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Existence and non–existence results

for quasilinear elliptic exterior problems

with nonlinear boundary conditions ∗

Roberta Filippucci, Patrizia Pucci and Vicenţiu Rădulescu

Abstract

Existence and non–existence results are established for quasilinear elliptic problems with nonlin-

ear boundary conditions and lack of compactness. The proofs combine variational methods with the

geometrical feature, due to the competition between the different growths of the non–linearities.

1 Introduction and the main results

Let Ω be a smooth exterior domain in R
N , that is, Ω is the complement of a bounded domain with C1,δ

boundary (0 < δ < 1). Assume that p is a real number satisfying 1 < p < N , a ∈ L∞(Ω) ∩ C0,δ(Ω) is
a positive function, and b ∈ L∞(Ω) ∩ C(Ω) is non–negative. Let p∗ := Np/(N − p) denote the critical
Sobolev exponent. In Yu [13] it is studied the following quasilinear problem







−div (a(x)|Du|p−2Du) + b(x)|u|p−2u = g(x)|u|r−2u in Ω,

u = 0 on ∂Ω, lim
|x|→∞

u(x) = 0, (1)

where p < r < p∗ and g ∈ L∞(Ω) ∩ Lp0(Ω), with p0 := p∗/(p∗ − r), is a non–trivial potential which is
positive on some non–empty open subset of Ω. Under these assumptions, Yu proved in [13] that problem
(1) has a weak positive solution u of class C1,α(Ω ∩ BR(0)) for any R > 0 and some α = α(R) ∈ (0, 1).
Problems of this type are motivated by mathematical physics (see, e.g., Reed and Simon [9] and Strauss
[12]), where certain stationary waves in nonlinear Klein–Gordon or Schrödinger equations can be reduced
to this form.

Actually, a weak solution of (1) satisfies for all ϕ ∈ E the identity

∫

Ω

(a(x)|Du|p−2Du · Dϕ + b(x)|u|p−2uϕ)dx =

∫

Ω

g(x)|u|r−2uϕdx, (2)

where E is the completion of C∞
0 (Ω) under the underlying norm

‖u‖a,b =

(
∫

Ω

[a(x)|Du|p + b(x)|u|p]dx

)1/p

.

By Lemma 2 of [13] every weak solution u of (1) is in Lq(Ω) for every q ∈ [p∗,∞) and approaches 0
as |x| → ∞. Of course E ∼ H1,p

0 (Ω) whenever 0 < b0 ≤ b(x) ∈ L∞(Ω). Taking ϕ = u in (2) we get
‖u‖p

a,b = ‖u‖r
Lr(Ω;g), so that (1) does not admit nontrivial weak solutions whenever g ≤ 0 a.e. in Ω.

∗2000 Mathematics Subject Classification: 35J60; 58E05.
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We consider a related problem involving a mixed nonlinear boundary condition and show that the
above result does not remain true in certain circumstances. The main features of the paper are the
following: (i) the quasilinear differential operator −div (a(x)|Du|p−2Du) in the left hand–side of (1) is
affected by a different perturbation which behaves like |u|q−2u, where first p < r < q < p∗ and then
p < q < r < p∗; (ii) the Dirichlet boundary condition of (1) is replaced by a mixed nonlinear boundary
condition. With the same hypotheses on Ω, a, g, p and r, we consider the problem











−div (a(x)|Du|p−2Du) + |u|q−2u = λg(x)|u|r−2u in Ω,

a(x)|Du|p−2∂νu + b(x)|u|p−2u = 0 on ∂Ω,
(3)

where λ is a real parameter and ν is the unit vector of the outward normal on ∂Ω. More precisely, we
first assume

(H1) g ∈ L∞(Ω) ∩ Lp0(Ω), with p0 := p∗/(p∗ − r), p < r < q < p∗, is a non–negative function which is
positive on a non–empty open subset of Ω;

(H2) b is a continuous positive function on Γ = ∂Ω.

