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WEAKLY MAXIMAL DECIDABLE STRUCTURES

Alexis Bès1 and Patrick Cégielski1

Abstract. We prove that there exists a structure M whose monadic
second order theory is decidable, and such that the elementary theory
of every expansion of M by a constant is undecidable.
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Introduction

In [3], Elgot and Rabin ask whether there exist maximal decidable structures,
i.e. structures M whose elementary theory is decidable and such that the elemen-
tary theory of any expansion of M by a non-definable predicate is undecidable.

As far as we know, the only related results were obtained by Soprunov in [8],
where he proves (by a forcing argument) that every structure in which a regular
ordering is interpretable is not maximal. A partial ordering (B,<) is said to be
regular if for every a ∈ B there exist distinct elements b1, b2 ∈ B such that b1 < a,
b2 < a, and no element c ∈ B satisfies both c < b1 and c < b2. As a corollary he
also proves that there is no maximal decidable structure if we replace “elementary
theory” by “weak monadic second-order theory”.

In this paper we consider a weakening of Elgot-Rabin’ question, namely the
question whether there exist maximal decidable theories with respect to non-
definable constants. We answer positively this question for elementary theories
as well as monadic second-order theories, by proving that there exists a structure
M with a decidable monadic second-order theory, and such that every expansion
of M by a constant has an undecidable elementary theory. The proof makes uses
of Shelah’s composition theorem and Büchi’s result on the monadic second order
theory of (N, <).

We also prove that M is not maximal in the sense of Elgot and Rabin, even if
we replace “elementary theory” by “monadic second-order theory”.
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1. Some useful tools

Given a structure M we denote by FO(M) (respectively MSO(M)) the first-
order (respectively monadic second-order) theory of M . The base set of M is
denoted by |M |. We shall sometimes confuse logical symbols and their interpreta-
tion.

Given a relational language L and a countable L−structure M , we say that M
is computable if its atomic diagram is computable, i.e. if there exists an injective
map f : |M | → N such that the range of f , as well as all sets {(f(a1), . . . , f(an)) :
M |= R(a1, . . . , an)} for every relation R of L, are recursive (see e.g. [6]).

1.1. Extensions of the monadic second-order theory of (N, <)

The following proposition is an easy corollary of Büchi’s result [1] about the
monadic second order theory of (N, <).

Proposition 1.1. Let R be a unary predicate. It is decidable whether a MSO
sentence φ over the language {<,R} admits a model of the form (N;<,R) where
< is interpreted as the natural ordering over N.

Moreover if it admits such a model then it admits a model where the interpreta-
tion of R is an ultimately periodic subset of N (which can be computed effectively
from φ).

Proof. By [1] for every monadic second-order sentence φ there exists an automaton
A over ω−words such that (N, <,R) |= φ if and only if the word wR ∈ {0, 1}ω

which corresponds to the characteristic sequence of R is recognized byA. Moreover
A can be computed effectively from φ. Thus the question whether a MSO sentence
φ over the language {<,R} admits a model of the form (N;<,R) is reducible to
the emptiness problem for A, which is decidable by [1].

The second part of the proposition comes from the fact that if the automaton
A accepts some ω−word then it accepts some ultimately periodic ω−word, which
can be computed effectively from A. �

We shall use the notion of rich word (see [2, 5]).

Definition 1.2. Given a finite alphabet A, a Z−word over A is a sequence w :
Z → A. We say that a Z−word w is rich if every finite word over A appears
infinitely many times in w in both directions; that is, for every non-empty word
u = u1 . . . un over A and every j ∈ Z there exists k > j and k′ < j such that
w(k + 1) . . . w(k + n) = u and w(k′ + 1) . . . w(k′ + n) = u.

Compton proved that the MSO theory of (Z, <) extended by any rich word is
decidable [2] :

Theorem 1.3. Let w : Z → A be a rich word. For every a ∈ A let Xa ⊆ Z be
defined as Xa = {z ∈ Z : w(z) = a}. Then the MSO theory of (Z;<, (Xa)a∈A) is
decidable.
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1.2. The Composition Method

We shall use Shelah’s composition method [7] which allows to reduce the MSO
theory of a sum of structures to the MSO theories of the components and the MSO
theory of the index structure. This method is a generalization of the Feferman-
Vaught technique [4]. For a recent and detailed presentation of Shelah’s method
we refer the reader to the paper [9], from which we borrow most of our definitions
and notations.

We state definitions and results for the special case where the language L of
the component structures equals L = {<,R} where R denotes a unary predicate
(as in [9]).

