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Existence and non-existence results for quasilinear elliptic exterior problems with nonlinear boundary conditions

Introduction and the main results

Let Ω be a smooth exterior domain in R N , that is, Ω is the complement of a bounded domain with C 1,δ boundary (0 < δ < 1). Assume that p is a real number satisfying 1 < p < N , a ∈ L ∞ (Ω) ∩ C 0,δ (Ω) is a positive function, and b ∈ L ∞ (Ω) ∩ C(Ω) is non-negative. Let p * := N p/(N -p) denote the critical Sobolev exponent. In Yu [START_REF] Yu | Nonlinear p-Laplacian problems on unbounded domains[END_REF] it is studied the following quasilinear problem

   -div (a(x)|Du| p-2 Du) + b(x)|u| p-2 u = g(x)|u| r-2 u
in Ω, u = 0 on ∂Ω, lim

|x|→∞ u(x) = 0, (1) 
where p < r < p * and g ∈ L ∞ (Ω) ∩ L p0 (Ω), with p 0 := p * /(p * -r), is a non-trivial potential which is positive on some non-empty open subset of Ω. Under these assumptions, Yu proved in [START_REF] Yu | Nonlinear p-Laplacian problems on unbounded domains[END_REF] that problem (1) has a weak positive solution u of class C 1,α (Ω ∩ B R (0)) for any R > 0 and some α = α(R) ∈ (0, 1). Problems of this type are motivated by mathematical physics (see, e.g., Reed and Simon [START_REF] Reed | Methods of Modern Mathematical Physics IV. Analysis of Operators[END_REF] and Strauss [START_REF] Strauss | Existence of solitary waves in higher dimensions[END_REF]), where certain stationary waves in nonlinear Klein-Gordon or Schrödinger equations can be reduced to this form. Actually, a weak solution of (1) satisfies for all ϕ ∈ E the identity

Ω (a(x)|Du| p-2 Du • Dϕ + b(x)|u| p-2 uϕ)dx = Ω g(x)|u| r-2 uϕdx, (2) 
where E is the completion of C ∞ 0 (Ω) under the underlying norm

u a,b = Ω [a(x)|Du| p + b(x)|u| p ]dx 1/p
. By Lemma 2 of [START_REF] Yu | Nonlinear p-Laplacian problems on unbounded domains[END_REF] every weak solution u of (1) is in L q (Ω) for every q ∈ [p * , ∞) and approaches 0 as

|x| → ∞. Of course E ∼ H 1,p 0 (Ω) whenever 0 < b 0 ≤ b(x) ∈ L ∞ (Ω). Taking ϕ = u in (2) we get u p a,b = u r L r
(Ω;g) , so that (1) does not admit nontrivial weak solutions whenever g ≤ 0 a.e. in Ω.
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We consider a related problem involving a mixed nonlinear boundary condition and show that the above result does not remain true in certain circumstances. The main features of the paper are the following: (i) the quasilinear differential operator -div (a(x)|Du| p-2 Du) in the left hand-side of ( 1) is affected by a different perturbation which behaves like |u| q-2 u, where first p < r < q < p * and then p < q < r < p * ; (ii) the Dirichlet boundary condition of ( 1) is replaced by a mixed nonlinear boundary condition. With the same hypotheses on Ω, a, g, p and r, we consider the problem

     -div (a(x)|Du| p-2 Du) + |u| q-2 u = λg(x)|u| r-2 u in Ω, a(x)|Du| p-2 ∂ ν u + b(x)|u| p-2 u = 0 on ∂Ω, (3) 
where λ is a real parameter and ν is the unit vector of the outward normal on ∂Ω. More precisely, we first assume Without altering the proof arguments below, the coefficient 1 of the dominating term |u| p-2 u can be replaced by any function f ∈ L ∞ (Ω), with inf ess Ω f > 0. Hence equation ( 3) is the renormalized form. Problem (3) may be viewed as a prototype of pattern formation in biology and is related to the steady-state problem for a chemotactic aggregation model introduced by Keller and Segel [START_REF] Keller | Initiation of slime mold aggregation viewed as an instability[END_REF]. Problem (3) also plays an important role in the study of activator-inhibitor systems modeling biological pattern formation, as proposed by Gierer and Meinhardt [START_REF] Gierer | A theory of biological pattern formation[END_REF].

