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We reconsider the Dirichlet model for the random division of an interval. This model is parameterized by the number n > 1 of fragments, together with a set of positive parameters (θ1, ..., θn). Its main remarkable properties are recalled, developed and illustrated.

Explicit results on the statistical structure of its size-biased permutation are next supplied. This distribution appears in the sorting of items problem under the move-to-front rule. Assuming the parameters satisfy n m=1 θm → γ < ∞ as n ↑ ∞, it is shown that the Dirichlet distribution has a Dirichlet-Kingman non-degenerate weak limit whose properties are briefly outlined.

Introduction

Consider the random Dirichlet partition of the unit interval into n fragments with parameters θ n := (θ 1 , ..., θ n ) > 0. In this model, the random fragment sizes S n := (S 1 , ..., S n ), satisfying n m=1 S m = 1, have Dirichlet distribution, say D n (θ n ), whose definition and main properties are discussed in Section 2; in particular, we recall here the RAM structure of D n (θ n ) (in Theorem 1) and a formula which allows to compute many spacings functionals in closed form (Theorem 2), making D n (θ n ) an exactly soluble model. As an illustration of this formula, we compute among other things the distribution of the pair S (1) , S (n) arising in the order statistics S (n) := S (1) , ..., S (n) , satisfying S (1) > ... > S (n) and n m=1 S (m) = 1. We also draw attention on a stability under scaling property of Dirichlet partitions, together with some questions related to sampling problems from these partitions.

Explicit results on the law of the size-biased permutation L n := SBP(S n ) of S n are then given in Section 3. A size-biased permutation (SBP) of the fragment sizes is the one obtained in a size-biased sampling process without replacement from a Dirichlet partition D n (θ n ). It appears as the limiting law of a sampling process from D n (θ n ) when size-biased sampled fragments are iteratively moved to the front of the list in the heaps process. The main points which we deal with are the following: In Proposition 3, we derive the length of the first size-biased randomly chosen fragment, together with a stochastic comparison property with the lengths of S n . In Lemma 4, the order in which the consecutive fragments are being visited is considered. In Lemma 5, the residual allocation model (RAM) mixture structure of the SBP distribution is derived. In Theorem 6, we compute the joint law of the size-biased permutation fragment sizes explicitly. Using this, it is shown in Corollary 7 that, under some conditions, consecutive fragments in the size-biased permuted partition are arranged in stochastic descending order.

In Section 4, the limiting Dirichlet-Kingman partition on the infinite dimensional simplex is considered. Assuming the parameters θ n are such that γ n := n m=1 θ m converges to some finite limit γ > 0 as n ↑ ∞, it is shown that S n d ∼ D n (θ n ) has a Dirichlet-Kingman non-degenerate weak limit. Some of its properties are outlined.

2 Asymmetric Dirichlet partition of the interval: Definition and main properties • δ ( n m=1 sm-1) .

(2.1)

We shall put S n d ∼ D n (θ n ) if S n is Dirichlet distributed with parameters θ n as above. Note that S n also can be interpreted as spacings between consecutive points on the interval located at S m := m k=1 S k , m = 1, ..., n, with S 0 := 0. Alternatively, the law of S n := (S 1 , ..., S n ) can easily be shown to be characterized by its joint moment function (q m > -θ m , m = 1, ..., n)

E n m=1 S qm m = Γ (γ n ) Γ (γ n + n m=1 q m ) n m=1 Γ (θ m + q m ) Γ (θ m ) . (2.2)
This expression is symmetric in the parameters and we shall therefore assume without loss of generality that θ 1 ≥ ...θ 1 ≥ θ n .

We first recall that if a (0, 1) -valued random variable B has beta distribution with parameters α, β > 0 (say

B d ∼ beta(α, β)) then its density is f B (s) = Γ (α + β) Γ (α) Γ (β) s α-1 (1 -s) β-1 , s ∈ (0, 1) ,
so that its moment function is

E [B q ] = Γ (α + q) Γ (α) Γ (α + β) Γ (α + β + q)
, q > -α, with Γ (.) the Euler-gamma function. Further, B d → 1 when β ↓ 0 and, since

1-B d ∼ beta(β, α), B d → 0 when α ↓ 0.
By convention, we shall therefore identify beta(α, 0) (respectively beta(0, β)) to a Dirac measure at point 1 (respectively 0).

Similarly, we recall that a positive random variable X with gamma(θ) distribution (say

X d ∼ gamma(θ), θ > 0) has density f X (x) = 1 Γ (θ) x θ-1 e -x , x > 0, moment function E [X q ] = Γ (θ + q) /Γ (θ) , q > -θ
and Laplace-Stieltjes transform E e -pX = (1 + p) -θ , p > -1.

We shall also make use of the following notations in the sequel: Let m 1 = ... = m k be a k-sequence of distinct integers taken from {1, ..., n}; then γ n\m1,..,m k := γ n -k l=1 θ m l . By convention, when k = 0, we shall assume that γ n\1,..,k := γ n .

Making use of the above notational convenience, it follows from Eq. (2.2) that S m d ∼ beta θ m , γ n\m , m = 1, ..., n; the individual fragment sizes are not, in general, identically distributed, unless all θ m are equal which we shall rule out in the sequel as it was studied in detail elsewhere. Under our hypothesis θ 1 ≥ ... ≥ θ n , it may be checked that S 1 ... S n i.e. that the fragment sizes are arranged in stochastically decreasing order (the likelihood ratio between adjacent pairs S m-1 , S m being monotone).

