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Abstract

Equations arising in General Relativity are usually to complicated to be solved analyti-

cally and one has to rely on numerical methods to solve sets of coupled, partial differential,

equations. Amongst the possible choices, this paper focuses on a class called spectral meth-

ods where, typically, the various functions are expanded onto sets of orthogonal polynomials

or functions. A theoretical introduction on spectral expansion is first given and a particular

emphasize is put on the fast convergence of the spectral approximation. We present then

different approaches to solve partial differential equations, first limiting ourselves to the one-

dimensional case, with one or several domains. Generalization to more dimensions is then

discussed. In particular, the case of time evolutions is carefully studied and the stability of

such evolutions investigated. One then turns to results obtained by various groups in the field

of General Relativity by means of spectral methods. First, works which do not involve explicit

time-evolutions are discussed, going to rapidly rotating strange stars to the computation of

binary black holes initial data. Finally, the evolutions of various systems of astrophysical

interest are presented, from supernovae core collapse to binary black hole mergers.
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1 Introduction

Einstein’s equations represent a complicated set of nonlinear partial differential equations for which
some exact [23] or approximate [24] analytical solutions are known. But these solutions are not
always suitable for some physically or astrophysically interesting systems, that require an accurate
description of their relativistic gravitational field, without any assumption on the symmetry or
with the presence of matter fields for instance. Therefore, many efforts have been undertaken to
solve Einstein’s equations with the help of computers in order to model relativistic astrophysical
objects. Within this field of numerical relativity, several numerical methods have been experi-
mented and a large variety of them are currently being used. Among them, spectral methods are
now increasingly popular and the goal of this review is to give an overview (at the moment it
is written or updated) of the methods themselves, the groups using them and the obtained re-
sults. Although some theoretical framework of spectral methods is given in Secs. 2 and 3, more
details about spectral methods can be found in the books by Gottlieb and Orszag [68], Canuto et
al. [44, 45, 46], Fornberg [61] and Boyd [39]. While these references have of course been used for
writing this review, they can also help the interested reader to get deeper understanding of the
subject. This review is organized as follows: hereafter in the introduction, we briefly introduce the
spectral methods, their usage in computational physics and give a simple example. Sec. 2 gives
important notions concerning polynomial interpolation and the solution of ordinary differential
equations (ODE) with spectral methods. The cases of partial differential equations (PDE), includ-
ing time evolution or several spatial dimensions, are treated in Sec. 3. The last two sections are
then reviewing results obtained using spectral methods: on stationnary configurations and initial
data (Sec. 4), and on the time-evolution (Sec. 5) of stars, gravitational waves and black holes.

1.1 About Spectral Methods

When doing simulations and solving PDE, one faces the problem of representing and manipulating
functions on a computer, which deals only with (finite) integers. Let us take a simple example
of a function f : [−1, 1] → R. The most straightforward way to approximate it is through finite-
differences methods : first one must setup a grid

{xi}i=0...N ⊂ [−1, 1]

of N + 1 points in the interval, and represent f by its N + 1 values on these grid points

{fi = f(xi)}i=0...N .

Then, the (approximate) representation of the derivative f ′ shall be, for instance

∀i < N, f ′
i = f ′(xi) ≃

fi+1 − fi

xi+1 − xi
. (1)

If we suppose an equidistant grid, so that ∀i < N, xi+1 − xi = ∆x = 1/N , the error in the
approximation (1) will decay as ∆x (first-order scheme). One can imagine higher-order schemes,
with more points involved for the computation of each derivative and, for a scheme of order n, the
accuracy will go as (∆x)

n
= 1/Nn.

Spectral methods represent an alternate way: the function f is no longer represented through
its values on a finite number of grid points, but using its coefficients (coordinates) {ci}i=0...N in a
finite basis of known functions {Φi}i=0...N

f(x) ≃
N
∑

i=0

ciΦi(x). (2)
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A relatively simple case is, for instance, when f(x) is a periodic function of period 2, and the
Φi(x) = cos(πix), sin(πix) are trigonometric functions. Eq. (2) is then nothing but the truncated
Fourier decomposition of f . In general, derivatives can be computed from the ci’s, with the knowl-
edge of the expression for each derivative Φ′

i(x) as a function of {Φi}i=0...N . The decomposition (2)
is approximate in the sense that {Φi}i=0...N represent a complete basis of some finite-dimension
functional space, whereas f usually belongs to some other infinite-dimension space. Moreover, the
coefficients ci are computed with finite accuracy. Among the major advantages of using spectral
methods is the exponential decay of the error (as e−N), for well-behaved functions (see Sec. 2.4.3);
one therefore has an infinite-order scheme.