(H1) g ∈ L ∞ (Ω) ∩ L p0 (Ω), with p 0 := p * /(p * -r), p < r < q < p * ,
By a weak (non-trivial) solution of problem (3) we mean a non-trivial function u ∈ X = E ∩ L q (Ω) verifying for all ϕ ∈ X the identity

Ω a(x)|Du| p-2 Du • Dϕdx + Γ b(x)|u| p-2 uϕdσ + Ω |u| q-2 uϕdx = λ Ω g(x)|u| r-2 uϕdx, (4) 
where now E is the completion of the restriction on Ω of functions of C ∞ 0 (R N ) with respect to the norm

u a,b = Ω a(x)|Du| p dx + Γ b(x)|u| p dσ 1/p
, and X is the reflexive Banach space endowed with the norm

u = u p a,b + u p L q (Ω) 1/p .
Hence, by (H1)-(H2), all the integrals in (4) are well defined and converge. The loss of compactness of the Sobolev imbeddings on unbounded domains renders variational techniques more delicate. Some of the papers treating problems on unbounded domains use special function spaces where the compactness is preserved, such as spaces of radially symmetric functions. We point out that even if Ω is unbounded, standard compact imbeddings still remain true, e.g., if Ω is thin at infinity, in the sense that lim

R→∞ sup µ(Ω ∩ B(x, 1)) : x ∈ R N , |x| = R = 0 ,
where µ denotes the Lebesgue measure and B(x, 1) is the unit ball centered at x. Such arguments cannot be applied to our general unbounded domain Ω. In this case, since Ω is not "thin" and it looks like R N at infinity (because Ω is an exterior domain), the analysis of the compactness failure shows that a Palais-Smale sequence of the associated energy functional (see Bahri and Lions [START_REF] Bahri | On the existence of a positive solution of semilinear elliptic equations in unbounded domains[END_REF]) differs from its weak limit by "waves" that go to infinity. However, the definition of X, combined with the main assumption p < r < p * , ensures that the function space X is compactly embedded into the weighted Lebesgue space L r (Ω; g).

Taking ϕ = u in (4), we have that any weak solution u of (3) satisfies the equality

u p a,b + u q L q (Ω) = λ u r L r (Ω;g) , (6) 
so that problem (3) does not have any nontrivial solution whenever λ ≤ 0. We first prove that the result still remains true for sufficiently small values of λ > 0 when p < r < q < p * , that is, the term |u| q-2 u "dominates" the right hand-side and makes impossible the existence of a solution to our problem (3).

On the other hand, if λ > 0 is sufficiently large, then (3) admits weak solutions. The precise statement of this result is the following.

Theorem 1.1. (The case p < r < q < p * ). Under the assumptions (H1) and (H2) there exists λ * > 0 such that (i) if λ < λ * , then problem (3) does not have any weak solution;

(ii) if λ ≥ λ * , then problem (3) has at least one weak solution u, with the properties

(a) u ∈ L ∞ loc (Ω); (b) u ∈ C 1,α (Ω ∩ B R ), α = α(R) ∈ (0, 1); (c) u > 0 in Ω; (d) u ∈ L m (Ω) for all p * ≤ m < ∞ and lim |x|→∞ u(x) = 0.
In the second part of the paper we consider condition (H1) ′ , which is exactly assumption (H1), with the only exception that condition p < r < q < p * is replaced by p < q < r < p * . Theorem 1.2. Under the assumptions (H1) ′ and (H2) 2 Proof of Theorem 1.1

We point out in what follows the main ideas of the proof: (a) There is some λ * > 0 such that problem (3) does not have any solution for any λ < λ * . This means that if a solution exists then λ must be sufficiently large. One of the key arguments in this proof is based on the assumption q > r. In particular, this proof yields an energy lower bound of solutions in term of λ which will be useful to conclude that problem (3) has a non-trivial solution if λ = λ * .