Let

σ m := E (S m ) = θ m /γ n ; m = 1, ..., n.
Then the parameter set

θ n := (θ m , m = 1, ..., n) can also be mapped into (σ m ; m = 1, ..., n -1, γ n ) , the transformation θ n → (σ m ; m = 1, ..., n -1, γ n ) being one-to-one with θ m = σ m γ n ; m = 1, ..., n-1 and θ n = 1 - n-1 1 σ m γ n .
Parameter γ n is a "precision" parameter that indicates how concentrated the distribution of S n is around its mean σ n := (σ 1 , ..., σ n ) : The larger γ n is, the more the distribution of S n is concentrated around σ n (as one can check by observing that univariately 3/ Assume θ m = p m , m = 1, ..., n and p ∈ (0, 1) . Then

E (S m ) = σ m and σ 2 (S m ) = σ m (1 -σ m ) / (γ n + 1)).
γ n = n 1 p m = p (1 -p n ) / (1 -p).
Remarks (ubiquity of Dirichlet partitions): (i) In population genetics, Dirichlet distributions derive their importance from the fact that they are limit laws of certain diffusion processes on the simplex, whose state-space can be interpreted as gene frequencies at a selectively neutral locus under the finitely-many alleles model of mutation. These are properly rescaled versions of the Wright-Fisher, Moran or Cannings models (see [START_REF] Ewens | Population genetics theory -the past and the future[END_REF] and references therein for review). A completely different occurrence of Dirichlet partitions as limit laws under certain dilution or erosion events is also described in [START_REF] Vlad | Bayesian analysis of systems with random chemical composition: Renormalization-group approach to Dirichlet distributions and the statistical theory of dilution[END_REF].

(ii) Next, let µ n := (µ m := E (-log S m ) , m = 1, ..., n) denote the observable. We note that µ m = ψ (γ m ) -ψ (γ n ) where ψ is the classical digamma function. As can easily be checked (again see [START_REF] Vlad | Bayesian analysis of systems with random chemical composition: Renormalization-group approach to Dirichlet distributions and the statistical theory of dilution[END_REF] for example), θ n are Legendre conjugates of µ n because D n (θ n ) is the distribution maximizing entropy under the constraints µ n . The involved partition function is

Z n (θ n ) = n m=1 [Γ (θ m ) /Γ (γ n )] .
(iii) In the random version of the Rényi car-parking problem with no stopping rule, there is an occurrence of an asymmetric Dirichlet partition in the counting-of-intervals-packed problem [START_REF] Baryshnikov | Counting intervals in the packing process[END_REF]. Here indeed, some implicit use is made of D 3 (1, α -1, 1) with α > 1. Equivalently, the probability law of a random interval I launched on [0, 1] is given by

P (I ⊂ [s 1 , 1 -s 3 ]) = (1 -s 1 -s 3 ) α on ∆ = {s 1 ≥ 0, s 3 ≥ 0, s 1 + s 3 ≤ 1} . It depends only on the length 1 -s 1 -s 3 of [s 1 , 1 -s 3 ]
, not on its location (translational invariance) and possesses the scaling property φ s1,s3 (I)

| I ⊂ [s 1 , 1 -s 3 ] d = I
where φ s1,s3 (.) is the increasing affine transformation mapping [s 1 , 1 -s 3 ] onto [0, 1]. In this model, the middle interval will not further split (the launched interval is packed), whereas the two side-ones are allowed to further split (they constitute gaps where additional intervals can be inserted if small enough to fit). These properties allow to treat the packing of random intervals problem as a non-conservative self-similar fragmentation process where fragmentation of size-x fragments occur at rate x α (Bertoin, Gnedin 2004).

Main statistical features

We now proceed with further properties.

• The RAM structure of the Dirichlet partition We recall here a fundamental property of the Dirichlet partition S n d ∼ D n (θ n ) which appears as an exercise (without proof) in the book of [START_REF] Devroye | Non-Uniform Random Variate Generation[END_REF], on page 585; see also [START_REF] Ewens | Population genetics theory -the past and the future[END_REF] and [START_REF] Haas | Uncertainties in facies proportions estimation I. Theoretical framework: The Dirichlet distribution[END_REF] where this property is used and discussed respectively in biological and geological applications. The term RAM stands for residual allocation model which is sometimes used in this context. This property has been known for long to Bayesian statisticians (see e.g. [START_REF] Freedman | On the asymptotic behavior of Bayes' estimates in the discrete case[END_REF], [START_REF] Fabius | Asymptotic behavior of Bayes' estimates[END_REF] and [START_REF] Ferguson | Prior distributions on spaces of probability measures[END_REF]).

Theorem 1 Let (B 1 , ..., B n-1 ) be independent random variables with distribu-

tion B k d ∼ beta θ k , γ n\1,..,k , k = 1, ..., n-1. With B i := 1-B i d ∼ beta γ n\1,..,i , θ i and 0 i=1 B i := 1, define S k := k-1 i=1 B i B k , k = 1, ..., n -1, (2.3) S n = 1 - n-1 k=1 S k = n-1 k=1 B k . (2.4) Then S n d ∼ D n (θ n ) .
This representation of D n (θ n ) is called the stick-breaking scheme (or RAM) representation of S n .

Proof. Using independence and the expression of the moment function for beta-distributed random variables,

E (S q k ) = k-1 i=1 E B q i E (B q k ) = k-1 i=1 Γ γ n\1,..,i + q Γ γ n\1,..,i-1 Γ γ n\1,..,i Γ γ n\1,..,i-1 + q Γ (θ k + q) Γ γ n\1,..,k-1 Γ (θ k ) Γ γ n\1,..,k-1 + q = Γ (γ n ) Γ (θ k + q) Γ (γ n + q) Γ (θ k ) , for k = 1, ..., n -1. This shows that S k d ∼ beta θ k , γ n\k , k = 1, ..., n -1. Next, E (S q n ) = n-1 k=1 E B q k = Γ(γn)Γ(θn+q) Γ(γn+q)Γ(θn) and S n d ∼ beta θ n , γ n\n .
The joint distribution of the S m can be treated similarly.

• The gamma distribution and Dirichlet partition

As is well-known, the Dirichlet partition S n d ∼ D n (θ n ), defined by (2.1), can be generated by S m = X m /X n , with X n := n m=1 X m the sum of n independent gamma(θ m ) distributed random variables. In addition, (X 1 , ..., X m-1 ) is independent of X n . As a result, S n can also be defined conditionally by

S n d = (X 1 , ..., X n | X n = 1) .
More generally, considering the same construction starting with an interval of length x > 0 gives consecutive spacings, say

S n (x) := (S m (x) : m = 1, ..., n) generated by S n (x) d = (X 1 , ..., X n | X n = x) .
From this, one can check the scaling property S m (x) • A constructive formula for computing with Dirichlet Furthermore, the following result which results directly from the above properties can be useful (see [START_REF] Huillet | Sampling from finite random partitions[END_REF])