In a more formal and mathematical way, it is useful to work with the methods of weighted
residuals (MWR, see also Sec. 2.5). As in that section, let us consider the PDE

Lu(x) = s(x) x ∈ U ⊂ R
d, (3)

Bu(y) = 0 x ∈ ∂U, (4)

where L is a linear operator, B the operator defining the boundary conditions and s is a source
term. A function ū is said to be a numerical solution of this PDE if it satisfies the boundary
conditions (4) and makes “small” the residual

R = Lū − s. (5)

If the solution is searched in a finite-dimensional subspace of some given Hilbert space (any relevant
L2

U space) in terms of the expansion (2), then the functions {Φi(x)}i=0...N are called trial functions
and, in addition the choice of a set of test functions {χi(x)}i=0...N defines the notion of smallness
for the residual by means of the Hilbert space scalar product

∀i = 0...N, (χi, R) = 0. (6)

Within this framework, various numerical methods can be classified according to the choice of the
trial functions:

• Finite differences: the trial functions are overlapping local polynomials of low order,

• Finite elements: the trial functions are smooth functions which are non-zero only on
subdomains of U ,

• Spectral methods: the trial functions are global smooth functions on U .

Various choices of the test functions define different types of spectral methods, as detailed in
Sec. 2.5. Usual choices for the trial functions are (truncated) Fourier series, spherical harmonics
or orthogonal families of polynomials.

1.2 Spectral Methods in Physics

We do not give here all the fields of physics where spectral methods are being employed, but we
sketch the variety of equations and physical models that have been simulated with such techniques.
Spectral methods originally appeared in numerical fluid dynamics, where large spectral hydrody-
namics codes have been regularly used to study turbulence and transition, since the seventies. For
fully resolved, direct numerical calculations of Navier-Stokes equations, spectral methods were of-
ten preferred for their high accuracy. Although high-order finite-difference codes can yield similar
accuracy, spectral methods still have an advantage because they permit fast, direct solution of
Poisson’s equation. Solving Poisson’s equation is required to determine the pressure gradient that
appears in the Navier-Stokes equations. Historically, they also allowed for two- or three-dimensional
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simulations of fluid flows, because of their reasonable computer memory requirements. Many ap-
plications of spectral methods in fluid dynamics have been discussed by Canuto et al. [44, 46], and
the techniques developed in that field can be of some interest for numerical relativity.

From pure fluid-dynamics simulations, spectral methods have rapidly been used in connected
fields of research: geophysics [130], meteorology and climate modeling [146]. In this last domain of
research, they provide global circulation models that are then used as boundary conditions to more
specific (lower-scale) models, with improved micro-physics. In this way, spectral methods are only
a part of the global numerical model, combined with other techniques to bring the highest accuracy,
for a given computational power. Solution of the Maxwell equations can, of course, be also obtained
with spectral methods and therefore, magneto-hydrodynamics (MHD) have been studied with these
techniques (see e.g. Hollerbach [84]). This has been the case in astrophysics too, where for example
spectral three-dimensional numerical models of solar magnetic dynamo action realized by turbulent
convection have been computed [42]. Still in astrophysics, the Kompaneet’s equation, describing
the evolution of photon distribution function in a bath of plasma at thermal equilibrium within the
Fokker-Planck approximation, has been solved using spectral methods to model the X-ray emission
of Her X-1 [26, 32]. In the simulations of cosmological structure formation or galaxy evolution,
many N-body codes rely on a spectral solver for the computation of the gravitational force by the
so-called particle-mesh algorithm. The mass corresponding to each particle is decomposed onto
neighboring grid points, thus defining a density field. The Poisson equation giving the Newtonian
gravitational potential is then usually solved in Fourier space for both fields [83].

To our knowledge, the first published results on the numerical solution of Einstein’s equations,
using spectral methods is the spherically-symmetric collapse of a neutron star to a black hole
by Gourgoulhon in 1991 [69]. He used the spectral methods as they have been developed in the
Meudon group by Bonazzola and Marck [35]. Later, studies of fast rotating neutron stars [33]
(stationary axisymmetric models), the collapse of a neutron star in tensor-scalar theory of grav-
ity [109] (spherically-symmetric dynamical spacetime) and quasi-equilibrium configurations of bi-
nary neutron stars [31] and of black holes [81] (three-dimensional and stationary spacetimes) have
grown in complexity until the three-dimensional unsteady numerical solution of Einstein’s equa-
tions [29]. On the other hand, the first fully three-dimensional evolution of the whole Einstein
system has been achieved in 2001 by Kidder et al. [91], where a single black hole was evolved until
t ≃ 600M − 1300M , using excision techniques. They used spectral methods as developed in the
Cornell-Caltech group by Kidder et al. [89] and Pfeiffer et al. [120]. Since then, they have focused
on the evolution of a binary black hole system, which has been evolved until t ≃ 600M by Scheel et
al. [129]. Other groups (for instance Ansorg et al. [10], Bartnik and Norton [18], Frauendiener [62]
and Tichy [148]) have also used spectral methods to solve Einstein’s equations; chapters 4 and 5
are devoted to a more detailed review of all these works.

