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Introduction

Elgot and Rabin ask in [START_REF] Elgot | Decidability and undecidability of extensions of second (first) order theory of (generalized) successor[END_REF] whether there exist maximal decidable structures, i.e. structures M with a decidable elementary theory and such that the elementary theory of any expansion of M by a non-definable predicate is undecidable.

Soprunov proved in [START_REF] Soprunov | Decidable expansions of structures[END_REF] (using a forcing argument) that every structure in which a regular ordering is interpretable is not maximal. A partial order (B, <) is said to be regular if for every a ∈ B there exist distinct elements b 1 , b 2 ∈ B such that b 1 < a, b 2 < a, and no element c ∈ B satisfies both c < b 1 and c < b 2 . As a corollary he also proved that there is no maximal decidable structure if we replace "elementary theory" by "weak monadic second-order theory".

In [START_REF] Bès | Weakly maximal decidable structures[END_REF] we considered a weakening of the Elgot-Rabin question, namely the question of whether all structures M whose first-order theory is decidable can be expanded by some constant in such a way that the resulting structure still has a decidable theory. We answered this question negatively by proving that there exists a structure M whose monadic second-order theory is decidable and such that any expansion of M by a constant has an undecidable elementary theory.

In this paper we address the initial Elgot-Rabin question, and provide a criterion for non-maximality. More precisely, given any structure M with a decidable first-order theory, we give in Section 3 a sufficient condition in terms of the Gaifman graph of M, which ensures that M can be expanded with some non-definable predicate in such a way that the first-order theory of the expansion is still decidable. The condition is the following: for every natural number r and every finite set X of elements of the base set |M| of M there exists an element x ∈ |M| such that the Gaifman distance between x and every element of X is greater than r. This condition holds e.g. for the structure (N, S), where S denotes the graph of the successor function, and more generally for any labelled infinite graph with finite degree and whose elementary theory is decidable, i.e. any structure M = (V, E, P 1 , . . . , P n ) where V is infinite, E is a binary relation of finite degree, the P i 's are unary relations, and the elementary theory of M is decidable. Unlike Soprunov's condition, our condition expresses some limitation on the expressive power of the structure M.

In Section 2 we recall some important definitions and results. Section 3 deals with the main theorem. We conclude the paper with related questions.

Preliminaries

In the sequel we consider first-order logic with equality. We deal only with relational structures. Given a language L and a L-structure M, we denote by |M| the base set of M. For every symbol R of L we denote by R M the interpretation of R in M. As usual we shall sometimes confuse symbols and their interpretation. We denote by F O(M) the first-order (complete) theory of M, i.e. the set of first-order L-sentences true in M. By "definable in M " we mean "first-order definable in M without parameters".

We denote by qr(φ) the quantifier rank of the formula φ, defined inductively by qr(φ) = 0 if φ is atomic, qr(¬F ) = qr(F ), qr(F αG) = max(qr(F ), qr(G)) for α ∈ {∧, ∨, →}, and qr(∃xF ) = qr(∀xF ) = qr(F ) + 1. We define F O n (M) as the set of L-sentences F such that qr(F ) ≤ n and M |= F .

We say that the elementary diagram of a structure M is computable if there exists an injective map f : |M| → N such that the range of f , as well as the relations {(f (a 1 ), . . . , f (a n )) | a 1 , . . . , a n ∈ |M| and M |= R(a 1 , . . . , a n )} for every relation R of L, are recursive (see e.g. [START_REF] Harizanov | Computably-theoretic complexity of countable structures[END_REF]).

Let us recall useful definitions and results related to the Gaifman graph of a structure [START_REF] Gaifman | On local and non-local properties[END_REF] (see also [START_REF] Libkin | Elements of Finite Model Theory[END_REF]). Let L be a relational language, and M be a L-structure. The Gaifman graph of M, which we denote by G(M), is the undirected graph whose set of vertices is |M|, and such that for all x, y ∈ |M|, there is an edge between x and y if and only if x = y or if there exist some n-ary relational symbol R ∈ L and some n-tuple t of elements of |M| which contains both x and y and satisfies t ∈ R M .