Theorem 2 Consider the Dirichlet partitioning model S n d ∼ D n (θ n ). (i) Let f be any Borel-measurable function for which ∞ 0 E (|f (S n (x))|) x γn-1 e -px dx < ∞. Then, with X n (p) := (X m (p); m = 1, ..., n), n independent random variables defined by X m (p) = 1 p X m , p > 0, m = 1, ..., n where X m d ∼ gamma(θ m ), we have ∞ 0 E (f (S n (x))) x γn-1 e -px dx = Γ (γ n ) p γn E (f (X n (p))) . (2.5) (ii) If f is homogeneous of degree d, i.e. if f (xs n ) = x d f (s n ), x > 0, s n := (s 1 , ..., s n ) ∈ R n , and if E (|f (S n )|) < ∞ then, with X n := (X 1 , ..., X n ) E (f (S n )) = Γ (γ n ) Γ (γ n + d) E (f (X n )) . (2.6)
This Theorem 2 allows to compute many spacings functionals in terms of simpler functionals of independent gamma random variables or processes. We list below some of its applications. It generalizes to the full asymmetric Dirichlet partition a formula first given by [START_REF] Steutel | Random division of an interval[END_REF] in the context of uniform partitions.

A series of direct applications of Theorem 2.

Consider the statement (i) of Theorem 2. The right hand-side quantity

Γ (γ n ) p -γn E (f (X n (p)))
may be interpreted as the Laplace transform in the variable p of E (f (S n (x))) x γn-1 . Inverting this Laplace transform and putting x = 1 yields E (f (S n )).

1.

As an illustration, we shall use this to compute the joint distribution of the largest and smallest spacing in a Dirichlet(θ n ) partition. Suppose 1 ≥ b > a ≥ 0 and consider the spacings' functional

f (S 1 , ..., S n ) = n m=1 I (a < S m ≤ b) . Then Ef (S 1 , ..., S n ) = P S (n) > a, S (1)
≤ b is the required probability, assuming S (1) > ... > S (n) to be the order statistics of (S 1 , ..., S n ). The case a = 0 (b = 1) gives the probability P S (1) ≤ b , respectively P S (n) > a .

From statement (i) of Theorem 2 indeed, the quantity

Γ (γ n ) p -γn n m=1 P (a < X m (p) ≤ b) = Γ (γ n ) n m=1 1 Γ (θ m ) b a
x θm-1 e -px dx interprets as the Laplace transform of P S (n) (x) > a, S (1) (x) ≤ b x γn-1 . Inverting this Laplace transform and putting x = 1 yields P S (n) > a, S (1) ≤ b . From this, we obtain directly

P S (n) > a, S (1) ≤ b = Γ (γ n ) n m=1 Γ (θ m ) * n m=1 h θm (1) ,
where * n m=1 h θm (1) is the n-fold convolution of the functions x → h θm (x) = x θm-1 I (b ≥ x > a), m = 1, ..., n evaluated at x = 1. Putting a = s, b = 2s, the above probability turns out to be the probability of a s-parking configuration with n cars, when Dirichlet-parked cars of size s avoid overlap with no room left to insert a new car within gaps.

2.

From part (ii) of the Theorem 2, any homogeneous functional of Dirichlet spacings can be directly computed from the simpler one of independent gamma variables each with specific means θ m which leads to considerable simplification.

2.a. For example, considering the function f (S 1 , ..., S n ) = n m=1 S qm m , we get that f is homogeneous with degree d = n m=1 q m . Application of (ii) in this particular case gives Eq. (2.2). , we see that f is homogeneous with degree d = q. Application of (ii) in this particular case gives

E k l=1 S m l q = Γ (γ n ) Γ (γ n + q) Γ k l=1 θ m l + q Γ k l=1 θ m l , showing that k l=1 S m l d ∼ beta k l=1 θ m l , γ n\m1,..,m k .

2.c. (stability under scaling operations). Consider the random variables

S m l := S m l / k l=1 S m l , l = 1, .., k.
They constitute a new partition of the unit interval and

(i) S m l ; l = 1, .., k d ∼ D k (θ m1 , ..., θ m k ) , (ii) S m l ; l = 1, .., k and k l=1 S m l are independent.
To see this, we observe that f (S 1 , ..., S n ) := k l=1 S m l q0 k l=1 S q l m l is homogeneous with degree q 0 resulting in

Ef (S 1 , ..., S n ) = Γ (γ n ) Γ (γ n + q 0 ) E k l=1 X m l q0 k l=1 X q l m l = Γ k l=1 θ m l + q 0 Γ (γ n ) Γ k l=1 θ m l Γ (γ n + q 0 ) Γ k l=1 θ m l Γ k l=1 (θ m l + q l ) k l=1 Γ (θ m l + q l ) Γ (θ m l ) because X m l := X m l / k l=1 X m l , X m l d ∼ gamma(θ m l ), l = 1, ..., k, is indepen- dent of k l=1 X m l and X m l ; l = 1, ..., k d ∼ D k (θ m1 , ..., θ m k ).
2.d. The distribution of the partition function n m=1 S q m is sometimes of interest. In particular, its mean value E ( n m=1 S q m ) but also its full moment function E ( n m=1 S q m ) λ are worth being considered. For general partitions, these quantities are hardly computable. When considering the Dirichlet partition model, significant simplifications are expected since the spacing functional

f (S 1 , ..., S n ) = n m=1
S q m λ is homogeneous with degree d = qλ and so part (ii) of Theorem 2 applies.

3. We finally briefly outline that these tools are also useful in the computation of simple sampling formulae.

3.a. Let (U 1 , ..., U k ) be k iid uniform throws on S n . Let K n := (K 1 , ..., K n ) be an integral-valued random vector which counts the number of visits to the different fragments in a k-sample. Hence, if N l is the random fragment number in which the l-th trial falls, then

K m := k l=1 I (N l = m), m = 1, ..., n. With n m=1 k m = k and k n := (k 1 , ..., k n )
we have the multinomial distribution:

P (K n = k n | S n ) = k! n m=1 k m ! n m=1 S km m .
Averaging over S n , applying (ii) of Theorem 2, we find

P (K n = k n ) = EP (K n = k n | S n ) = n m=1 {θ m } km {γ n } k ,
where {θ} k := (θ) k /k! and (θ) k := θ (θ + 1) ...