1.3 A simple example

Before entering the details of spectral methods in chapters 2 and 3, let us give here their spirit
with the simple example of the Poisson equation in a spherical shell:

∆φ = σ, (7)

where ∆ is the Laplace operator (101) expressed in spherical coordinates (r, θ, ϕ) (see also Sec. 3.3).
We want to solve Eq. (7) in the domain where 0 < Rmin ≤ r ≤ Rmax, θ ∈ [0, π], ϕ ∈ [0, 2π). This
Poisson equation naturally arises in numerical relativity when, for example, solving for initial con-
ditions or the Hamiltonian constraint in the 3+1 formalism [71]: the linear part of these equations
can be cast into the form (7), and the non-linearities put into the source σ, with an iterative scheme
on φ.
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First, the angular parts of both fields shall be decomposed onto a (finite) set of spherical
harmonics {Y m

ℓ } (see Sec. 3.3.2):

σ(r, θ, ϕ) ≃
ℓmax
∑

ℓ=0

m=ℓ
∑

m=−ℓ

sℓm(r)Y m
ℓ (θ, ϕ), (8)

with a similar formula relating φ to the radial functions fℓm(r). Because spherical harmonics are
eigenfunctions of the angular part of the Laplace operator, the Poisson equation can be equivalently
solved as a set of ordinary differential equations for each couple (ℓ, m), in terms of the coordinate
r:

∀(ℓ, m),
d2fℓm

dr2
+

2

r

dfℓm

dr
− ℓ(ℓ + 1)fℓm

r2
= sℓm(r). (9)

We then map

[Rmin, Rmax] → [−1, 1]

r 7→ ξ =
2r − Rmax − Rmin

Rmax − Rmin
, (10)

and decompose each field onto a (finite) base of Chebyshev polynomials {Ti}i=0...N (see Sec. 2.4.2):

sℓm(ξ) =
N
∑

i=0

ciℓmTi(ξ),

fℓm(ξ) =

N
∑

i=0

aiℓmTi(ξ). (11)

Each function fℓm(r) can be regarded as a column-vector Aℓm of its N + 1 coefficients aiℓm in
this base; the linear differential operator on the left-hand side of Eq. (9) being thus a matrix Lℓm

acting on this vector:
LℓmAℓm = Sℓm, (12)

with Sℓm being the vector of the N + 1 coefficients ciℓm of sℓm(r). This matrix can be computed
from the recurrence relations fulfilled by the Chebyshev polynomials and their derivatives (see
Sec. 2.4.2 for details).

The matrix L is singular, because the problem (7) is ill-posed. One must indeed specify bound-
ary conditions at r = Rmin and r = Rmax. For simplicity, let us suppose

∀(θ, ϕ), φ(r = Rmin, θ, ϕ) = φ(r = Rmax, θ, ϕ) = 0. (13)

To impose these boundary conditions, we shall adopt the tau methods (see Sec. 2.5.2): we build
the matrix L̄, taking L and replacing the last two lines by the boundary conditions, expressed in
terms of the coefficients from the properties of Chebyshev polynomials:

∀(ℓ, m),

N
∑

i=0

(−1)iaiℓm =

N
∑

i=0

aiℓm = 0. (14)

Eqs. (14) are equivalent to the boundary conditions (13), within the considered spectral approxima-
tion, and they represent the last two lines of L̄, which can now be inverted and give the coefficients
of the solution φ.

If one summarizes the steps:
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1. Setup an adapted grid for the computation of spectral coefficients (e.g. equidistant in the
angular directions and Chebyshev-Gauss-Lobatto collocation points, see Sec. 2.4.2);

2. Get the values of the source σ on these grid points;

3. Perform a spherical-harmonics transform (for example using some available library [106]),
followed by the Chebyshev transform (using a Fast Fourier Transform-FFT, or a Gauss-
Lobatto quadrature) of the source σ;

4. For each couple of values (ℓ, m), build the corresponding matrix L̄, with the boundary condi-
tions and invert the system (using any available linear-algebra package) with the coefficients
of σ as the right-hand side;

5. Perform the inverse spectral transform to get the values of φ on the grid points, from its
coefficients.

As shown by Grandclément et al. [82], or in Sec. 2.5.2 but for a different differential equation, the
error with this technique would decay as e−ℓmax · e−N , provided that the source sigma is smooth.
Machine round-off accuracy can be reached with ℓmax ∼ N ∼ 30, which makes the matrix inversions
of step 4 very cheap in terms of CPU, and the whole method in terms of memory usage too. These
are the main advantages of using spectral methods, as it shall be shown in the following sections.
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2 Theoretical Foundations

In this section the mathematical basis of spectral methods are presented. Some generalities about
approximating functions with polynomials are first given. The basic formulae of spectral ap-
proximation are then given and two sets of polynomials are discussed (Legendre and Chebyshev
polynomials). A particular emphasize is put on convergence properties (i.e. the way the spectral
approximate converges to the real function).