Without altering the proof arguments below, the coefficient 1 of the dominating term |u|p−2u can be
replaced by any function f ∈ L∞(Ω), with inf essΩ f > 0. Hence equation (3) is the renormalized form.

Problem (3) may be viewed as a prototype of pattern formation in biology and is related to the
steady–state problem for a chemotactic aggregation model introduced by Keller and Segel [5]. Problem
(3) also plays an important role in the study of activator–inhibitor systems modeling biological pattern
formation, as proposed by Gierer and Meinhardt [4].

By a weak (non–trivial) solution of problem (3) we mean a non–trivial function u ∈ X = E ∩ Lq(Ω)
verifying for all ϕ ∈ X the identity

∫

Ω

a(x)|Du|p−2Du · Dϕdx +

∫

Γ

b(x)|u|p−2uϕdσ +

∫

Ω

|u|q−2uϕdx = λ

∫

Ω

g(x)|u|r−2uϕdx, (4)

where now E is the completion of the restriction on Ω of functions of C∞
0 (RN ) with respect to the norm

‖u‖a,b =

(
∫

Ω

a(x)|Du|pdx +

∫

Γ

b(x)|u|pdσ

)1/p

,

and X is the reflexive Banach space endowed with the norm

‖u‖ =
{

‖u‖p
a,b + ‖u‖p

Lq(Ω)

}1/p

.

Hence, by (H1)–(H2), all the integrals in (4) are well defined and converge.
The loss of compactness of the Sobolev imbeddings on unbounded domains renders variational tech-

niques more delicate. Some of the papers treating problems on unbounded domains use special function
spaces where the compactness is preserved, such as spaces of radially symmetric functions. We point out
that even if Ω is unbounded, standard compact imbeddings still remain true, e.g., if Ω is thin at infinity,
in the sense that

lim
R→∞

sup
{

µ(Ω ∩ B(x, 1)) : x ∈ R
N , |x| = R

}

= 0 ,

where µ denotes the Lebesgue measure and B(x, 1) is the unit ball centered at x. Such arguments
cannot be applied to our general unbounded domain Ω. In this case, since Ω is not “thin” and it looks
like R

N at infinity (because Ω is an exterior domain), the analysis of the compactness failure shows
that a Palais–Smale sequence of the associated energy functional (see Bahri and Lions [2]) differs from
its weak limit by “waves” that go to infinity. However, the definition of X , combined with the main
assumption p < r < p∗, ensures that

the function space X is compactly embedded into the weighted Lebesgue space Lr (Ω; g). (5)

2



Taking ϕ = u in (4), we have that any weak solution u of (3) satisfies the equality

‖u‖p
a,b + ‖u‖q

Lq(Ω) = λ ‖u‖r
Lr(Ω;g), (6)

so that problem (3) does not have any nontrivial solution whenever λ ≤ 0. We first prove that the result
still remains true for sufficiently small values of λ > 0 when p < r < q < p∗, that is, the term |u|q−2u
“dominates” the right hand–side and makes impossible the existence of a solution to our problem (3).
On the other hand, if λ > 0 is sufficiently large, then (3) admits weak solutions. The precise statement
of this result is the following.

Theorem 1.1. (The case p < r < q < p∗). Under the assumptions (H1) and (H2) there exists λ∗ > 0
such that

(i) if λ < λ∗, then problem (3) does not have any weak solution;

(ii) if λ ≥ λ∗, then problem (3) has at least one weak solution u, with the properties

(a) u ∈ L∞
loc(Ω);

(b) u ∈ C1,α(Ω ∩ BR), α = α(R) ∈ (0, 1);

(c) u > 0 in Ω;

(d) u ∈ Lm(Ω) for all p∗ ≤ m < ∞ and lim|x|→∞ u(x) = 0.

In the second part of the paper we consider condition (H1)′, which is exactly assumption (H1), with
the only exception that condition p < r < q < p∗ is replaced by

p < q < r < p∗.

