elements, and thus we could
mark positively the first such element y. In both cases this ensures that
R’ intersects E, ;.

e Let us prove now that X,, satisfies condition (7). Let R’ C |M| be such
that R, C R/,
((Sn U | Bre(T:) \ Ry) =

i<n
d(R',R\ R,) > 7"

and d(z,y) > 7""! whenever z,y are distinct elements of R’ \ R,. Let
us prove that FO,(M(R')) = F,. The case of formulas with quantifier
rank < n follows from our induction hypotheses. Consider now formulas
with quantifier rank n. Their truth values are completely determined by
the truth values of formulas Gy, ;. Thus it is sufficient to prove that for
every j we have M(R') i Gy, ; if and only if F}, ; = {G, ;}. Fix j, and
consider the step of the construction of X,, during which we delt with
the formula Gy, ;. If M |= G, ; then in this case [, ; = {Gp ;}, and the
definition of R” - and T’ . 1mply that the formula Gn ; holds for every
R’ which extends (in a convement way) the marking (R, S,,T),), thus
we have M(R') |= G, ; . On the other hand if M [£ G, ;, then the
property () cannot be satisfied, and we have set F,, ; = @. In particular
R’ does not satisfy (). Now the hypotheses on R’ yield that R’ satisfies
the three last conditions of (x), thus the first condition is not satisfied,

that is M(R') = G,, ;.

This concludes the proof that there exists a sequence (X, ), >0 which satisfies
all conditions required in the definition.
Now let M’ be the (£ U {R})—expansion of M defined by

= |J R

n>0

Let us prove that M’ satisfies the properties required in Theorem 2.

The definition of RM" implies that for every n, RM  is not definable by
any L—sentence with quantifier rank n, and moreover that FO,(M’) = F,.
Therefore RM’ is not definable in M, and FO(M') is decidable.

Let us prove that the elementary diagram of M’ is computable. Consider
the function f used for the elementary diagram of M; it is sufficient to prove
that {f(a) | M' = R(a) , a € |M|} is recursive. Since every element e of | M|
is definable, there exists n,¢ such that E,; = {e}. During the construction
of X,,, and more precisely just before the marking of F,, ;, then either e had
already been marked, or e is marked during this step. Thus eventually every
element of |M]| is marked in RM’ or in its complement. This implies that

11



both {f(a) | M’ = R(a) , a € M|} and {f(a) | M’ £ R(a) , a € |M|} are
recursively enumerable, from which the result follows.
This concludes the proof of Theorem 2.

4 Conclusion

We gave a sufficient condition in terms of the Gaifman graph of the structure M
which ensures that M is not maximal. A natural problem is to extend Theorem
2 to structures M which do not satisfy condition (3). We currently investigate
the case of labelled linear orderings, i.e. infinite structures (A4; <, Py,...,P,)
where < is a linear ordering over A and the P;’s denote unary predicates; the
Gaifman distance is trivial for these structures. Another related general problem
is to find a way to refine the notion of Gaifman distance.

Finally, it would also be interesting to study the complexity gap between
the decision procedure for the theory of M and the one for the structure M’
constructed in the proof of Theorem 2.
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