(b) There exists λ * * > 0 such that problem (3) has at least one solution for any λ > λ * * . Next, by the properties of λ * and λ * * we deduce that λ * * = λ * . The proof uses variational arguments and is based on the coercivity of the corresponding energy functional defined on X by

J λ (u) = 1 p u p a,b + 1 q u q L q (Ω) - λ r u r L r (Ω;g) .
We show that the minimum of J is achieved by a weak solution of (3). In order to obtain that this global minimizer is not trivial, we prove that the corresponding energy level is negative provided λ is sufficiently large.

Step 1. Non-existence for λ > 0 small. It is enough to show that, if there is a weak solution of problem (3), then λ must be sufficiently large. Assume that u is a weak solution of (3), then by (4) we get (6). Since r < q and g q/(q-r) is in L 1 (Ω) by (H1), applying the Young inequality we deduce that λ u r L r (Ω;g) ≤ (q -r)λ q/(q-r) q Ω g(x) q/(q-r) dx + r q u q L q (Ω) .
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Next, by ( 6), [START_REF] Pucci | Existence, non-existence and regularity of radial ground states for p-Laplacian equations with singular weights[END_REF] and the fact that u is non-trivial, 0 < u p a,b ≤ q -r q λ q/(q-r) Ω g(x) q/(q-r) dx + r -q q u q L q (Ω) ≤ q -r q λ q/(q-r) Ω g(x) q/(q-r) dx := λ q/(q-r) A < ∞.

The continuity of the imbedding X ֒→ L r (Ω; g) implies that there exists C = C(Ω, g, p, q, r) > 0 such that

C v p L r (Ω;g) ≤ v p a,b (9) 
for any v ∈ X. Thus, by ( 6) and ( 9), we have C u p L r (Ω;g) ≤ λ u r L r (Ω;g) . Since p < r < q, λ > 0 and u L r (Ω;g) > 0 by [START_REF] Pucci | Handbook of Differential Equations -Stationary Partial Differential Equations[END_REF], we deduce that λ ≥ C u p-r L r (Ω;g) ≥ CC (-1+r/p) u p-r a,b ≥ C r/p λ q(p-r)/p(q-r) A (p-r)/p .

It follows that λ ≥ (A p-r C r ) (q-r)/r(q-p) , which also implies that λ * ≤ (A p-r C r ) (q-r)/r(q-p) . This concludes the proof of (i).

In particular, Step 1. shows that if for some λ > 0 problem (3) has a weak solution u, then

(C r /λ p ) 1/(r-p) ≤ u p a,b ≤ λ q/(q-r) A, (10) 
where C = C(Ω, g, p, q, r) > 0 is the constant given in (9).

Step 2. Coercivity of J. It follows by (H1). Indeed, for any u ∈ X and all λ > 0

J λ (u) = 1 p u p a,b + 1 2q u q L q (Ω) + 1 2q u q L q (Ω) - λ r u r L r (Ω;g) .
By Hölder inequality and (H1) we have

J λ (u) ≥ 1 p u p a,b + 1 2q u q L q (Ω) + 1 2q u q L q (Ω) - λ r g L q/(q-r) (Ω) u r L q (Ω) . (11) 
Now, since for any positive numbers α, β, q and r, with r < q, the function Φ : R + 0 → R defined by Φ(t) = αt r -βt q , achieves its positive global maximum Φ(t 0 ) = q -r q r q r/(q-r) α q/(q-r) β r/(r-q) > 0 at point t 0 = (αr/βq) 1/(q-r) > 0, we immediately have αt r -βt q ≤ C(q, r)α q/(q-r) β r/(r-q) , where C(q, r) = (q -r) (r r /q q ) 1/(q-r) . Returning to (11) and using the above inequality, with t = u L q (Ω) , α = λ g L q/(q-r) (Ω) /r and β = 1/2q, we deduce that

J λ (u) ≥ 1 p u p a,b + 1 2q u q L q (Ω) -C(λ, q, r, g),
where C(λ, q, r, g) = 2 r/(q-r) (q -r) λ g L q/(q-r) (Ω) q/(q-r) /qr. This implies the claim.

Let n → u n be a minimizing sequence of J λ in X, which is bounded in X by Step 2. Without loss of generality, we may assume that (u n ) n is non-negative, converges weakly to some u in X and converges also pointwise.