Theorem 1.2. Under the assumptions (H1)′ and (H2)

(i) problem (3) does not have any weak solution for any λ ≤ 0;

(ii) problem (3) has at least one weak solution u, with the properties (a)–(d) of Theorem 1.1 for all
λ > 0.

2 Proof of Theorem 1.1

We point out in what follows the main ideas of the proof:
(a) There is some λ∗ > 0 such that problem (3) does not have any solution for any λ < λ∗. This

means that if a solution exists then λ must be sufficiently large. One of the key arguments in this proof
is based on the assumption q > r. In particular, this proof yields an energy lower bound of solutions in
term of λ which will be useful to conclude that problem (3) has a non–trivial solution if λ = λ∗.

(b) There exists λ∗∗ > 0 such that problem (3) has at least one solution for any λ > λ∗∗. Next,
by the properties of λ∗ and λ∗∗ we deduce that λ∗∗ = λ∗. The proof uses variational arguments and is
based on the coercivity of the corresponding energy functional defined on X by

Jλ(u) =
1

p
‖u‖p

a,b +
1

q
‖u‖q

Lq(Ω) −
λ

r
‖u‖r

Lr(Ω;g).

We show that the minimum of J is achieved by a weak solution of (3). In order to obtain that this
global minimizer is not trivial, we prove that the corresponding energy level is negative provided λ is
sufficiently large.

Step 1. Non–existence for λ > 0 small. It is enough to show that, if there is a weak solution of
problem (3), then λ must be sufficiently large. Assume that u is a weak solution of (3), then by (4) we
get (6). Since r < q and gq/(q−r) is in L1(Ω) by (H1), applying the Young inequality we deduce that

λ‖u‖r
Lr(Ω;g) ≤

(q − r)λq/(q−r)

q

∫

Ω

g(x)q/(q−r)dx +
r

q
‖u‖q

Lq(Ω). (7)
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Next, by (6), (7) and the fact that u is non–trivial,

0 < ‖u‖p
a,b ≤

q − r

q
λq/(q−r)

∫

Ω

g(x)q/(q−r)dx +
r − q

q
‖u‖q

Lq(Ω)

≤
q − r

q
λq/(q−r)

∫

Ω

g(x)q/(q−r)dx := λq/(q−r)A < ∞.

(8)

The continuity of the imbedding X →֒ Lr(Ω; g) implies that there exists C = C(Ω, g, p, q, r) > 0 such
that

C‖v‖p
Lr(Ω;g) ≤ ‖v‖p

a,b (9)

for any v ∈ X . Thus, by (6) and (9), we have C‖u‖p
Lr(Ω;g) ≤ λ‖u‖r

Lr(Ω;g). Since p < r < q, λ > 0 and

‖u‖Lr(Ω;g) > 0 by (6), we deduce that

λ ≥ C‖u‖p−r
Lr(Ω;g) ≥ CC(−1+r/p)‖u‖p−r

a,b ≥ Cr/pλq(p−r)/p(q−r)A(p−r)/p.

It follows that λ ≥ (Ap−rC r)(q−r)/r(q−p), which also implies that λ∗ ≤ (Ap−rC r)(q−r)/r(q−p). This
concludes the proof of (i).

In particular, Step 1. shows that if for some λ > 0 problem (3) has a weak solution u, then

(Cr/λp)
1/(r−p)

≤ ‖u‖p
a,b ≤ λq/(q−r)A, (10)

where C = C(Ω, g, p, q, r) > 0 is the constant given in (9).

Step 2. Coercivity of J . It follows by (H1). Indeed, for any u ∈ X and all λ > 0

Jλ(u) =
1

p
‖u‖p

a,b +
1

2q
‖u‖q

Lq(Ω) +
1

2q
‖u‖q

Lq(Ω) −
λ

r
‖u‖r

Lr(Ω;g).