In Sec. 2.5, three different methods for solving an ordinary differential equation are exhibited
and applied on a simple problem. Sec. 2.6 is concerned with multi-domain techniques. After giving
some motivations for the use of multi-domain decomposition, three different implementations are
discussed and their merits discussed. One simple example is given, which uses only two domains.

Let us mention that this section is only concerned with 1-dimensional problems (see Sec. 3 for
problems in higher dimensions).

2.1 Best polynomial approximation

Polynomials are the only functions that a computer can exactly evaluate and so it is natural to try
to approximate any function by a polynomial. When considering spectral methods, one will use
high-order polynomials on a few domains. This is to be contrasted with finite difference schemes,
for instance, where only local polynomials of low degree are considered.

In this particular section, real functions of [−1, 1] are considered. A theorem due to Weierstrass,
1885, states that the set P of all polynomials is a dense subspace of all the continuous functions
on [−1, 1], with the norm ‖·‖∞. This maximum norm is defined as

‖f‖∞ = max
x∈[−1,1]

|f (x)| . (15)

This means that, for any continuous function f of [−1, 1], there exists a sequence of polynomials
(pn) , n ∈ N that converges uniformly towards f :

lim
n→∞

‖f − pn‖∞ = 0. (16)

This theorem shows that it is probably a good idea to approximate continuous functions by poly-
nomials.

Given a continuous function f , the best polynomial approximation of degree N , is the polyno-
mial p⋆

N that minimizes the norm of the difference between f and itself:

‖f − p⋆‖∞ = min {‖f − p‖∞ , p ∈ PN} . (17)

Chebyshev alternate theorem states that for any continuous function f , p⋆
N is unique. There

exist N +2 points xi ∈ [−1, 1] such that the error is exactly attained at those points, in an alternate
manner :

f (xi) − p⋆
N (xi) = (−1)

i+δ ‖f − p⋆
N‖∞ , (18)

where δ = 0 or δ = 1. An example of a function and its best polynomial approximation is shown
of Fig. 1.

2.2 Interpolation on a Grid

A grid X on the interval [−1, 1] is a set of N + 1 points xi ∈ [−1, 1], 0 ≤ i ≤ N . Those points are
called the nodes of the grid X .
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-1 -0.5 0 0.5 1
x

-0.2
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0.4

0.6

0.8

1

y

f=cos
3
(πx/2) +(x+1)

3
/8

Best approximant

N=2

Figure 1: Function f = cos3 (πx/2)+(x + 1)
3
/8 (black curve) and its best approximation of degree

2 (red curve). The blue arrows denote the 4 points where the maximum error is attained.

Let us consider a continuous function f and a grid X with N + 1 nodes xi. Then, there exist
a unique polynomial of degree N , IX

N f , that coincides with f at each node :

IX
N f (xi) = f (xi) 0 ≤ i ≤ N. (19)

IX
N f is called the interpolant of f through the grid X . IX

N f can be expressed in terms of the
Lagrange cardinal polynomials:

IX
N f =

N
∑

i=0

f (xi) lXi (x) , (20)

where the lXi are the Lagrange cardinal polynomials. By definition, lXi is the unique polynomial
of degree N , that vanishes at all nodes of the grid X but at xi, where it is 1. It is easy to show
that the Lagrange cardinal polynomials can be written as

lXi (x) =

N
∏

j=0,j 6=i

x − xj

xi − xj
. (21)

Figure 2 shows some examples of Lagrange cardinal polynomials and an example of a function and
its interpolant on a uniform grid can be seen on Fig. 3.

Thanks to Chebyshev alternate theorem, one can see that the best approximation of degree N
is an interpolant of the function at N + 1 nodes. However, in general, the associated grid is not
known. The difference between the error made by interpolating on a given grid X can be compared
to the smallest possible error for the best approximation. One can show that :

∥

∥f − IX
N f
∥

∥

∞
≤ (1 + ΛN (X)) ‖f − p⋆‖∞ , (22)
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Uniform grid N=8

Figure 2: Lagrange cardinal polynomials lX3 (red curve) and lX7 on an uniform grid with N = 8.
The black circles denote the nodes of the grid.
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Figure 3: Function f = cos3 (πx/2) + (x + 1)
3
/8 (black curve) and its interpolant (red curve)on a

uniform grid of 5 nodes. The blue circles show the position of the nodes.
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Uniform interpolant
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Figure 4: Function f =
1

1 + 16x2
(black curve) and its interpolant (red curve)on a uniform grid

of 5 nodes (left panel) and 14 nodes (right panel). The blue circles show the position of the nodes.