The distance d(x, y) between two elements x, y ∈ |M| is defined as the usual distance in the sense of the graph G(M). We denote by B r (x) the r-sphere with center x, i.e. the set of elements y of |M| such that d(x, y) ≤ r. It should be noted that for every fixed r the binary relation "y ∈ B r (x)" is definable in M. For every X ⊆ |M| we define B r (X) as B r (X) = x∈X B r (x).

A r-local formula ϕ(x 1 , . . . , x n ) is a formula whose quantifiers are all relativized to B r ({x 1 , . . . , x n }). We shall use the notation ϕ (r) to indicate that ϕ is r-local.

Let us state Gaifman's theorem about local formulas. Theorem 1 ([3]) Let x = (x 1 , . . . , x n ) and ϕ( x) be a L-formula. From ϕ one can compute effectively a formula which is equivalent to ϕ and is a boolean combination of formulas of the form:

• ψ (r) ( x) • ∃x 1 . . . ∃x s ( 1≤i≤s α (r) (x i ) ∧ 1≤i<j≤s d(x i , x j ) > 2r)
where s ≤ qr(ϕ) + n and r ≤ 7 k .

Moreover if ϕ is a sentence then only sentences of the second kind occur in the resulting formula.

A sufficient condition for non-maximality

The aim of this section is to prove the following theorem.

Theorem 2 Let L be a finite relational language, and M be an infinite countable L-structure which satisfies the following conditions:

1. F O(M) is decidable 2. every element of |M| is definable in M 3.
for every finite set X ⊆ |M| and every r ∈ N, there exists a ∈ |M| such that d(a, X) > r.

Then there exists a unary predicate symbol R ∈ L and a (L ∪ {R})-expansion M of M such that :

• F O(M ) is decidable • the set R M is not definable in M.
• the elementary diagram of M is computable.

Let us consider a few examples.

• The structure M = (N; S), where S denotes the graph of the function x → x + 1, satisfies all conditions of Theorem 2. Indeed Langford [START_REF] Langford | Theorems on deducibility[END_REF] proved that F O(M) is decidable. Moreover condition 2 is easy to prove, and condition 3 is a straightforward consequence of the fact that d(x, y) = |x -y| for all natural numbers x, y.

• The same holds for any structure of the form M = (N; S, P 1 , . . . , P n ) where the P i 's denote unary predicates and F O(M) is decidable. Note that expanding a structure by unary predicates does not change its Gaifman graph.

• More generally Theorem 2 applies to any infinite labelled graph with finite degree, more precisely to any structure of the form M = (V ; E, P 1 , . . . , P n ) where V is infinite, E is a binary relation with finite degree, the P i 's denote unary predicates, F O(M) is decidable, and every element of V is definable in M. In this case the Gaifman graph of M has finite degree, which implies condition 3. Note that Theorem 2 also applies to some structures for which the degree of the Gaifman graph is infinite -see the last example.

• The structure M = (N; <) does not satisfy condition 3 of Theorem 2 since d(x, y) ≤ 1 for all x, y ∈ N. Observe that F O(M) is decidable [START_REF] Langford | Theorems on deducibility[END_REF], and moreover M is not maximal: consider e.g. the structure M = (N; <, +) where + denotes the graph of addition; F O(M ) is decidable [START_REF] Presburger | Über de vollständigkeit eines gewissen systems der arithmetik ganzer zahlen, in welchen, die addition als einzige operation hervortritt[END_REF], and + is not definable in M since in M one can only define finite or co-finite subsets of N.

One can prove actually that for every infinite structure M in which some linear ordering of elements of |M|, condition 3 does not hold. However the next example shows that Theorem 2 can be applied to some structures in which an infinite linear ordering is interpretable.

• Consider the disjoint union of ω copies of (N; <) equipped with a successor relation between copies, i.e. the structure M = (N × N; <, Suc) where Let us explain informally the structure of the proof of Theorem 2. Given M which satisfies the conditions of Theorem 2, we define R M by marking gradually elements of |M|, some in R M and some in its complement. More precisely we define by induction on n the sequence (X n ) n∈N with X n = (R n , S n , T n , F n ) where R n corresponds to a set of elements of R M (we will say "marked positively"), S n corresponds to a set of elements marked in the complement of R M (we will say "marked negatively"), T n roughly corresponds to a set of spheres whose elements are marked in the complement of R M , and F n denotes the set of formulas of quantifier rank ≤ n which will be true in M . At each step n, the partial marking X n ensures that any subsequent marking will lead to a set R M not definable by any formula of quantifier rank n. Moreover X n also fixes F O n (M ). Finally R M will be defined as the union of the sets R n . In the construction we impose some sparsity condition on R M ; this condition ensures that there are few elements of R M in each r-sphere, which allows to express with L-sentences whether a r-sphere of M can be marked conveniently, and then use the condition that F O(M) is decidable in order to extend the marking in an effective way.
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Proof of Theorem 2.