By Hölder inequality and (H1) we have

Jλ(u) ≥
1

p
‖u‖p

a,b +
1

2q
‖u‖q

Lq(Ω) +
1

2q
‖u‖q

Lq(Ω) −
λ

r
‖g‖Lq/(q−r)(Ω)‖u‖

r
Lq(Ω). (11)

Now, since for any positive numbers α, β, q and r, with r < q, the function Φ : R
+
0 → R defined by

Φ(t) = αtr − βtq, achieves its positive global maximum

Φ(t0) =
q − r

q

(

r

q

)r/(q−r)

αq/(q−r)βr/(r−q) > 0

at point t0 = (αr/βq)1/(q−r) > 0, we immediately have αtr − βtq ≤ C(q, r)αq/(q−r)βr/(r−q), where

C(q, r) = (q − r) (rr/qq)
1/(q−r)

. Returning to (11) and using the above inequality, with t = ‖u‖Lq(Ω),
α = λ‖g‖Lq/(q−r)(Ω)/r and β = 1/2q, we deduce that

Jλ(u) ≥
1

p
‖u‖p

a,b +
1

2q
‖u‖q

Lq(Ω) − C(λ, q, r, g),

where C(λ, q, r, g) = 2r/(q−r)(q − r)
(

λ‖g‖Lq/(q−r)(Ω)

)q/(q−r)
/qr. This implies the claim.

Let n 7→ un be a minimizing sequence of Jλ in X , which is bounded in X by Step 2. Without loss of
generality, we may assume that (un)n is non–negative, converges weakly to some u in X and converges
also pointwise.

Step 3. The non–negative weak limit u ∈ X is a weak solution of (3). To prove this, we shall show that

Jλ(u) ≤ lim inf
n→∞

Jλ(un).
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By the weak lower semicontinuity of the norm ‖ · ‖ we have

1

p
‖u‖p

a,b +
1

q
‖u‖q

Lq(Ω) ≤ lim inf
n→∞

(

1

p
‖un‖

p
a,b +

1

q
‖un‖

q
Lq(Ω)

)

.

Next, the boundedness of (un)n in X implies with the same argument that

‖u‖Lr(Ω;g) = lim
n→∞

‖un‖Lr(Ω;g)

by (5). Hence u is a global minimizer of Jλ in X .

Step 4. The weak limit u is a non–negative weak solution of (3) if λ > 0 is sufficiently large. Clearly
Jλ(0) = 0. Thus, by Step 3 it is enough to show that there exists Λ > 0 such that

inf
u∈X

Jλ(u) < 0 for all λ > Λ.

Consider the constrained minimization problem

Λ := inf

{

1

p
‖w‖p

a,b +
1

q
‖w‖q

Lq(Ω) : w ∈ X and ‖w‖r
Lr(Ω;g) = r

}

. (12)

Let n 7→ vn ∈ X be a minimizing sequence of (12), which is clearly bounded in X , so that we can
assume, without loss of generality, that it converges weakly to some v ∈ X , with ‖v‖r

Lr(Ω;g) = r and

Λ =
1

p
‖v‖p

a,b +
1

q
‖v‖q

Lq(Ω)

by the weak lower semicontinuity of ‖ · ‖. Thus, Jλ(v) = Λ − λ < 0 for any λ > Λ.

Now put
λ∗ : = sup{λ > 0 : problem (3) does not admit any weak solution},

λ∗∗ : = inf{λ > 0 : problem (3) admits a weak solution}.

Of course Λ ≥ λ∗∗ ≥ λ∗ > 0. To complete the proof of Theorem 1.1 it is enough to argue the following
essential facts: (a) problem (3) has a weak solution for any λ > λ∗∗; (b) λ∗∗ = λ∗ and problem (3)
admits a weak solution when λ = λ∗.