where Λ is the Lebesgue constant of the grid X and is defined as :

ΛN (X) = maxx∈[−1,1]

N
∑

i=0

|lxi (x)| . (23)

A theorem by Erdös (1961) states that, for any choice of grid X , there exist a constant C > 0
such that :

ΛN (X) >
2

π
ln (N + 1) − C. (24)

It immediately follows that Λ (N) → ∞ when N → ∞. This implies that for any grid, there always
exists at least one continuous function f which interpolant does not converge uniformly to f . An
example of such failure of the convergence is show on Fig. 4, where the interpolant of the function
f = 11 + 16x2 is clearly not uniform (see the behavior near the boundaries of the interval). This
is known as the Runge phenomenon.

Moreover, a theorem by Cauchy states that, for all functions f ∈ C(N+1), the interpolation
error, on a grid X of N + 1 nodes is given by

f (x) − IX
N (x) =

fN+1 (ǫ)

(N + 1)!
wX

N+1 (x) , (25)

where ǫ ∈ [−1, 1]. wX
N+1 is the nodal polynomial of X , being the only polynomial of degree N + 1,

with a leading coefficient 1 and that vanishes on the nodes of X . It is then easy to show that

wX
N+1 (x) =

N
∏

i=0

(x − xi) . (26)

On equation (25), one has a priori no control on the term involving fN+1. For a given function,
this can be rather large and this is indeed the case for the function f shown on Fig. 4. However,
one can hope to minimize the interpolation error by choosing a grid such that the nodal polynomial
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Figure 5: Same thing as Fig. 4 but using a grid based on the zeros of Chebyshev polynomials. The
Runge phenomenon is no longer present.

is as small as possible. A theorem by Chebyshev states that this choice is unique and is given by
a grid which nodes are the zeros of the Chebyshev polynomial TN+1 (see Sec. 2.3 for more details
on Chebyshev polynomials). With such a grid, one can achieve

∥

∥wX
N+1

∥

∥

∞
=

1

2N
, (27)

which is the smallest possible value. So, a grid based on nodes of Chebyshev polynomials can be
expected to perform better that a standard uniform one. This is what can be seen on Fig. 5, which
shows the same thing than Fig. 4 but with a Chebyshev grid. Clearly, the Runge phenomenon is
no longer present. It can be checked, that, for this choice of function f , the uniform convergence
of the interpolant to the function is recovered.

2.3 Polynomial Interpolation

2.3.1 Orthogonal polynomials

Spectral methods are based on the notion of orthogonal polynomials. In order to define orthogo-
nality, one has to define the scalar product of two functions, on an interval [−1, 1]. Let us consider
a positive function w of [−1, 1] called the measure. The scalar product of f and g, with respect to
this measure is defined as :

(f, g)w =

∫

x∈[−1,1]

f (x) g (x) w (x) dx. (28)

A basis of PN is then a set of N + 1 polynomials pn, each of degree n that are orthogonal :
(pi, pj)w = 0 for i 6= j.

The projection PNf of a function f on this basis is then

PNf =

N
∑

n=0

f̂npn, (29)
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Figure 6: Function f = cos3 (πx/2) + (x + 1)
3
/8 (black curve) and its projection on Chebyshev

polynomials (red curve), for N = 4 (left panel) and N = 8 (right panel).

where the coefficients of the projection are given by

f̂n =
(f, pn)

(pn, pn)
. (30)

The difference between f and its projection goes to zero when N increases :

‖f − PNf‖∞ → 0 when N → ∞. (31)

Figure 6 shows the function f = cos3 (πx/2) + (x + 1)
3
/8 and its projection on Chebyshev poly-

nomials (see Sec. 2.4.2), for N = 4 and N = 8, illustrating the rapid convergence of PNf to
f .

At first sight, the projection seems to be an interesting mean of numerically representing a
function. However, in practice, this is not the case. Indeed, to determine the projection of a
function, one needs to compute the integrals (30), which requires the evaluation of f at a great
number of points, thus making the all numerical scheme impracticable.

2.3.2 Gaussian quadratures

The main theorem of Gaussian quadratures states that, given a measure w, there exist N + 1
positive reals wn and N + 1 reals xn ∈ [−1, 1] such that:

∀f ∈ P2N+δ,

∫

[−1,1]

f (x) w (x) dx =

N
∑

n=0

f (xn)wn. (32)

The wn are called the weights and the xn are the collocation points. The degree of applicability of
the theorem depends on the integer δ, which can take the following values.

• Gauss quadrature : δ = 1.

• Gauss-Radau : δ = 0 and x0 = −1.
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• Gauss-Lobatto : δ = −1 and x0 = −1 and xN = 1.