Definition 1.4. We start from an index structure Ind = (I,<I) where <I is a
linear ordering. Consider the relational language L = {<,R} where R denotes
a unary predicate, and a family (Mi)i∈I of L−structures Mi = (Ai;<i, Ri) such
that the interpretation <i of < in each Mi is a linear ordering. We define the
ordinal sum of the family (Mi)i∈I as the L−structure M = (A;<M , RM ) where

• A equals the disjoint union of the Ai’s
• x <M y holds if and only if (x ∈ Ai and y ∈ Aj for some i <I j), or

(x, y ∈ Ai and x <i y)
• for every x ∈ A, RM (x) holds if and only if Mi |= Ri(x) where i is such

that x ∈ Ai.

We shall use the notation M =
∑

i∈I Mi.

In view of Theorem 1.7 one has to consider a slight modification of the MSO
formalism:

• we deal with MSO logic in which only monadic second-order variables
occur; this is always possible by introducing the predicate“to be a singleton
set” and replacing each relation which involves FO variables by relations
which involve MSO variables restricted to singletons.

• for every n ≥ 1 we add to the language the predicates Covn(X1, . . . , Xn)
and Partn(X1, . . . , Xn), which are respectively interpreted as ”X1 ∪ · · · ∪
Xn equals the whole domain”, and ”(X1, . . . , Xn) is a partition of the
domain”. These predicates do not add any expressive power to the full
MSO theory since they are already MSO-definable, but their use allows to
extend the expressive power of quantifier-free formulas.

Definition 1.5. Given n ∈ N and a sequence k = (k1, . . . , kn) of natural numbers,
we call k−formula a MSO formula in prenex form which consists in a block of k1

quantifiers of the same kind, followed by a block of k2 quantifiers of the same
kind, etc... and ends with a block of kn quantifiers of the same kind followed by
a quantifier-free formula. For example the formula ∀X1∀X2∃X3 φ(X), where φ is
quantifier-free, is a (2, 1)−formula. A k−sentence is a k−formula which is closed.
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Definition 1.6. The k−theory of a structure M , which we denote by T k(M), is
the set of k−sentences which are true in M . We denote M ≡k M

′ if M and M ′

have the same k−theory.

Observe that the equivalence classes of ≡k can be defined in MSO logic: for
every set T of k−sentences there exists a k−sentence ψT such that M |= ψT if and
only if the k−theory of M equals T . Moreover ψT can be computed effectively
from T .

We state Shelah’s composition theorem [7] as in [9]:

Theorem 1.7. Let M =
∑

i∈I Mi be the ordinal sum of the family (Mi)i∈I . Given
a sequence k = (k1, . . . , kn) one can compute a sequence r = (r1, . . . , rn) such that
the k−theory of M is determined (in an effective way) by the r−theory of the
structure (I,<I , Q1, . . . , Qp) where

Qj = {i ∈ I : T k(Mi) = τj} j = 1, . . . , p

and τ1, . . . , τp denote the p distinct k−theories of the Mi’s.

2. A weakly maximal decidable structure

We state now the main result of the paper.

Theorem 2.1. There exist a relational language L and a countable L−structure
M such that:

• M is computable;
• the monadic second-order theory of M is decidable;
• every (L∪ {c})−expansion of M by a constant symbol c 6∈ L has an unde-

cidable elementary theory.

Proof of Theorem 2.1. Let us state first the main lines of the proof. We shall
define M as an ordinal sum (indexed by Z with its natural ordering) of structures
of the form (N;<,R) where R is some unary predicate whose interpretation varies
from one component to another. The idea is to “hide” a copy of some structure
(N;<,B) among other components of the ordinal sum, in such a way that, on one
hand, this copy cannot be distinguished easily from other components by a MSO
sentence, and on the other hand the structure (N;<,B) has an undecidable FO
theory. The undecidability of FO(M) enriched by any constant will come from the
fact that the constant allows to localize the component to which it belongs, from
which we can reach the copy of (N;<,B) and use the undecidability of FO(N;<
,B). The decidability of MSO(M) will be obtained by using Theorem 1.7, which
will allow to reduce the decision problem for a given MSO sentence φ to the decision
problem for an extension of MSO(Z, <) by a rich word, which is decidable by
Theorem 1.3.

Let W ⊆ N be a recursively enumerable not recursive predicate. Let gW : N →
N be an enumerator for W , i.e. a total recursive function whose range is W . Let
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B ⊆ N be the set of elements of the sequence (bn)n∈N defined by b0 = gW (0) and
bn+1 = bn + gW (n) + 1.

Lemma 2.2. FO(N;<,B) is undecidable.

Proof. One can associate effectively to every m ∈ N some FO-sentence φm such
that m ∈W if and only if (N;<,B) |= φm; this sentence simply expresses the fact
that there exist two consecutive elements of B at distance m+ 1. �

Let us define the structureM . Consider a recursive function f which enumerates
all finite non-empty sequences of ultimately periodic subsets of N (such a function
exists). Given n ∈ N we shall use the notation f(n) = (En,1, En,2, . . . , En,l(n))
where En,i ⊆ N is ultimately periodic, and l(n) denotes the length of the sequence
f(n).