Step 5. Problem (3) has a weak solution for any λ > λ∗∗ and λ∗∗ = λ∗. Fix λ > λ∗∗. By the definition
of λ∗∗, there exists µ ∈ (λ∗∗, λ) such that that Jµ has a non–trivial critical point uµ ∈ X . Of course, uµ

is a sub–solution of (3). In order to find a super–solution of (3) which dominates uµ, we consider the
constrained minimization problem

inf

{

1

p
‖w‖p

a,b +
1

q
‖w‖q

Lq(Ω) −
λ

r
‖w‖r

Lr(Ω;g) : w ∈ X and w ≥ uµ

}

.

Arguments similar to those used in Step 4 show that the above minimization problem has a solution
uλ ≥ uµ which is also a weak solution of problem (3), provided λ > λ∗∗.

We already know that λ∗∗ ≥ λ∗. But, by the definition of λ∗∗ and the above remark, problem (3) has
no solutions for any λ < λ∗∗. Passing to the supremum, this forces λ∗∗ = λ∗ and completes the proof.

Step 6. Problem (3) admits a non–negative weak solution when λ = λ∗. Let n 7→ λn be a decreasing
sequence converging to λ∗ and let n 7→ un be a corresponding sequence of non–negative weak solutions
of (3). As noted in Step 2, the sequence (un)n is bounded in X , so that, without loss of generality, we
may assume that it converges weakly in X , strongly in Lr(Ω; g), and pointwise to some u∗ ∈ X , with
u∗ ≥ 0. By (4), for all ϕ ∈ X ,

∫

Ω

a(x)|Dun|
p−2Dun · Dϕdx +

∫

Γ

b(x)|un|
p−2unϕdσ +

∫

Ω

|un|
q−2unϕdx = λn

∫

Ω

g(x)|un|
r−2unϕdx,
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and passing to the limit as n → ∞ we deduce that u∗ verifies (4) for λ = λ∗, as claimed.
It remains to argue that u∗ 6= 0. A key ingredient in this argument is the lower bound energy given

in (10). Hence, since un is a non–trivial weak solution of problem (3) corresponding to λn, we have

‖un‖
p
a,b ≥ (Cr/λp)

1/(r−p)
by (10), where C > 0 is the constant given in (9) and not depending on λn.

Next, since λn ց λ∗ as n → ∞ and λ∗ > 0, it is enough to show that

‖un − u∗‖a,b → 0 as n → ∞. (13)

Since un and u∗ are weak solutions of (3) corresponding to λn and λ∗, we have by (4), with ϕ = un−u∗,

∫

Ω

a(x)
(

|Dun|
p−2Dun − |Du∗|p−2Du∗

)

· D(un − u∗)dx

+

∫

Γ

b(x)
(

|un|
p−2un − |u∗|p−2u∗

)

(un − u∗)dσ +

∫

Ω

(|un|
q−2un − |u∗|q−2u∗)(un − u∗)dx

=

∫

Ω

g(x)
(

λn |un|
r−2un − λ∗ |u∗|r−2u∗

)

(un − u∗)dx.

(14)

Elementary monotonicity properties imply that
∫

Ω

(|un|
q−2un − |u∗|q−2u∗)(un − u∗)dx ≥ 0 and 〈I ′(u∗

n) − I ′(u∗), un − u∗〉 ≥ 0,

where
I(u) := ‖u‖p

a,b/p.

Since λn ց λ∗ as n → ∞ and X is compactly embedded in Lr(Ω; g), for all p > 1 relation (14) implies

0 ≤ 〈I ′(u∗
n) − I ′(u∗), un − u∗〉 ≤

∫

Ω

g(x)
[

λn ur−1
n − λ∗ (u∗)r−1

]

(un − u∗)dx → 0 (15)

as n → ∞.
Now, we distinguish the cases p ≥ 2 and 1 < p < 2 and we use the following elementary inequalities

(see [11, formula (2.2)]): for all ξ, ζ ∈ R
N

|ξ − ζ|p ≤

{

c(|ξ|p−2ξ − |ζ|p−2ζ)(ξ − ζ) for p ≥ 2;

c〈|ξ|p−2ξ − |η|p−2η, ξ − η〉p/2 (|ξ|p + |η|p)
(2−p)/2

for 1 < p < 2,
(16)

where c is a positive constant.