(θ + k -1) , k ≥ 1, (θ) 0 := 1.
This distribution is known as the Dirichlet multinomial distribution. Applying Bayes formula, the posterior distribution of S n given K n = k n is determined by its density at point s n on the simplex as

f Sn (s n | K n = k n ) = Γ (γ n + k) n m=1 Γ (θ m + k m ) n m=1 s (θm+km)-1 m • δ ( n m=1 sm-1) .
This shows, as is well-known, that

S n | K n = k n d ∼ D n (θ n + k n ), where θ n + k n = (θ 1 + k 1 , ..., θ n + k n ) is obtained by shifting θ n and hence that E (S m | K n = k n ) = θ m + k m γ n + k , m = 1, ..., n.
This suggests the following recursive approach to the sampling formula where successive samples are now drawn from the corresponding iterative posterior distributions. More specifically, let (N 1 , ...N k ) ∈ {1, ..., n} k be the labels of the successive fragments thus drawn. Then,

P (N 1 = n 1 ) = E (P (N 1 = n 1 ) | S n ) = E (S n1 ) = θ n1 γ n , P (N 2 = n 2 | N 1 ) = θ n2 + I (N 1 = n 2 ) γ n + 1 , ..., P (N k = n k | N 1 , ..., N k-1 ) = θ n k + k-1 l=1 I (N l = n k ) γ n + k -1 .
Proceeding in this way, the joint distribution of (N 1 , ..., N k ) reads

P (N 1 = n 1 , ..., N k = n k ) = θ n1 γ n k-1 l=1 θ n l+1 + l j=1 I (N j = n l+1 ) γ n + l = n m=1 (θ m ) km (γ n ) k ,
where k m := k l=1 I (n l = m) . Being invariant under permutations of the entries, this distribution is exchangeable. The sequence N 1 , ..., N k is a Pòlya urn sequence. 

∼ D n (θ n ) E n m=1 u Km/k m = Γ (γ n ) Γ (γ n + k) E   n m=1 u 1/k m X m k   ∼ k↑∞ Γ (γ n ) Γ (γ n + k) E   n m=1 X m k 1 + 1 k n m=1 X m log u m k   ∼ k↑∞ E n m=1 u Xm m = E n m=1 u Sm m .
This shows that

K n /k d → S n as k ↑ ∞.
Note that, applying the strong law of large numbers (conditionally given S n ), the above convergence in law also holds almost surely.

• Representation of D n (θ n ) in terms of a conditioned Moran subordinator Let us first recall some well-known facts from infinitely divisible random variables and processes [See [START_REF] Bertoin | Lévy processes[END_REF], and Steutel and van Harn (2004), for general monographs on infinite-divisibility].

Let X ≥ 0 be an infinitely divisible (ID) random variable with Laplace-Stieltjes transform φ (p) := E e -pX , p ≥ 0 and Laplace exponent

ψ (p) := -log φ (p) = ∞ 0 1 -e -px π (dx) . (2.7)
Here, π (dx) is a positive Radon measure on (0, ∞), the Lévy measure for jumps of X . Let π (x) := π (x, ∞) be its continuous and decreasing tail function. It is assumed that

π (0) = ∞ and (0,∞) (1 ∧ x) π (dx) < ∞.
Let (Γ k , k ≥ 1) be a Poisson point process on the half line (0, ∞) meaning that (Γ k -Γ k-1 , k ≥ 1) are iid and exp(1) -distributed. From the Lévy-It o decomposition for ID random variables in terms of jumps, we have

X d = ∞ k=1 π -1 (Γ k ) . (2.8)
Normalizing, i.e. defining ζ (k) := π -1 (Γ k ) /X , k ≥ 1 , we are left with an infinite partition of the unit interval into random fragments with descending sizes [START_REF] Pitman | Poisson-Kingman Partitions[END_REF].

ζ (1) > ... > ζ (k) > ... for which 1 = k≥1 ζ (k) . The distribution of ζ (k) , k ≥ 1 is called a Poisson-Kingman (P K) distribution, see
Assume now π (dx) = γx -1 e -x dx, x > 0. Then X =: X γ has gamma(γ) distribution for which φ (p) = (1 + p)

-γ . The normalized partition ζ (k) := π -1 (Γ k ) /X γ , k ≥ 1 in this particular case is Poisson-Dirichlet partition, say P D (γ).

A closely related point of view is the following; the random variable X γ induces a gamma (or Moran) subordinator process (X t ; t ≥ 0) with X 0 := 0 and Lévy measure for everywhere dense jumps x -1 e -x dx. Let γ > 0 be such that X γ = 1 and consider the conditioned process (X t ; t ≥ 0 | X γ = 1). Then the rank jumps of this conditioned process again have Poisson-Dirichlet distribution.

In addition, see [START_REF] Kingman | Poisson processes[END_REF], with γ m :=

m k=1 θ k , γ 0 = 0 X γm -X γm-1 ; m = 1, ..., n | X γn = 1 d ∼ D n (θ n ) .
In some applications (see [START_REF] Kingman | Random discrete distributions[END_REF], [START_REF] Donnelly | The heaps process, libraries and size-biased permutation[END_REF] in the context of the heaps process), S m , m = 1, ..., n, interpret as the random popularities of a collection of n books arranged on a shelf. If instead of a collection of books, a population of animals from n different species were considered, popularities verbatim interpret as species abundance; see [START_REF] Kingman | Random partitions in population genetics[END_REF] and [START_REF] Ewens | Population genetics theory -the past and the future[END_REF] for such interpretations.

3 Size-biased permutation from asymmetric Dirichlet partitions

The results on size-biased permutation of the asymmetric Dirichlet distributions D n (θ n ) presented in this Section seem to be new. They extend the results presented in [START_REF] Barrera | Size-biased permutation of Dirichlet partitions and search-cost distribution[END_REF] in the particular case of symmetric Dirichlet partitions D n (θ), assuming θ 1 = ... = θ n =: θ. These were used to derive the search-cost distribution in heaps processes at equilibrium. Assume some observer is sampling the unit interval as follows: Drop points at random onto the randomly broken interval S n d ∼ D n (θ n ) and record the corresponding labels of visited fragments. We shall consider the problem of determining the order in which the various fragments are discovered in such a sampling process. To avoid revisiting the same fragment many times, once it has been discovered, we need to remove it from the population as soon as it has been met in the sampling process. But to do that, the law of its size is needed. Once this is done, after renormalizing the remaining fragments' sizes, we are left with a population of n -1 fragments, the sampling of which will necessarily supply a so far undiscovered fragment. The distribution of its size can itself be computed and so forth, renormalizing again, until the whole available fragments population has been visited. In this way, not only the visiting order of the different fragments should be understood but also their sizes. The purpose of this Section is to describe the statistical structure of the size-biased permutation of the fragment sizes as those obtained while avoiding the ones previously encountered in a sampling process from Dirichlet partition D n (θ n ).