Definition 2.3. Let M be the {<,R}−structure defined as M =
∑

i∈Z Mi, where
for every i ∈ Z we have Mi = (N;<,Ri) where the interpretation of Ri is defined
as follows:

• R0 = B (i.e. R coincides with B in the component with index 0).
• Ri = E0,i for every i ∈ [1, l(0)] (i.e. R coincides with E0,i in the compo-

nents whose index i belongs to [1, l(0)]).
• Ri = E1,−i for every i ∈ [−l(1),−1] (i.e. R coincides with E1,−i in the

components whose index i belongs to [−l(1),−1]).
• For every n ∈ N we have:

– For every i ∈ [1, l(2n+2)], if z =
∑

0≤j≤n l(2j)+ i then Rz = E2n+2,i

– For every i ∈ [1, l(2n + 3)], if z = −
∑

0≤j≤n l(2j + 3) + i − 1 then
Rz = E2n+3,i

Let us prove that M satisfies the conditions stated in Theorem 2.1. The proof
of the following lemma is a straightforward consequence of the above definition
and the fact that the set B is recursive.

Lemma 2.4. The structure M is computable.

Let us prove now that M is maximal with respect to non-definable constants.

Lemma 2.5. Let c be a constant symbol. For any interpretation of c, the structure
M ′ defined as the expansion of M with respect to c has an undecidable elementary
theory.

Proof. This comes from Lemma 2.2, and the fact that FO(N;<,B) is interpretable
into FO(M ′). Indeed with the constant c one can easily define in M ′ the first
element x of the Mi to which c belongs: this is the greatest element less than
or equal to c and without predecessor. Then from x one can define the first
element y of M0 (seen as an element of |M |): in case i ≥ 0 then the formula
expresses that y ≤ x, y has no predecessor, and there are i elements without
predecessor between y and x; the case i < 0 is similar. Then from y one defines
easily the subset |M0| (seen as a subset of |M |). Finally since M0 is a copy of
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(N;<,B), classical relativization techniques allow to translate every L−sentence
ϕ in a L ∪ {c}−sentence ϕ′ such that (N;<,B) |= ϕ if and only if M ′ |= ϕ′. �

Note that the previous arguments can be extended in an easy way to the case
where one expands M by any unary predicate R whose interpretation is a finite
or co-finite subset of |M |.

Lemma 2.6. The MSO theory of M is decidable.

Proof. Let us prove that the application which maps k to the k−theory of M is
effective. By Theorem 1.7 it is sufficient to prove that for every k

(1) one can compute effectively the set S(k) = {T k(Mi) | i ∈ Z}
(2) if we denote by τ1, . . . , τpk

the distinct elements of S(k), then the MSO
theory of the structure (Z;<,Q1, . . . , Qpk

), where

Qj = {i ∈ Z : T k(Mi) = τj},

is decidable.
First of all, observe that for every set τ of k−sentences there exists a sentence

φ such that for every L−structure Z, we have Z |= φ if and only if T k(Z) = τ .
Now by Proposition 1.1 we can check effectively whether φ admits a model Z
of the form (N;<,R) where < is interpreted as the natural ordering over N. If
such a model Z exists, then Proposition 1.1 implies that there exists an ultimately
periodic set X ⊆ N such that (N;<,R) |= φ when one interprets R by X, and thus
by definition of the Mi’s there exists i ∈ Z such that Mi |= φ, i.e. T k(Mi) = τ .
On the other hand if no such model Z exists then a fortiori there is no Mi such
that T k(Mi) = τ . This proves (1).

Let us prove (2). By Theorem 1.3 it suffices to prove that the word w : Z →
{1, . . . , pk} defined by w(z) = i if and only if z ∈ Qi, is a rich word. This amounts
to show that for all n, j ∈ N and every non-empty sequence (t1, . . . , tn) of elements
of {τ1, . . . , τpk

} , there exist z > j (resp. z < j) such that the k−theories of the
structures Mz+1, . . . ,Mz+n are t1, . . . , tn, respectively. Now by Proposition 1.1 it
suffices to prove that for every sequence (F1, . . . , Fn) of ultimately periodic subsets
of N there exist z > j (resp. z < j) such that Rz+i = Fi for every i ∈ {1, . . . , n}.
This comes directly from the very construction of M .

�

This completes the proof of Theorem 2.1. This theorem shows that the structure
M is maximal with respect to non-definable constants. However M is not maximal
in the sense of Elgot and Rabin, even if we consider monadic second-order logic.

Proposition 2.7. There exists S ⊆ |M | which is not MSO-definable in M , and
such that the (L∪{S})−expansion of M induced by S has a decidable MSO-theory.