Case 1: p ≥ 2. By (16) and (15), we immediately conclude that

‖un − u∗‖p
a,b ≤ c〈I ′(u∗

n) − I ′(u∗), un − u∗〉 = o(1) as n → ∞.

Case 2: 1 < p < 2. Since by convexity for all γ ≥ 1

(v + w)γ ≤ 2γ−1(vγ + wγ) for all v, w ∈ R
+
0 , (17)

then, for γ = 2/p, we have

‖un − u∗‖2
a,b ≤ 2(2−p)/p

[

(
∫

Ω

a(x)|D(un − u∗)|p dx

)2/p

+

(
∫

Γ

b(x)|un − u∗|p dσ

)2/p
]

.

Thus, in order to conclude that (13) holds, it is enough to show that

∫

Ω

a(x)|D(un − u∗)|p dx → 0 and

∫

Γ

b(x)|un − u∗|p dσ → 0

6



as n → ∞. Indeed, combining (16) and (17), we have
∫

Ω

a(x)|D(un − u∗)|p dx

≤ c

∫

Ω

a(x)
{

(|Dun|
p−2Dun − |Du∗|p−2Du∗) · D(un − u∗)

}p/2
(|Dun|

p + |Du∗|p)
(2−p)/2

dx

≤ c

(
∫

Ω

a(x)(|Dun|
p−2Dun − |Du∗|p−2Du∗) · D(un − u∗) dx

)p/2
(

‖un‖
p
a,b + ‖u∗‖p

a,b

)(2−p)/2

≤ c

(
∫

Ω

a(x)(|Dun|
p−2Dun − |Du∗|p−2Du∗) · D(un − u∗) dx

)p/2
(

‖un‖
(2−p)p/2
a,b + ‖u∗‖

(2−p)p/2
a,b

)

≤ C1

(
∫

Ω

a(x)(|Dun|
p−2Dun − |Du∗|p−2Du∗) · D(un − u∗) dx

)p/2

,

where C1 = 2c
(

λq/(q−r)A
)(2−p)/2

by (10) and C1 is independent of n by (8). Similar arguments yield

∫

Γ

b(x)(un − u∗)p dσ ≤ C2

(
∫

Γ

b(x)
[

up−1
n − (u∗)p−1

]

(un − u∗) dx

)p/2

,

with an appropriate positive constant C2 independent of n. Combining the above two inequalities with
(15) we conclude that ‖un − u∗‖a,b = o(1) as n → ∞, that is (13) holds and u∗ is a non–trivial non–
negative weak solution of problem (3) corresponding to λ = λ∗.

Theorem 2.2 in Pucci and Servadei [8], based on the Moser iteration, shows that u satisfies (a),
since u ∈ W 1,p

loc (Ω), being u ∈ X , A(x, u, ξ) = −a(x)|ξ|p−2ξ and B(x, u, ξ) = λg(x)|u|r−2u − |u|q−2u
clearly verifies inequality (2.18) of [8] by (H1); for other applications see also [7]. Next, again by
the main assumptions on the coefficient a = a(x), an application of [3, Corollary on p. 830] due to
DiBenedetto shows that the weak solution u verifies also property (b). Finally, (c) follows immediately
by the strong maximum principle since u is a C1 non–negative weak solution of the differential inequality
div (a(x)|Du|p−2Du) − |u|q−2u ≤ 0 in Ω, with q > p, see, for instance, Section 4.8 of Pucci and Serrin
[6] and the comments thereby. Property (d) follows using similar arguments as in the proof of Lemma 2
of [13], which is based on Theorem 1 of Serrin [10].

3 Proof of Theorem 1.2

Taking ϕ = u in (4), we see that any weak solution u of (3) satisfies the equality (6), and the conclusion
(i) of Theorem 1.2 follows at once.