Remark: We shall for example borrow the physical image to the heaps process; see [START_REF] Kingman | Random discrete distributions[END_REF], [START_REF] Flajolet | Birthday paradox, coupon collectors, caching algorithms and self-organizing search[END_REF], [START_REF] Fill | Limits and rates of convergence for the distribution of search cost under the move-to-front rule[END_REF], [START_REF] Fill | On the distribution of search cost for the move-to-front rule[END_REF] and [START_REF] Jelenkovìc | Asymptotic approximation of the move-to-front search cost distribution and least-recently used caching fault probabilities[END_REF]. Books' popularities are assumed to satisfy

S n d ∼ D n (θ n ).
When a book is demanded, it is removed and replaced (before a next demand) to the top of the shelf, other books being shifted accordingly; successive demands are independent. Iterating this heaps process (as a recurrent positive Markov chain over the set of permutations), there is intuitively a tendency, when the system has reached equilibrium, to find more popular books to the top of the heap. At equilibrium indeed (see [START_REF] Donnelly | The heaps process, libraries and size-biased permutation[END_REF] and references therein to Dies, Hendricks and Letac' works), books' popularities are given by L n := SBP(S n ) d ∼ SBD n (θ n ) and result (iii) in Corollary 7 stating that L 1 ... L n confirms and gives statistical sense to this intuition. Note from this that L n = SBP(L n ) (L n is invariant under size-biased permutation) and that L n = SBP S (n) since S (n) is simply obtained from S n by rearranging its components in descending order, observing that the sampling process is blind to the mutual fragments' positions, being only sensitive to their sizes.

• The length of the first size-biased randomly chosen fragment From the size-biased picking construction, it follows (see [START_REF] Engen | Stochastic abundance models[END_REF], for example, for similar treatment) that for any non-negative measurable function

ϕ on [0, 1], E [ϕ (L 1 )] = E [E [ϕ (L 1 ) | S n ]] = (3.1) n m=1 E [(ϕ (S m )) P (L 1 = S m | S n )] = n m=1 E [S m ϕ (S m )] .
Taking in particular ϕ (x) = I (x > s) in Eq. (3.1), we get the so-called structural distribution F L1 (s) := P [L 1 > s] in the form 

F L1 (s) = n m=1 E [S m I (S m > s)] = n m=1 1 s t • dF Sm (t) . (3.2) Proposition 3 We have: L 1 = B M1;n\M1 where B M1;n\M1 d ∼ beta 1 + θ M1 , γ n\M1 is a M 1 -mixture of beta 1 + θ M1 , γ n\M1 distributed
F L1 (s) = n m=1 1 s Γ (γ n ) Γ (θ m ) Γ γ n\m t (θm+1)-1 (1 -t) γn-θm-1 dt = n m=1 θ m γ n 1 s Γ (1 + γ n ) Γ (1 + θ m ) Γ γ n\m t (θm+1)-1 (1 -t) γn-θm-1 dt,
which is the tail distribution function of a M 1 -mixture of beta 1 + θ M1 , γ n\M1distributed random variables with P (M 1 = m) = θm γn , m = 1, ..., n. Equivalently,

E (L q 1 ) = n m=1 θ m γ n Γ (1 + θ m + q) Γ (1 + γ n ) Γ (1 + θ m ) Γ (1 + γ n + q) is the moment function of L 1 , q > -(1 + θ n ) .
The likelihood ratio between the two distributions of L 1 and S n being monotone, the stochastic domination property follows.

The telling feature of this last observation is that although S n := (S 1 , ..., S n ) is such that S 1 ... S n with largest fragment at the top of the list, the first size-biased sampled fragment has size L 1 which is at least stochastically larger than the smallest of the S m , namely S n . (Note that, as required, when all θ m are equal, L 1 S n means that L 1 is stochastically larger than any of the S m ).

• The visiting order of the fragments in the SBP process. Before proceeding with the computation of the distribution of the full sizebiased permutation partition, we need to consider the order in which the fragments are being visited.

For any permutation m 1 , ..., m n of {1, ..., n}, with M 1 , ..., M k , k = 1, ..., n, the first k distinct fragments labels which have been visited in the SBP sampling process, we have

P (M 1 = m 1 , ..., M k = m k | S n ) = k-1 i=1 S mi 1 - i l=1 S m l S m k , (3.4) so that P (M k = m k | S n , M 1 = m 1 , ..., M k-1 = m k-1 ) = S m k 1 - k-1 l=1 S m l . (3.5)
As a result,

P (M k = m | S n ) = S m (m1 =... =m k-1 ) =m k-1 i=1 S mi 1 - i l=1 S m l (3.6)
is the conditional probability (given S n ) that the k-th visited fragment is fragment number m from D n (θ n ).

Lemma 4 Given M 1 = m 1 , ..., M k-1 = m k-1 , the distribution of M k is given by P (M k = m k | M 1 = m 1 , ..., M k-1 = m k-1 ) = θ m k γ n\m1,..,m k-1 on the set m ∈ {1, ..., n} \ {m 1 = ... = m k-1 }. The joint probability distribution of M 1 , ..., M k , k = 1, ..., n, is P (M 1 = m 1 , ..., M k = m k ) = k i=1 θ mi γ n\m1,..,mi-1 , (3.7) 
with m 1 = ... = m k ∈ {1, ..., n} .

Proof. Although this result is immediate, we shall supply a short proof of it. From Eq. (3.5), the function

S n → Sm k 1-k-1 l=1 Sm l = Sm k m ={m 1 ,...,m k-1 } Sm
is homogeneous with degree 0. Applying (ii) of Theorem 2, with {X 1 , ..., X n } independent random variables satisfying X m d ∼ gamma(θ m ), we get

P (M k = m k | M 1 = m 1 , ..., M k-1 = m k-1 ) = E S m k m ={m1,...,m k-1 } S m = E X m k m ={m1,...,m k-1 } X m = θ m k γ n\m1,..,m k-1
.