Step 3. The non-negative weak limit u ∈ X is a weak solution of (3). To prove this, we shall show that

J λ (u) ≤ lim inf n→∞ J λ (u n ).
By the weak lower semicontinuity of the norm • we have

1 p u p a,b + 1 q u q L q (Ω) ≤ lim inf n→∞ 1 p u n p a,b + 1 q u n q L q (Ω) .
Next, the boundedness of (u n ) n in X implies with the same argument that u L r (Ω;g) = lim n→∞ u n L r (Ω;g) by ( 5). Hence u is a global minimizer of J λ in X.

Step 4. The weak limit u is a non-negative weak solution of (3) if λ > 0 is sufficiently large. Clearly J λ (0) = 0. Thus, by Step 3 it is enough to show that there exists Λ > 0 such that inf u∈X J λ (u) < 0 for all λ > Λ.

Consider the constrained minimization problem

Λ := inf 1 p w p a,b + 1 q w q L q (Ω) : w ∈ X and w r L r (Ω;g) = r . ( 12 
)
Let n → v n ∈ X be a minimizing sequence of ( 12), which is clearly bounded in X, so that we can assume, without loss of generality, that it converges weakly to some v ∈ X, with v r L r (Ω;g) = r and

Λ = 1 p v p a,b + 1 q v q L q (Ω)
by the weak lower semicontinuity of • . Thus, J λ (v) = Λ -λ < 0 for any λ > Λ. Step 5. Problem (3) has a weak solution for any λ > λ * * and λ * * = λ * . Fix λ > λ * * . By the definition of λ * * , there exists µ ∈ (λ * * , λ) such that that J µ has a non-trivial critical point u µ ∈ X. Of course, u µ is a sub-solution of (3). In order to find a super-solution of (3) which dominates u µ , we consider the constrained minimization problem

inf 1 p w p a,b + 1 q w q L q (Ω) - λ r w r L r (Ω;g) : w ∈ X and w ≥ u µ .
Arguments similar to those used in Step 4 show that the above minimization problem has a solution u λ ≥ u µ which is also a weak solution of problem (3), provided λ > λ * * . We already know that λ * * ≥ λ * . But, by the definition of λ * * and the above remark, problem (3) has no solutions for any λ < λ * * . Passing to the supremum, this forces λ * * = λ * and completes the proof.

Step 6. Problem (3) admits a non-negative weak solution when λ = λ * . Let n → λ n be a decreasing sequence converging to λ * and let n → u n be a corresponding sequence of non-negative weak solutions of (3). As noted in Step 2, the sequence (u n ) n is bounded in X, so that, without loss of generality, we may assume that it converges weakly in X, strongly in L r (Ω; g), and pointwise to some u * ∈ X, with u * ≥ 0. By (4), for all ϕ ∈ X,

Ω a(x)|Du n | p-2 Du n • Dϕdx + Γ b(x)|u n | p-2 u n ϕdσ + Ω |u n | q-2 u n ϕdx = λ n Ω g(x)|u n | r-2 u n ϕdx,
and passing to the limit as n → ∞ we deduce that u * verifies (4) for λ = λ * , as claimed.

It remains to argue that u * = 0. A key ingredient in this argument is the lower bound energy given in [START_REF] Serrin | Local behavior of solutions of quasi-linear equations[END_REF]. Hence, since u n is a non-trivial weak solution of problem (3) corresponding to λ n , we have u n p a,b ≥ (C r /λ p )

1/(r-p) by [START_REF] Serrin | Local behavior of solutions of quasi-linear equations[END_REF], where C > 0 is the constant given in [START_REF] Reed | Methods of Modern Mathematical Physics IV. Analysis of Operators[END_REF] and not depending on λ n . Next, since λ n ց λ * as n → ∞ and λ * > 0, it is enough to show that

u n -u * a,b → 0 as n → ∞. ( 13 
)
Since u n and u * are weak solutions of (3) corresponding to λ n and λ * , we have by ( 4), with