Assume that M is a L-structure which satisfies the conditions of the theorem. Let R ∈ L be a unary predicate symbol. For every X ⊆ |M| we shall denote by M(X) the (L ∪ {R})-expansion of M defined by interpreting R by X.

Throughout the proof we shall use the following interesting consequences of conditions 1 and 2:

• the elementary diagram of M is computable. Indeed since L is finite we can enumerate all formulas ϕ(x) with one free variable. Let us denote by (ϕ i (x)) i≥0 such an enumeration. Then the application f : |M| → N which maps every element e of |M| to the least integer i such that ϕ i defines e is injective; moreover the range of f , and the relations {(f (a 1 ), . . . , f (a n )) : M |= Q(a 1 , . . . , a n )} for every symbol Q of L, are recursive.

• if ψ(x) is a formula with one free variable and M |= ∃xψ(x) then one can find in an effective way the first integer i who belongs to the range of f and such that M |= ∃x(ϕ i (x) ∧ ψ(x)). That is, one can find effectively some element x ∈ |M| for which ψ(x) holds in M.

• every finite or co-finite subset A ⊆ |M| is definable in M. This will allow to use shortcuts such as "x ∈ A" when we write formulas in the language L.

We now define by induction on n the sequence (X n ) n∈N such that for every n, X n = (R n , S n , T n , F n ) where 1. R n , S n , T n are finite subsets of |M|;

2. R n ∩ S n = ∅;
3. F n is a set of (L ∪ {R})-sentences with quantifier rank ≤ n;

4. d(R n , R n+1 \ R n ) ≥ 7 n+1 ; 5. d(x, y) ≥ 7 n+1 for every pair of distinct elements of R n+1 \ R n ; 6. for every R ⊆ |M| such that R n ⊆ R and R ∩ ((S n ∪ i≤n B 7 i (T i )) \ R n ) = ∅,
R is not definable by any L-formula of quantifier rank ≤ n;

7. For every R ⊆ |M| such that R n ⊆ R , R ∩ ((S n ∪ i≤n B 7 i (T i )) \ R n ) = ∅, d(R , R \ R n ) ≥ 7 n+1 ,
and d(x, y) ≥ 7 n+1 whenever x, y are distinct elements of R \ R n , we have

F O n (M(R )) = F n .
Induction hypothesis: assume that (X i ) i<n is defined and satisfies the required conditions.

Let us define X n . The definition consists in two main steps: during the first step we extend the marking in order to ensure that R M will not be definable by any formula with quantifier rank n; this is the easiest step, and it uses condition (3) of the theorem. During the second step, we extend again the marking in order to fix F O n (M ).

We set r = 7 n .

First step: during this step we mark a finite number of elements in order to ensure that R M will not be definable by any L-formula with quantifier rank n.

Since we deal with a finite relational language, there exist up to equivalence finitely many formulas with quantifier rank n. From L one can compute an integer k n and a finite set of L-formulas {α n,i (x) : 1 ≤ i ≤ k n } such that every L-formula with quantifier rank n is equivalent to a disjunction of some of the α n,i 's, and moreover such that the formulas α n,i are incompatible. For i = 1, . . . , k n , let us denote by E n,i the subset of |M| defined by α n,i (x). By construction the sequence (E n,1 , . . . , E n,kn ) is a partition of |M|, and every subset of |M| definable by a formula of quantifier rank n is a finite union of some of the subsets E n,i .