The joint distribution of M 1 , ..., M k results from the definition of the conditional probability.

One can check that M 1 ... M n : The fragments labels of the SBP sampling process are arranged in stochastically decreasing order (the likelihood ratio between adjacent pairs M k-1 , M k being monotone).

• The RAM structure of the size-biased permutation Let S n := (S 1 , ..., S n ) be the random partition of the interval [0, 1] considered here. Let L 1 be the length of the first randomly chosen fragment M 1 , so with L 1 := S M1 . We have

P (M 1 = m 1 | S n ) = S m1 and P (M 1 = m 1 ) = θ m1 γ n .
As was shown in Proposition 3, we have

L 1 d = B M1;n\M1 where B M1;n\M1 d ∼ beta 1 + θ M1 , γ n\M1 is a M 1 -mixture of beta distributed random variables. A
standard problem is to iterate the size-biased picking procedure, by avoiding the fragments already encountered: By doing so, a size-biased permutation (SBP) of the fragments is obtained. It turns out that SBP(S n ) has a residual allocation model (RAM) structure.

In the first step of this size-biased picking procedure indeed, partition S n =:

S (0) n is changed into (L 1 , S 1 , ..., S M1-1 , S M1+1 , ..., S n ) ,
where, conditionally on M 1 , (L 1 , S 1 , ..., S M1-1 , S M1+1 , ..., S n ) plainly has Dirichlet distribution

D n (1 + θ M1 , θ 1 , ..., θ M1-1 , θ M1+1 , ..., θ n ) .
Rescaling, this may be written as

S (0) n → L 1 , (1 -L 1 ) S (1) n-1 , where S (1) n-1 := S (1) 1 , ..., S (1) 
M1-1 , S (1) 
M1+1 , ..., S (1) 
n is a new random partition of the unit interval into n -1 random fragments.

Given

L 1 d = B M1;n\M1 d ∼ beta 1 + θ M1 , γ n\M1 , the conditional joint distri- bution of the remaining components of S (0) n is the same as that of (1 -L 1 ) S (1) n-1
where the (n -1) -vector

S (1) n-1 d ∼ D n-1 (θ n \θ M1
) has the distribution of a Dirichlet random partition into n -1 fragments with parameters θ n \θ M1 (using the stability under scaling property 2.c. described in section 2, see also [START_REF] Kingman | Poisson processes[END_REF], Chapter 9). Furthermore, given M 1 , S

n-1 is independent of 1-L 1 . Pick next at random an interval in S

(1) n-1 and call V 2 its length, now with distribution beta 1 + θ M2 , γ n\M1,M2 , and iterate until all fragments have been exhausted.

With V 1 := L 1 , the length of the second fragment by avoiding the first reads

L 2 = (1 -V 1 ) V 2 .
Iterating, the final SBP of S n is L n := (L 1 , ..., L n ) and we shall put L n = SBP(S n ) . From this construction, we easily get

Lemma 5 Let L n = SBP(S n ). Given M 1 , ..., M n , assume (V 1 , ..., V n-1 ) are independent random variables with distribution V k d ∼ beta 1 + θ M k , γ n\M1,..,M k , k = 1, ..., n -1. If V k := 1 -V k , then, L k = k-1 i=1 V i V k , k = 1, ..., n -1, (3.8) L n = 1 - n-1 k=1 L k = n-1 k=1 V i , (3.9)
is the conditional RAM representation of the size-biased permutation L n of S n .

Note that V i := 1 -V i d ∼ beta γ n\M1,..,Mi , 1 + θ Mi and that V n should be set to 1. The random variables V k , k = 1, ..., n -1 are not stricto sensu independent, rather they are conditionally independent given M 1 , ..., M k . These are well-known construction and properties; see [START_REF] Kingman | Poisson processes[END_REF], Chapter 9.6 and [START_REF] Donnelly | The age of alleles and a coalescent[END_REF].

This conditional RAM representation allows to compute the joint distribution of the size-biased permutation L n of S n . We shall say in the sequel that, if

L n = SBP(S n ), then L n d ∼ SBD n (θ n ) assuming that S n d ∼ D n (θ n ) .
• The joint distribution of the size-biased permutation The SBP of 

S n is L n with L n d ∼ SBD n (θ n ) and S n d ∼ D n (θ n ) .
n = (L 1 , ..., L n ) d ∼ SBD n (θ n ) reads E n k=1 L q k k | M 1 , ..., M n = E n-1 k=1 S q k +1 M k 1 - k l=1 S M l S qn+1 Mn (3.12) = n-1 k=1 Γ 1 + γ n\M1,..,M k-1 Γ (1 + θ M k + q k ) Γ γ n\M1,..,M k + q k+1 + ... + q n Γ (1 + θ M k ) Γ γ n\M1,..,M k Γ 1 + γ n\M1,..,M k-1 + q k + ... + q n .
Averaging over M 1 , ..., M n whose law is given from Eq. (3.7) by

P (M 1 = m 1 , ..., M n = m n ) = n k=1 θ m k γ n\m1,..,m k-1 ,
gives the exact joint distribution of L n .

Proof. Let V d ∼ beta(a, b). Then, with V := 1 -V , it holds that E V q1 V q2 = Γ (a + b) Γ (a) Γ (b)
Adapting this computation, recalling that, given M 1 , ..., M k , we have

V k d ∼ beta 1 + θ M k , γ n\M1,..,M k , the quantity E V q k k V q k+1 +...+qn-1 k which appears in E [ n k=1 L q k k | M 1 , .
.., M n ] using Eq. (3.8) has the expression displayed inside the product from Eq. (3.13).