Gauss quadrature is more appealing because it applies to polynomials of higher degree but Gauss-
Lobatto quadrature is often more useful for numerical purposes because the outermost collocation
points coincide with the boundaries of the interval making is easier to impose continuities or
boundary conditions.

2.3.3 Spectral interpolation

As already stated in 2.3.1, the main shortcoming of projecting a function on orthogonal polyno-
mials comes from the difficulty to compute the integrals (30). The idea of spectral methods is
to approximate the coefficients of the projection by making use of the Gaussian quadratures. By
doing so, one can define the interpolant of a function f by

INf =

N
∑

n=0

f̃npn (x) , (33)

where

f̃n =
1

γn

N
∑

i=0

f (xi) pn (xj)wi and γn =

N
∑

i=0

p2
n (xi)wi. (34)

The f̃n exactly coincides with the coefficients f̂n, if the Gaussian quadrature is applicable for
computing (30), that is for all f ∈ PN+δ. So, in general, INf 6= PNf and the difference between
the two is called the aliasing error. The advantage of using the f̃ is that they are computed by
estimating f at the N + 1 collocation points only.

One can show that INf and f coincide at the collocation points : INf (xi) = f (xi) so that
IN interpolates f on the grid which nodes are the collocation points. Figure 7 shows the function
f = cos3 (πx/2)+(x + 1)

3
/8 and its spectral interpolation using Chebyshev polynomials, for N = 4

and N = 6.

2.3.4 Two equivalent descriptions

The description of a function f in terms of its spectral interpolation can be given in two different
but equivalent spaces:

• in the configuration space if the function is described by its value at the N + 1 collocation
points f (xi).

• in the coefficient space if one works with the N + 1 coefficients f̃i.

There is a bijection between the two spaces and the following relations enable to go from one
description to the other:

• the coefficients can be computed from the values of f (xi) using Eq. (34).

• the values at the collocation points are expressed in terms of the coefficients by making use
of the definition of the interpolant (33):

f (xi) =

N
∑

n=0

f̃npn (xi) . (35)
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Figure 7: Function f = cos3 (πx/2) + (x + 1)
3
/8 (black curve) and its interpolant INf Chebyshev

polynomials (red curve), for N = 4 (left panel) and N = 6 (right panel). The collocation points
are denoted by the blue circles and correspond to Gauss-Lobatto quadrature.

Depending on the operation one has to perform on a given function, it may be more clever to
work in one space or the other. For instance, the square root of a function is very easily given
in the collocation space by

√
f (xi), whereas the derivative can be computed in the coefficient

space, if, and this is generally the case, the derivatives of the basis polynomials are known, by

f ′ =

N
∑

n=0

f̃np′n (x).

2.4 Usual polynomials

In this section, some commonly used sets of orthogonal functions are presented.

2.4.1 Legendre polynomials

Legendre polynomials Pn are orthogonal on [−1, 1] with respect to the measure w (x) = 1. More-
over, the scalar product of two polynomials is given by :

(Pn, Pm) =

∫ 1

−1

PnPmdx =
2

2n + 1
δmn. (36)

Starting from P0 = 1 and P1 = x, the successive polynomials can be computed by the following
recurrence expression:

(n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) . (37)

Amongst the various properties of Legendre polynomials, one can note that i) Pn has the same
parity as n. ii) Pn is of degree n. iii) Pn (±1) = (−1)

n
. iv) Pn has exactly n zeros on [−1, 1]. The

first polynomials are shown on Fig. 8.
The weights and location of the collocation points associated with Legendre polynomials depend

on the choice of quadrature.
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Figure 8: First Legendre polynomials, from P0 to P5.

• Legendre-Gauss : xi are the nodes of PN+1 and wi =
2

(1 − x2
i )
[

P ′
N+1 (xi)

]2 .

• Legendre-Gauss-Radau : x0 = −1 and the xi are the nodes of PN + PN+1. The weights are

given by w0 =
2

(N + 1)2
and wi =

1

(N + 1)2
.

• Legendre-Gauss-Lobatto : x0 = −1, xN = −1 and xi are the nodes of P ′
N . The weights are

wi =
2

N (N + 1)

1

[PN (xi)]
2 .

Those values are not analytic but can be computed numerically in an efficient way.
Some elementary operations can be easily performed on the coefficient space. Let us assume

that a function f is given by its coefficients an so that f =
N
∑

n=0

anPn. Then the coefficients bn of

Hf =

N
∑

n=0

bnPn can be found as a function of the an, for various operators H . For instance,

• if H is the multiplication by x then :

bn =
n

2n − 1
an−1 +

n + 1

2n + 3
an+1 (n ≥ 1) . (38)

• if H is the derivation :

bn = (2n + 1)

N
∑

p=n+1,p+n odd

ap. (39)
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• if H is the second derivation :

bn = (n + 1/2)

N
∑

p=n+2,p+n even

[p (p + 1) − n (n + 1)] ap. (40)

Those kind of relations enable to represent the action of H as a matrix acting on the vector of the
an, the product being the coefficients of Hf , i.e. the bn.