ϕ = u n -u * , Ω a(x) |Du n | p-2 Du n -|Du * | p-2 Du * • D(u n -u * )dx + Γ b(x) |u n | p-2 u n -|u * | p-2 u * (u n -u * )dσ + Ω (|u n | q-2 u n -|u * | q-2 u * )(u n -u * )dx = Ω g(x) λ n |u n | r-2 u n -λ * |u * | r-2 u * (u n -u * )dx. ( 14 
)
Elementary monotonicity properties imply that

Ω (|u n | q-2 u n -|u * | q-2 u * )(u n -u * )dx ≥ 0 and I ′ (u * n ) -I ′ (u * ), u n -u * ≥ 0,
where I(u) := u p a,b /p. Since λ n ց λ * as n → ∞ and X is compactly embedded in L r (Ω; g), for all p > 1 relation (14) implies

0 ≤ I ′ (u * n ) -I ′ (u * ), u n -u * ≤ Ω g(x) λ n u r-1 n -λ * (u * ) r-1 (u n -u * )dx → 0 (15) 
as n → ∞. Now, we distinguish the cases p ≥ 2 and 1 < p < 2 and we use the following elementary inequalities (see [11, 

formula (2.2)]): for all ξ, ζ ∈ R N |ξ -ζ| p ≤ c(|ξ| p-2 ξ -|ζ| p-2 ζ)(ξ -ζ) for p ≥ 2; c |ξ| p-2 ξ -|η| p-2 η, ξ -η p/2 (|ξ| p + |η| p ) (2-p)/2 for 1 < p < 2, ( 16 
)
where c is a positive constant.

Case 1: p ≥ 2. By ( 16) and (15), we immediately conclude that

u n -u * p a,b ≤ c I ′ (u * n ) -I ′ (u * ), u n -u * = o(1)
as n → ∞.

Case 2: 1 < p < 2. Since by convexity for all γ ≥ 1

(v + w) γ ≤ 2 γ-1 (v γ + w γ ) for all v, w ∈ R + 0 , (17) 
then, for γ = 2/p, we have

u n -u * 2 a,b ≤ 2 (2-p)/p Ω a(x)|D(u n -u * )| p dx 2/p + Γ b(x)|u n -u * | p dσ 2/p .
Thus, in order to conclude that (13) holds, it is enough to show that 

→ u n ∈ X such that J λ (u n ) → c and J ′ λ (u n ) → 0 (18)
as n → ∞. Moreover, since J λ (|u|) ≤ J λ (u) for all u ∈ X, we can assume that u n ≥ 0 for any n ≥ 1. In what follows we prove that (u n ) n is bounded in X. Indeed, since

J ′ λ (u n ) → 0 in X ′ , then u n p a,b + u n q L q (Ω) = λ u n r L r (Ω;g) + o(1)
as n → ∞. Therefore,

c + o(1) = J λ (u n ) ≥ 1 q u n p - λ r u n r L r (Ω;g) ≥ 1 q - 1 r ( u n p -1) + o(1)
as n → ∞. Thus, since q < r, we deduce that the Palais-Smale sequence (u n ) n is bounded in X. Hence, up to a subsequence, we can assume that (u n ) n converges weakly in X and strongly in L r (Ω; g) to some element, say u * ≥ 0. From now on, with the same arguments as in the proof of Theorem 1.1, we deduce that u * is a weak solution of the problem (3) such that properties (a)-(d) are fulfilled. Due to the mountain-pass geometry of our problem (3) generated by the assumption p < q < r < p * , we are able to give the following alternative proof in order to show that u * is a weak solution of (3). Fix ϕ ∈ C ∞ 0 (R N ). Since J ′ λ (u n ) → 0 in X ′ , we have 

  is a non-negative function which is positive on a non-empty open subset of Ω; (H2) b is a continuous positive function on Γ = ∂Ω.

  (i) problem (3) does not have any weak solution for any λ ≤ 0; (ii) problem (3) has at least one weak solution u, with the properties (a)-(d) of Theorem 1.1 for all λ > 0.