• One-dimensional marginals From Theorem 6, we get the one-dimensional law of the L k , k = 1, ..., n. Furthermore, one may check that, under some condition, the L k are arranged in stochastically decreasing order (denoted by ). More precisely

Corollary 7 (i) Given M 1 , ..., M k , the law of L k , for k = 1, ..., n, is character- ized by E [L q k | M 1 , ..., M k ] = E [V q k ] k-1 i=1 E V q i = (3.14) Γ (1 + θ M k + q) Γ 1 + γ n\M1,..,M k-1 Γ (1 + θ M k ) Γ 1 + γ n\M1,..,M k-1 + q k-1 i=1 Γ γ n\M1,..,Mi + q Γ 1 + γ n\M1,..,Mi-1 Γ γ n\M1,..,Mi Γ 1 + γ n\M1,..,Mi-1 + q .
Averaging over M 1 , ..., M k whose law is given by Eq. (3.7) gives the exact distribution of

L k . (ii) Let B n\M1,..,M k-1 ,1 d ∼ beta γ n\M1,..,M k-1 , 1 . Assume M k > M k-1 and let C n\M1,..,M k ,1 := B n\M1,..,M k-1 ,1 • B M k-1 ,M k where B M k-1 ,M k d ∼ beta 1 + θ M k , θ M k-1 -θ M k is independent of B n\M1,..,M k-1 ,1 . Then, given M 1 , ..., M k and M k > M k-1 L k d = C n\M1,..,M k ,1 • L k-1 , k = 2, ..., n, (3.15) 
where pairs C n\M1,..,M k ,1 and L k-1 are conditionally mutually independent for k = 2, ..., n.

(iii

) Given M k > M k-1 , L k L k-1 , k = 2, ..., n. Proof. (i) is a direct consequence of the construction, since V i := 1 -V i d ∼ beta γ n\M1,..,Mi , 1 + θ Mi , i = 1, ..., k -1, V k d ∼ beta 1 + θ M k , γ n\M1,.
.,M k are mutually independent, conditionally given M 1 , ..., M k . Recalling the expression of the moment function for beta distributions, the corresponding expression of

E [L q k | M 1 , ..., M k ] follows up.
If M k > M k-1 (an event with probability larger than 1/2), this is the moment function of the product of a beta γ n\M1,..,M k-1 , 1 distributed random variable times an independent beta 1 + θ M k , θ M k-1 -θ M k distributed random variable. This makes sense since, recalling the sequence {θ m } is decreasing, θ M k-1 -θ M k ≥ 0 (recalling a beta(α, 0) -distributed random variable degenerates to 1). (iii) Given M 1 , ..., M k and M k > M k-1 , we have from (ii):

L k L k-1 , k = 2, ..., n. Averaging over M 1 , ..., M k ∩{M k > M k-1 }, L k L k-1 , k = 2, ..., n, unconditionally.
From part (i) of corollary 7, we obtain in particular the average value of L k . Indeed, putting q = 1 in Eq. (3.14) and averaging, using Eq. (3.7), elementary regrouping of terms gives

E (L k ) = 1 γ n (1 + γ n ) m1 =... =m k θ m k (1 + θ m k ) k-1 i=1 θ mi 1 + γ n\m1,..,mi (3.16) = n m=1 θ m (1 + θ m ) γ n (1 + γ n ) (m1 =... =m k-1 ) =m k-1 i=1 θ mi 1 + γ n\m1,..,mi , for k = 1, ..., n. Note, from normalization, that n k=1 E (L k ) = 1.
This result is useful in the context of heaps processes for the following reason. Let C n be the search-cost of an item in the library having reached equilibrium given by L n . The search cost of an item in a library is the number of items above it in the heap; averaging over the items' popularities gives the search cost of a typical item. From this definition, C n plainly is the random variable taking the value k -1 with probability E (L k ). From this, we immediately obtain Theorem 8 With E (L k ) given by Eq. (3.16), the exact law of the search-cost C n within L n , is given by ∼ SBD n (θ) and the above construction of SBD n (θ n ) particularizes to SBD n (θ) when all θ m are identical. In the context of the symmetric Dirichlet model, Kingman considered the following limit n ↑ ∞, θ ↓ 0 while nθ = γ > 0. Although S n itself has a degenerate weak limit when n ↑ ∞, θ ↓ 0 while nθ = γ > 0, this situation is worth being considered because many interesting statistical features emerge. This was first noted by [START_REF] Kingman | Random discrete distributions[END_REF]. Indeed, considering the ordered version S (n) of S n with S (1) > ... > S (n) , the weak limit of S (n) is well-defined and well-known to be the Poisson-Dirichlet P D (γ) distribution. Furthermore, the weak limit in the sense of Kingman of L n d ∼ SBD n (θ) is also well-defined and is the Griffiths-Engen-McCloskey, or GEM (γ), distribution. The GEM (γ) distribution turns out to be also the size-biased permutation of the Poisson-Dirichlet partition (see [START_REF] Kingman | Poisson processes[END_REF], Chapter 9 and Pitman (2002) for additional results). It is of course invariant under an additional action of the size-biased-permutation operation (see [START_REF] Pitman | Random discrete distributions invariant under sizebiased permutation[END_REF]).

P (C n = k) = E (L k+1 ) , k = 0, .., n -1. (3.
GEM (γ) -partitions exhibit many fundamental invariance properties (for a review of these results and applications to Computer Science, Combinatorial Structures, Physics, Biology.., see [START_REF] Tavaré | Multivariate Ewens distribution[END_REF] and the references therein for example; this model and related ones are also fundamental in Probability Theory; see [START_REF] Pitman | Random discrete distributions invariant under sizebiased permutation[END_REF][START_REF] Pitman | Coalescents with multiple collisions[END_REF][START_REF] Pitman | Poisson-Dirichlet and GEM invariant distributions for split-and-merge transformation of an interval partition[END_REF].

The purpose of this Section is to consider similar problems in the context of the full asymmetric Dirichlet partition. In this case, we obviously have Proof. The proof follows from the fact that a random vector with bounded support has distribution characterized by its moments and from the continuity of the Euler-gamma function.

We shall call such a random partition of the interval S ∞ a Dirichlet-Kingman partition and we shall write S ∞ d ∼ DK γ (θ ∞ ) where θ ∞ := (θ 1 , ..., θ m , ...) satisfies m≥1 θ m = γ. Note that for such countable partition S ∞ of the unit interval, any finite-dimensional distribution (S m1 , ..., S m k ) with m 1 = ... = m k ∈

N\ {0}

k has Dirichlet distribution D k (θ m1 , ..., θ m k ) . Although this partition is not explicitly discussed in [START_REF] Kingman | Poisson processes[END_REF], page 93, its construction is tacitly suggested therein. 