2.4.2 Chebyshev polynomials

Chebyshev polynomials, denoted by Tn, are orthogonal on [−1, 1] with respect to the measure
w = 1/

√
1 − x2 and the scalar product of two polynomials is

(Tn, Tm) =

∫ 1

−1

TnTm√
1 − x2

dx =
π

2
(1 + δ0n) δmn. (41)

Given that T0 = 1 and T1 = x, the higher order polynomials can be obtained by making use of the
recurrence

Tn+1 (x) = 2xTn (x) − Tn−1 (x) . (42)

This implies the following simple properties. i) Tn has the same parity as n. ii) Tn is of degree n.
iii) Tn (±1) = (−1)n. iv) Tn has exactly n zeros on [−1, 1]. The first polynomials are shown on
Fig. 9.

Contrary to the Legendre case, both the weights and position of the collocation points are
analytical and given by :

• Chebyshev-Gauss : xi = cos
(2i + 1)π

2N + 2
and wi =

π

N + 1
.

16



• Chebyshev-Gauss-Radau : xi = cos
2πi

2N + 1
. The weights are w0 =

π

2N + 1
and wi =

2π

2N + 1

• Chebyshev-Gauss-Lobatto : xi = cos
πi

N
. The weights are w0 = wN =

π

2N
and wi =

π

N
.

As for the Legendre case, the action of various linear operators H can be expressed in the
coefficient space. This means that the coefficients bn of Hf are given as functions of the coefficients
an of f . For instance,

• if H is the multiplication by x then :

bn =
1

2
[(1 + δ0 n−1) an−1 + an+1] (n ≥ 1) . (43)

• if H is the derivation :

bn =
2

(1 + δ0 n)

N
∑

p=n+1,p+n odd

pap. (44)

• if H is the second derivation :

bn =
1

(1 + δ0 n)

N
∑

p=n+2,p+n even

p
(

p2 − n2
)

ap. (45)

2.4.3 Convergence properties

One of the main advantage of spectral method is the very fast convergence of the interpolant INf
to the function f , at least for smooth enough functions. Let us consider a Cm function u, then,
one can place the following upper bounds on the difference between u and its interpolant INu :

• For Legendre :

‖INu − u‖L2 ≤ C1

Nm−1/2

m
∑

k=0

∥

∥

∥
u(k)

∥

∥

∥

L2

. (46)

• For Chebyshev :

‖INu − u‖L2
w

≤ C2

Nm

m
∑

k=0

∥

∥

∥
u(k)

∥

∥

∥

L2
w

. (47)

‖INu − u‖∞ ≤ C3

Nm−1/2

m
∑

k=0

∥

∥

∥
u(k)

∥

∥

∥

L2
w

. (48)

The Ci are some positive constants. An interesting limit of the above estimates concerns a C∞

function. One can then see that the difference between u and INu decays faster than any power
of N . It implies that the error decays exponentially and one talks about an evanescent error.
An example of this very fast convergence is shown on Fig. 10. The error clearly decays as an
exponential, until the level of 10−14 of the precision of the computation is reached (one is working
in double precision in this particular case). Fig. 10 illustrates the fact that, with spectral methods,
very good accuracy can be reached with only a moderate number of coefficients.

If the function is less regular (i.e. not C∞), the error is no longer exponential and only decays
as a power-law, thus making the use of spectral method less appealing. This effect is called the
Gibbs phenomenon. It can be easily seen on the worst possible case, the one of a discontinuous
function (m = 0). In the case, the estimates (46-48) do not even ensure convergence at all. On
Fig. 11 one shows a step function and its interpolant, for various values of N . One can see that
the maximum difference between the function and its interpolant is not even going to zero when
N is increased, in agreement with the application of (48) for m = 0.
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2.4.4 Trigonometrical functions

A detailed presentation of the theory of Fourier transform is beyond the scope of this work. How-
ever, there is a close link between the so-called discrete Fourier transform and the spectral inter-
polation and this is briefly outlined here.