We shall mark elements in order that for some i, the subset E n,i contains at least an element marked positively and another element marked negatively. This will ensure that condition 6 is satisfied. More precisely, for i = 1, . . . , k n , we mark positively (respectively negatively) at most one new element of E n,i . We define the sets R n,i (resp. S n,i ) such that R n,i contains the set of new elements to mark positively (resp. negatively) in E n,i (each of the sets R n,i and S n,i is either empty or reduced to a singleton). We proceed as follows:

• if there exists some element of E n,i which is not marked yet, and moreover all marked elements of E n,i are marked positively, then we mark negatively the first unmarked element of E n,i .

Formally, assume that the sets R n,j and S n,j have been defined for every j < i, and let

Z n,i = R n-1 ∪ j<i R n,j ∪ S n-1 ∪ j<i S n,j ∪ i<n B (7 i ) (T i ) If M |= ∃x(α n,i (x) ∧ x ∈ Z n,i )
and moreover

M |= (E n,i ∩ Z n,i ) ⊆ (R n-1 ∪ j<i R n,j )
(this set-theoretic property is expressible as a L-sentence) then we set S n,i as the singleton set consisting in the first x such that

M |= ∃x(α n,i (x) ∧ x ∈ Z n,i ).
Otherwise we set S n,i = ∅.

• Then, if all currently marked elements of E n,i are marked negatively, and moreover there exists some unmarked element x of E n,i at distance ≥ 7 n+1 from already marked elements, then we mark positively the first such element x.

Formally, let Z n,i = Z n,i ∪ S n,i If M |= (E n,i ∩ (R n-1 ∪ j<i R n,j )) = ∅
and moreover

M |= ∃x(α n,i (x) ∧ d(x, Z n,i ) ≥ 7 n+1 )
then let R n,i be the singleton set consisting in the first such x. Otherwise we set R n,i = ∅.

Note that the previous procedure is effective (see the remarks at the beginning of the proof).

Second step: during this step we extend the marking in order to fix F O n (M ). Up to equivalence, there exist finitely many (L ∪ {R})-formulas F such that qr(F ) = n. By Proposition 1 every such formula F is equivalent to a boolean combination of formulas of the form

∃x 1 . . . ∃x s ( 1≤i≤s α (r) (x i ) ∧ 1≤i<j≤s d(x i , x j ) > 2r).
Consider an enumeration G n,1 , . . . , G n,mn of all formulas of the previous form which arise when we apply Theorem 1 to formulas F such that qr(F ) = n.

During this step we shall fix which formulas G n,j will be true in M , which will suffice (using again Theorem 1) to fix which formulas F with quantifier rank n will be true in M .

The first idea is to check, for every j, whether there exists R ⊆ |M| which extends in a convenient way the current marking and such that M(R ) |= G n,j . If the answer is positive, then we shall extend our marking just enough to ensure that every subsequent extension of the marking will satisfy M |= G n,j . If the answer is negative, then we do not extend the marking, and then every subsequent extension of the marking will satisfy M |= ¬G n,j .

We define by induction on j ≤ m n the sets R n,j and T n,j , such that R n,j contains new elements to mark positively, and T n,j contains the centers of new r-spheres whose elements are marked negatively.

We proceed as follows. Fix j, and assume that the sets R n,i and T n,i have been defined for every i < j. We have

G n,j : ∃x 1 . . . ∃x s ( 1≤i≤s α (r) n,j (x i ) ∧ 1≤i<j≤s d(x i , x j ) > 2r)
for some r-local formula α (r) n,j (formally s depend on n and j, but we omit the subscripts for the sake of readability).

Let R + n,j be the set of elements currently marked positively, i.e.

R + n,j = R n-1 ∪ i<kn R n,i ∪ i<j R n,i ,
and let R - n,j be the set of elements currently marked negatively, that is

R - n,j = (S n-1 ∪ i<kn S n,i ∪ i<n B (7 i ) (T i ) ∪ i<j B (7 n ) (T n,i )) \ R + n,j .
Let P n,j = R + n,j ∪ R - n,j . We want to check whether there exists R ⊆ |M| such that

1. M(R ) |= G n,j ; 2. R + n,j ⊆ R and R - n,j ∩ R = 0 (i.e. R extends the current marking); 3. d(R + n,j , R \ R + n,j ) ≥ 7 n+1 ; 4. d(x, y) ≥ 7 n+1 for every pair of distinct elements of R \ R + n,j .
Let us denote by ( * ) the conjunction of these four conditions. Let us prove that one can express ( * ) with a L-sentence.