2. 1

 1 The Dirichlet model We shall consider the following random partition of the unit interval into n fragments. Let θ n := (θ m , m = 1, ..., n) be some set of n positive parameters and introduce γ m := m l=1 θ l , m = 1, ..., n. With Γ (•) the Euler gamma function, assume that the random fragment sizes S n := (S 1 , ..., S n ), satisfying n m=1 S m = 1, is distributed according to the Dirichlet D n (θ n ) density function with respect to the uniform distribution on the simplex f S1,...,Sn (s 1 , ..., s n ) = Γ (γ n )

  Examples of sequences θ m ; m = 1, ..., n: 1/ Assume θ m = n -m + 1, m = 1, ..., n. Then γ n = (n (n + 1)) /2 and σ m = 2 (n -m + 1) / (n (n + 1)). 2/ Assume θ m = 1/m, m = 1, ..., n. Then γ n = n 1 1/m is the n -th harmonic number.

d=

  xS m (1) := xS m , m = 1, ..., n, univariately and multivariately and n m=1 S m (x) = x.

  2.b. Let m 1 = ... = m k ∈ {1, ..., n} be k distinct integers. Considering the function f (S 1 , ..., S n ) = k l=1 S m l q

  3.b. The joint conditional generating function of K n reads E with degree d = k allowing to compute E n m=1 u Km m . Further, with X m := X m / n m=1 X m , X m d ∼ gamma(θ m ), m = 1, ..., n, as above, using independence between X m , m = 1, ..., n and n m=1 X m and recalling X m , m = 1, ..., n d

  random variables and it holds that L 1 S n . (3.3) Proof. Recalling that S m d ∼ beta θ m ; γ n\m , m = 1, ..., n, one can check directly from Eq. (3.2) that

  First, we have (L 1 , ..., L n ) = (S M1 , ..., S Mn ) , (3.10) and consequently P (L 1 = S m1 , ..., L n = S mn | S n ) = l S mn . (3.11) Consider now the joint moment function of the random size-biased permutation L n = (L 1 , ..., L n ) . The following result holds Theorem 6 Given M 1 , ..., M n , the joint moment function of the SBP L

) 4

 4 The Dirichlet-Kingman limit First, reconsider the symmetric Dirichlet D n (θ) distribution, hence with a finite number n of fragments in the partition and when all θ m are identical. The distribution of L n :=SBP(S n ) when S n d ∼ D n (θ) has been considered in Barrera et al (2005). It was noted L n d

Theorem 9

 9 Assume the parameter set (θ 1 , ..., θ n ) is such that γ n := n m=1 θ m sums to some finite limit γ > 0 as n ↑ ∞. Then S n d ∼ D n (θ n ) has a nondegenerate weak limit S ∞ , where S ∞ is the random partition on the infinitedimensional simplex characterized by its joint moment functionE γ + m≥1 q m m≥1 Γ (θ m + q m ) Γ (θ m ) . (4.1)

Corollary 10 1 d∼ 0 E

 1010 The partition S ∞ d ∼ DK γ (θ ∞ ) is in the RAM class with S k = k-1 i=1 B i B k , k ≥ 1, (4.2) where (B k , k ≥ 1) are independent with respective law B k d ∼ beta θ k , γ ∞\1,..,k . Corollary 12 Let S ∞ d ∼ DK γ (θ ∞ ) with m≥1 θ m = γ. With γ m := m k=1 θ k , m ≥ 1, γ 0 := 0, if (X t ; t ≥ 0) is a Moran subordinator, then X γm -X γm-1 ; m ≥ 1 | X γ = DK γ (θ ∞ ) .Remark: When computing with Dirichlet-Kingman partitions, the following formula∞ (f (S ∞ (x))) x γ-1 e -px dx = Γ (γ) p γ E (f (X ∞ (p))) ,extending Eq. (2.5), can be useful.

0 v a+q1-1 (1 -v) b+q2-1 dv (3.13) = Γ (a + b) Γ (a) Γ (b)Γ (a + q 1 ) Γ (b + q

) Γ (a + b + q 1 + q 2 ).

(ii) Regrouping terms directly from Eq. (3.14), we haveE [L q k | M 1 , ..., M k ] = E L q k-1 | M 1 , ..., M k-1 E [B q k | M 1 , ..., M k ] with E [B q k | M 1 , ..., M k ] = Γ γ n\M1,..,M k-1 + q Γ γ n\M1,..,M k-1 Γ 1 + γ n\M1,..,M k-1 Γ 1 + γ n\M1,..,M k-1 + q × Γ (1 + θ M k + q) Γ (1 + θ M k ) Γ 1 + θ M k-1 Γ 1 + θ M k-1 + q .
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Proof. Using our notation, γ ∞\1,..,k := m≥1 θ m -k m=1 θ m = m≥k+1 θ m and the proof is immediate.

An example of such a DK γ (θ ∞ ) distribution is when θ m = p m , m ≥ 1, for some p ∈ (0, 1) with γ = p/ (1 -p).

Remark: Dirichlet-Kingman partitions suggest to study the following sequential colonizing process of space by some n-species population. Let B k d ∼ beta θ k , γ ∞\1,..,k , k ≥ 1, be a sequence of independent random variables. Consider the following space-filling process: A first incoming species occupies a random fraction S 1 = B 1 of the available unit space and forthcoming species take independent random fractions of the remaining space left by the preceding ones, which is

If this space-filling process terminates when each of the n species holds a portion of the space, then a free fraction remains, which is occupied by no species. It is:

Clearly, as n ↑ ∞, vacant space S n+1 converges almost surely to 0 and so S n := (S 1 , ..., S n ) converges weakly to the DK γ (θ ∞ ) limit defined by Eq. (4.2).

Note that in the above particular example where θ m = p m , m ≥ 1, although B k 's law depends on k, its mean E (B k ) = θ k / m≥k θ m = 1 -p is independent of the species number k. This is not true in general for other sequences θ ∞ .

From the above construction of L n = SBP(S n ), we easily get

is defined as follows; given the fragment numbers in their visiting order M 1 , ..., M n , with distribution

The next Corollary is an immediate consequence of the above corresponding construction for D n (θ n ) in terms of the conditioned Moran subordinator (X t ; t ≥ 0 | X γ = 1) .