We next show that the C1 energy functional Jλ : X → R satisfies the assumptions of the Mountain
Pass theorem of Ambrosetti and Rabinowitz [1]. Fix w ∈ X \ {0}. Since p < q < r then

Jλ(tw) =
tp

p
‖w‖p

a,b +
tq

q
‖w‖q

Lq(Ω) − λ
tr

r
‖w‖r

Lr(Ω;g) < 0

provided t is sufficiently large. Next, by (5), (9) and the fact that p < q < r we observe that

Jλ(u) ≥
1

q
‖u‖p −

λ

r
‖u‖r

Lr(Ω;g) ≥
1

q
‖u‖p −

λ

rCr/p
‖u‖r ≥ α > 0,

whenever ‖u‖ = ̺ and ̺ > 0 is sufficiently small. Set

Γ = {γ ∈ C([0, 1]; X) : γ(0) = 0, γ(1) 6= 0 and Jλ(γ(1)) ≤ 0},

and put
c = inf

γ∈Γ
max

t∈[0,1]
Jλ(γ(t)).
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Applying the Mountain Pass theorem without the Palais–Smale condition we find a sequence n 7→ un ∈ X
such that

Jλ(un) → c and J ′
λ(un) → 0 (18)

as n → ∞. Moreover, since Jλ(|u|) ≤ Jλ(u) for all u ∈ X , we can assume that un ≥ 0 for any n ≥ 1. In
what follows we prove that (un)n is bounded in X . Indeed, since J ′

λ(un) → 0 in X ′, then

‖un‖
p
a,b + ‖un‖

q
Lq(Ω) = λ‖un‖

r
Lr(Ω;g) + o(1)

as n → ∞. Therefore,

c + o(1) = Jλ(un) ≥
1

q
‖un‖

p −
λ

r
‖un‖

r
Lr(Ω;g) ≥

(

1

q
−

1

r

)

(‖un‖
p − 1) + o(1)

as n → ∞. Thus, since q < r, we deduce that the Palais–Smale sequence (un)n is bounded in X . Hence,
up to a subsequence, we can assume that (un)n converges weakly in X and strongly in Lr(Ω; g) to some
element, say u∗ ≥ 0. From now on, with the same arguments as in the proof of Theorem 1.1, we deduce
that u∗ is a weak solution of the problem (3) such that properties (a)–(d) are fulfilled. Due to the
mountain-pass geometry of our problem (3) generated by the assumption p < q < r < p∗, we are able to
give the following alternative proof in order to show that u∗ is a weak solution of (3). Fix ϕ ∈ C∞

0 (RN ).
Since J ′

λ(un) → 0 in X ′, we have

∫

Ω

a(x)|Dun|
p−2Dun · Dϕdx +

∫

Γ

b(x)up−1
n ϕdσ +

∫

Ω

uq−1
n ϕdx − λ

∫

Ω

g(x)ur−1
n ϕdx = o(1)

as n → ∞. Letting n → ∞, we deduce that

∫

Ω

a(x)|Du∗|p−2Du∗ · Dϕdx +

∫

Γ

b(x)(u∗)p−1ϕdσ +

∫

Ω

(u∗)q−1ϕdx − λ

∫

Ω

g(x)(u∗)r−1ϕdx = 0

and so by density u∗ satisfies relation (4) for any ϕ ∈ X . It remains to show that u∗ 6= 0. Indeed, by
(18) and n is sufficiently large we obtain

0 <
c

2
≤ Jλ(un) −

1

p
〈J ′

λ(un), un〉

=

(

1

q
−

1

p

)

‖un‖
q
Lq(Ω) − λ

(

1

r
−

1

p

)

‖un‖
r
Lr(Ω;g) ≤

λ(r − p)

r
‖un‖

r
Lr(Ω;g),

since p < q < r . This implies that ‖u∗‖r
Lr(Ω;g) > 0 and in turn u∗ 6= 0, as required.

Finally, u∗ verifies properties (a)–(d), as shown in the proof of Theorem 1.1.
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