Assume first that there exists R which satisfies ( * ). Let x 1 , . . . , x s ∈ |M| be such that

M(R ) |= ( 1≤i≤s α (r) n,j (x i ) ∧ 1≤i<j≤s d(x i , x j ) > 2r)
Conditions 3 and 4 of ( * ) imply that each sphere B r (x i ) contains at most one element of R \R + n,j , and moreover that if such an element exists, it is the unique element of R in B r (x i ). Thus we can assume without loss of generality that there exist t ≤ s and y 1 , . . . , y t ∈ |M| such that B r (x i ) ∩ (R \ R + n,j ) = {y i } for every i ≤ t, and B r (x i ) ∩ (R \ R + n,j ) = ∅ for every i > t. Condition (3) yields d(R + n,j , y i ) ≥ 7 n+1 for every i, and condition (4) yields d(y i , y j ) ≥ 7 n+1 for all distinct integers i, j.

Let us consider first the r-spheres B r (x i ) for i ≤ t. By definition of x i we have M(R ) |= α (r) n,j (x i ). Now y i is the unique element of R ∩ B r (x i ) thus we have M |= α n,j (x i , y i ) where α n,j (x i , y i ) is obtained from α (r) n,j (x i ) by replacing every atomic formula of the form R(z) by (z = y i ).

Now consider the r-spheres B r (x i ) for i > t. By definition we have M(R ) |= α (r) n,j (x i ), and B r (x i ) contains no element of R \ R + n,j . Thus we have M |= γ (r) n,j (x i ) where γ (r) n,j (x i ) is obtained from α (r) n,j (x i ) by replacing every atomic formula of the form R(z) by (z ∈ B r (x i ) ∩ R + n,j ). The previous arguments show that M |= G n,j where G n,j is the L-sentence G n,j defined as follows:

G n,j : t≤s H n,j,t where H n,j,t : ∃x 1 . . . ∃x s ∃y 1 . . . ∃y t (

1≤i<j≤s d(x i , x j ) > 2r ∧ 1≤i<j≤t d(y i , y j ) > 7r∧ ∧ 1≤i≤t d(y i , R + n,j ) > 7r ∧ 1≤i≤t β (r) n,j (x i , y i ) ∧ t<i≤s γ (r) n,j (x i ))
with

β (r) n,j (x i , y i ) : y i ∈ B r (x i ) ∧ y i ∈ P n,j ∧ B r (x i ) ∩ R + n,j = ∅ ∧ α (r)
n,j (x i , y i ). Conversely, assume that M |= G n,j . Let t, x 1 , . . . , x s , and y 1 , . . . , y t be such that H n,j,t holds in M. Then if we set R = R + n,j ∪ {y 1 , . . . , y t }, one checks easily that R satisfies ( * ) Therefore we have shown that the question whether there exists R which satisfies ( * ) is equivalent to the question whether M |= G n,j for some L-formula which can be constructed effectively from G n,j .

If M |= ¬G n,j (which can be checked effectively since by our hypotheses F O(M) is decidable), then we set

R n,j = T n,j = F n,j = ∅.

Now if M |=

G n,j one can find effectively the least value of t such that M |= H n,j,t , and then x 1 , . . . , x s and y 1 , . . . , y t for which the formula holds. We set R n,j = {y 1 , . . . , y t }, T n,j = {x 1 , . . . , x s }, and F n,j = {G n,j }. This completes the second step of the construction of X n .

We can now define X n as follows: we set

R n = R n-1 ∪ i≤kn R n,i ∪ j≤mn R n,j S n = S n-1 ∪ i≤kn S n,i and T n = j≤mn T n,j .
In order to define F n , consider a formula F with quantifier rank n. By Theorem 1, F is equivalent to a formula F which is a boolean combination of formulas of the form G n,j . Consider the truth value of F determined by setting "true" all formulas G n,j ∈ F n,j , and "false" formulas G n,j ∈ F n,j . Then we define F n as the union of F n-1 and of all formulas F for which F is true.

We have defined X n . There remains to show that X n satisfies all conditions required in the definition.

• Conditions (1) to ( 5) are easy consequences of the construction of X n (and the induction hypotheses).