Proof. The set S is defined by induction on n ∈ N. The idea is to mark for each
n finitely many components Mi of M , either in S or in the complement of S (i.e.
either all elements, or no element, of Mi belong to S).
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For every i ∈ Z we denote by Si the interpretation of S in the structure Mi,
and by M ′

i the (L ∪ {S})−expansion of Mi induced by Si.
Let g be a function which enumerates all pairs (H,B) where H denotes a finite

and non empty sequence of ultimately periodic subsets of N, and B is a subset of
{1, . . . ,m} where m denotes the length of H (such a function exists). We shall use
the notation g(n) = ((Hn,1,Hn,2, . . . ,Hn,λ(n)), Bn).

For every n ∈ N we proceed as follows:

(1) Consider the set Fn of MSO formulas ϕ(X) in the language L with one
free variable X, with quantifier rank less than or equal to n, and such that
the subsets X ⊆ |M | for which M |= ϕ(X) holds are unions of sets |Mi|.

The language L is finite and relational, thus up to equivalence there
exist finitely many formulas in Fn. Therefore there exist an ≥ 1 and a
partition (Yn,1, . . . , Yn,an

) of |M | such that every Yn,i is definable by a
formula of Fn, and every set X ⊆ |M | which is definable by a formula in
Fn is a finite union of some of the Yn,i’s. Since |M | is infinite there exists j
such that Yn,j is the union of infinitely many sets |Mi|. Let j′ be the least
positive integer such that |Mj′ | ⊆ Yn,j and Mj′ is not marked yet. We
mark all elements of |Mj′ | in S, that is we set Sj′

= |Mj′ |. Now let j′′ be
the least positive integer greater than j′ and such that |Mj′′ | ⊆ Yn,j and
Mj′′ is not marked yet. We mark all elements of |Mj′′ | in the complement
of S, that is we set Sj′′

= ∅.
This step of the marking ensures that both S and its complement in-

tersect Yn,j , which implies (by definition of the partition (Yn,1, . . . , Yn,an))
that S is not definable by any formula of Fn.

(2) Let k be the least positive integer such that no Mt with t ≥ k is marked
yet, and moreover Rk+i = Hn,i for every i ∈ {1, . . . , λ(n)}. By definition
of M such a k exists. For every i ∈ {1, . . . , λ(n)} we set Sk+i = |Mk+i|
if i ∈ Bn, and Sk+i = ∅ otherwise. Now let k′ be the greatest negative
integer such that no Mt with t < k′ + λ(n) is marked yet, and moreover
Rk′+i = Hn,i for every i ∈ {1, . . . , λ(n)}. By definition of M such a k′

exists. For every i ∈ {1, . . . , λ(n)} we set Sk′+i = |Mk′+i| if i ∈ Bn, and
Sk′+i = ∅ otherwise.

(3) For every i ∈ [k′, k] such that Mi is not marked yet, we mark Mi in the
complement of S, i.e. we set Si = ∅.

The proof that S is not MSO-definable in M easily follows from step (1) of the
construction.

Let M ′ denote the (L ∪ {S})−expansion of M induced by S. The proof that
MSO(M ′) is decidable is similar to the one of Lemma 2.6. Let us state the main
arguments. We have to prove the following:

• the function h : k → {T k(M ′
i) | i ∈ Z} is recursive;

• for all k, m ≥ 1, every sequence (τ1, . . . , τm) of elements of h(k), and every
j ∈ Z, there exist z > j (resp. z < j) such that the k−theories of the
structures M ′

z+1, . . . ,M
′
z+m are τ1, . . . , τm, respectively.
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For every i ∈ Z, let ai = 1 if Si = |Mi|, and ai = 0 otherwise. It is easy to prove
that for every i, the k−theory of the (L∪{S})−expansion M ′

i of Mi induced by S
can be computed effectively from ai and the k−theory of Mi. This fact together
with Proposition 1.1 yields that h is recursive.

For the second item, by Proposition 1.1 it suffices to prove that for every m ≥ 1,
for every m−tuple (E1, . . . , Em) of ultimately periodic subsets of N and every
m−tuple (b1, . . . , bm) of elements of {0, 1}, there exist infinitely many positive
integers and infinitely many negative integers i such that for every j ∈ {1, . . . ,m},

• Ri+j = Ej

• Si+j = |Mi+j | if bj = 1, and Si+j = ∅ if bj = 0.
This fact is a direct consequence of the step (2) in the construction of S.

Combining the two items above with Theorem 1.3 and Theorem 1.7 (as in the
proof of Lemma 2.6) yields the required result. �

Let us note that in the proof above, we show the existence of S but do not
prove that one can define S effectively, i.e. that the structure M ′ is computable.
We do not know whether such an effective definition is possible.

We wish to address many thanks to Andrei Paskevich who kindly translated Soprunov’s
paper.
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