  Now put λ * : = sup{λ > 0 : problem (3) does not admit any weak solution}, λ * * : = inf{λ > 0 : problem (3) admits a weak solution}. Of course Λ ≥ λ * * ≥ λ * > 0. To complete the proof of Theorem 1.1 it is enough to argue the following essential facts: (a) problem (3) has a weak solution for any λ > λ * * ; (b) λ * * = λ * and problem (3) admits a weak solution when λ = λ * .

Ω

  a(x)|D(u n -u * )| p dx → 0 and Γ b(x)|u n -u * | p dσ → 0 Applying the Mountain Pass theorem without the Palais-Smale condition we find a sequence n

Ω< c 2 ≤

 2 a(x)|Du n | p-2 Du n • Dϕdx + Γ b(x)u p-1 n ϕdσ + Ω u q-1 n ϕdx -λ Ω g(x)u r-1 n ϕdx = o(1)as n → ∞. Letting n → ∞, we deduce thatΩ a(x)|Du * | p-2 Du * • Dϕdx + Γ b(x)(u * ) p-1 ϕdσ + Ω (u * ) q-1 ϕdx -λ Ω g(x)(u * ) r-1 ϕdx = 0and so by density u * satisfies relation (4) for any ϕ ∈ X. It remains to show that u * = 0. Indeed, by (18) and n is sufficiently large we obtain 0 J λ (u n ) -Ω;g) , since p < q < r . This implies that u * r L r (Ω;g) > 0 and in turn u * = 0, as required. Finally, u * verifies properties (a)-(d), as shown in the proof of Theorem 1.1.
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as n → ∞. Indeed, combining ( 16) and (17), we have

, where C 1 = 2c λ q/(q-r) A (2-p)/2 by ( 10) and C 1 is independent of n by [START_REF] Pucci | Regularity of Weak Solutions of Quasilinear Elliptic Equations[END_REF]. Similar arguments yield

, with an appropriate positive constant C 2 independent of n. Combining the above two inequalities with (15) we conclude that u n -u * a,b = o(1) as n → ∞, that is (13) holds and u * is a non-trivial nonnegative weak solution of problem (3) corresponding to λ = λ * . Theorem 2.2 in Pucci and Servadei [START_REF] Pucci | Regularity of Weak Solutions of Quasilinear Elliptic Equations[END_REF], based on the Moser iteration, shows that u satisfies (a), since u ∈ W 1,p loc (Ω), being u ∈ X, A(x, u, ξ) = -a(x)|ξ| p-2 ξ and B(x, u, ξ) = λg(x)|u| r-2 u -|u| q-2 u clearly verifies inequality (2.18) of [START_REF] Pucci | Regularity of Weak Solutions of Quasilinear Elliptic Equations[END_REF] by (H1); for other applications see also [START_REF] Pucci | Existence, non-existence and regularity of radial ground states for p-Laplacian equations with singular weights[END_REF]. Next, again by the main assumptions on the coefficient a = a(x), an application of [3, Corollary on p. 830] due to DiBenedetto shows that the weak solution u verifies also property (b). Finally, (c) follows immediately by the strong maximum principle since u is a C 1 non-negative weak solution of the differential inequality div (a(x)|Du| p-2 Du) -|u| q-2 u ≤ 0 in Ω, with q > p, see, for instance, Section 4.8 of Pucci and Serrin [START_REF] Pucci | Handbook of Differential Equations -Stationary Partial Differential Equations[END_REF] and the comments thereby. Property (d) follows using similar arguments as in the proof of Lemma 2 of [START_REF] Yu | Nonlinear p-Laplacian problems on unbounded domains[END_REF], which is based on Theorem 1 of Serrin [START_REF] Serrin | Local behavior of solutions of quasi-linear equations[END_REF].

Proof of Theorem 1.2

Taking ϕ = u in (4), we see that any weak solution u of (3) satisfies the equality (6), and the conclusion (i) of Theorem 1.2 follows at once.

We next show that the C 1 energy functional J λ : X → R satisfies the assumptions of the Mountain Pass theorem of Ambrosetti and Rabinowitz [START_REF] Ambrosetti | Dual variational methods in critical point theory and applications[END_REF]. Fix w ∈ X \ {0}. Since p < q < r then

provided t is sufficiently large. Next, by ( 5), ( 9) and the fact that p < q < r we observe that J λ (γ(t)).