• Let us consider condition [START_REF] Presburger | Über de vollständigkeit eines gewissen systems der arithmetik ganzer zahlen, in welchen, die addition als einzige operation hervortritt[END_REF]. Let R ⊆ |M| be such that R n ⊆ R and

R ∩ ((S n ∪ i≤n B 7 i (T i )) -R n ) = ∅.
Let us prove that R is not definable by any L-formula of quantifier rank ≤ n. Since every subset of |M| definable by a L-formula with quantifier rank n is the union of some of the sets E n,i , it suffices to prove that R and its complement intersect some E n,i .

By construction, the set X = R n ∪S n ∪ i≤n T i is finite. Now by hypothesis M satisfies condition 3 of Theorem 2, thus there exists x ∈ |M| such that d(X, x) > 7 n . The element x belongs to some set E n,i . Let us prove that R and its complement intersect E n,i .

Consider the step of the construction of X n during which we marked elements of E n,i . Recall that just before this step the set of marked elements was

Z n,i = R n-1 ∪ j<i R n,j ∪ S n-1 ∪ j<i S n,j ∪ i<n B (7 i ) (T i )
Since x ∈ E n,i and d(X, x) > 7 n , the set E n,i \ Z n,i is non-empty. Thus either E n,i already contained an element marked negatively (and in this case S n,i = ∅), or we marked one (from E n,i \ Z n,i ) and put it in S n,i . Therefore the complement of R intersects E n,i . 

Conclusion

We gave a sufficient condition in terms of the Gaifman graph of the structure M which ensures that M is not maximal. A natural problem is to extend Theorem 2 to structures M which do not satisfy condition (3). We currently investigate the case of labelled linear orderings, i.e. infinite structures (A; <, P 1 , . . . , P n ) where < is a linear ordering over A and the P i 's denote unary predicates; the Gaifman distance is trivial for these structures. Another related general problem is to find a way to refine the notion of Gaifman distance. Finally, it would also be interesting to study the complexity gap between the decision procedure for the theory of M and the one for the structure M constructed in the proof of Theorem 2.
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Just after this step, then either E n,i already contained some element marked positively, or by definition of x there existed an element y of E n,i at distance ≥ 7 n from currently marked elements, and thus we could mark positively the first such element y. In both cases this ensures that R intersects E n,i .

• Let us prove now that X n satisfies condition [START_REF] Harizanov | Computably-theoretic complexity of countable structures[END_REF]

and d(x, y) ≥ 7 n+1 whenever x, y are distinct elements of R \ R n . Let us prove that F O n (M(R )) = F n . The case of formulas with quantifier rank < n follows from our induction hypotheses. Consider now formulas with quantifier rank n. Their truth values are completely determined by the truth values of formulas G n,j . Thus it is sufficient to prove that for every j we have M(R ) |= G n,j if and only if F n,j = {G n,j }. Fix j, and consider the step of the construction of X n during which we delt with the formula G n,j . If M |= G n,j then in this case F n,j = {G n,j }, and the definition of R n,j and T n,j imply that the formula G n,j holds for every R which extends (in a convenient way) the marking (R n , S n , T n ), thus we have M(R ) |= G n,j . On the other hand if M |= G n,j , then the property ( * ) cannot be satisfied, and we have set F n,j = ∅. In particular R does not satisfy ( * ). Now the hypotheses on R yield that R satisfies the three last conditions of ( * ), thus the first condition is not satisfied, that is

This concludes the proof that there exists a sequence (X n ) n≥0 which satisfies all conditions required in the definition. Now let M be the (L ∪ {R})-expansion of M defined by

Let us prove that M satisfies the properties required in Theorem 2. The definition of R M implies that for every n, R M is not definable by any L-sentence with quantifier rank n, and moreover that F O n (M ) = F n . Therefore R M is not definable in M, and F O(M ) is decidable.

Let us prove that the elementary diagram of M is computable. Consider the function f used for the elementary diagram of M; it is sufficient to prove that {f (a) | M |= R(a) , a ∈ |M|} is recursive. Since every element e of |M| is definable, there exists n, i such that E n,i = {e}. During the construction of X n , and more precisely just before the marking of E n,i , then either e had already been marked, or e is marked during this step. Thus eventually every element of |M| is marked in R M or in its complement. This implies that