The Fourier transform Pf of a function f of [0, 2π] is given by :

Pf (x) = a0 +
∞
∑

n=1

an cos (nx) +
∞
∑

n=1

bn sin (nx) . (49)

The Fourier transform is known to converge rather rapidly to the function itself. However, the coef-

ficients an and bn are given by integrals like

∫ 2π

0

f (x) cos (nx) dx that can not be easily computed

(as it was the case for the projection of a function on orthogonal polynomials in Sec. 2.3.1).
The solution to this problem is also very similar to the use of the Gaussian quadratures. Let

us introduce N + 1 collocation points xi = 2πi/(N + 1). Then, the discrete Fourier coefficients
with respect to those points are :

ã0 =
1

N

N
∑

k=1

f (xk) (50)

ãn =
2

N

N
∑

k=1

f (xk) cos (nxk) (51)

b̃n =
2

N

N
∑

k=1

f (xk) sin (nxk) (52)

and the interpolant INf is then given by :

INf (x) = ã0 +

N
∑

n=1

ãn cos (nx) +

N
∑

n=1

b̃n sin (nx) . (53)

The approximation made by using the discrete coefficients in place of the real ones is of the
same nature than the one made when computing the coefficients of the projection (30) by means
of the Gaussian quadratures. Let us mention that, in the case of a discrete Fourier transform,
the first and last collocation points lies on the boundary of the interval, as for a Gauss-Lobatto
quadrature. As for the polynomial interpolation, the convergence of INf to f is exponential, for
all periodic and C∞ functions.

2.4.5 Choice of basis

For periodic functions of [0, 2π[, the discrete Fourier transform is the natural choice of basis. If
the considered function has also some symmetries, one can use a subset of the trigonometrical
polynomials. For instance, if the function is i) periodic on [0, , 2π[ and is also odd with respect to
x = π, then it can be expanded on sines only.

If the function is not periodic, then it is natural to expand it either on Chebyshev or Legendre
polynomials. Chebyshev polynomials have two main advantages. First the associated weights and
collocation points are analytical and second, the coefficients can be computed by means of FFT
algorithms. The use of an FFT reduces the number of operations from N2 when using the standard
formula Eq. (34) to only N lnN operations. For codes where most of the computational time is
spent going from one representation space to the other, this may be an interesting feature. The

19



main advantage of Legendre polynomials is the fact that the associated measure is very simple
w (x) = 1. The multi-domain technique presented in Sec. 2.6.4 is one particular example where
such property is required.

2.5 Spectral Methods for ODEs

2.5.1 Weighted residual method

Let us consider a differential equation of the following form

Lu (x) = S (x) , x ∈ [−1, 1] , (54)

where L is a linear, second order, differential operator. The problem admits a unique solution
once some boundary conditions are prescribed at x = 1 and x = −1. Typically, one can specify
i) the value of u (Dirichlet-type) ii) the value of its derivative ∂xu (Neumann-type) iii) a linear
combination of the two (Robin-type).

As for the elementary operations presented in Sec. 2.4.1 and 2.4.2, the action of L on u can be
expressed by a matrix Lij . If the coefficients of u with respect to a given basis are the ũi, then the
coefficients of Lu are

N
∑

j=0

Lij ũj . (55)

The Lij can usually be easily computed by combining the action of elementary operations like the
second derivation, the first derivation, the multiplication or division by x (see Sec. 2.4.1 and 2.4.2
for some examples).

A function u is an admissible solution of the problem if and only if i) it fulfills the boundary
conditions exactly (up to machine accuracy) ii) it makes the residual R = Lu − S small. In the
weighted residual method, one considers a set of N + 1 test functions ξn on [−1, 1]. The smallness
of R is enforced by demanding that

(R, ξk) = 0, ∀k ≤ N. (56)

As N increases, the obtained solution is closer and closer to the real one. Depending on the choice
of the test functions and the way the boundary conditions are enforced, one gets various solvers.
Three classical examples are presented next.

2.5.2 The Tau-method

In this particular method, the test functions coincide with the basis used for the spectral expansion,
for instance the Chebyshev polynomials. Let us denote ũi and s̃i the coefficients of the solution u
and the source S with respect to Chebyshev polynomials.

Given the expression of Lu in the coefficient space (55) and the fact that the basis polynomials
are orthogonal, the residual equations (56) are expressed as

N
∑

i=0

Lniũi = s̃n, ∀n ≤ N, (57)

the unknowns being the ũi. However, as such, this system does not admit a unique solution, due
to the homogeneous solutions of L (i.e. the matrix associated with L is not invertible) and one
has to impose the boundary conditions. In the Tau-method, this is done by relaxing the last two
equations (57) (i.e. for n = N − 1 and n = N) and by replacing them by the boundary conditions
at x = −1 and x = 1.
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Figure 12: Exact solution (60) of Eq. (58) (blue curve) and the numerical solution (red curves)
computed by means of a Tau-method, for N = 4 (left panel) and N = 8 (right panel).

The Tau-method thus ensures that Lu and S have the same coefficients but for the last ones. If
the functions are smooth, then their coefficients should decrease exponentially (evanescent error)
and so the “forgotten” conditions are less and less stringent when N increases, ensuring that the
computed solution converges rapidly to the real one.

As an illustration, let us consider the following equation :

d2u

dx2
− 4

du

dx
+ 4u = exp (x) − 4e

(1 + x2)
(58)

with the following boundary conditions

u (x = −1) = 0 andu (x = 1) = 0. (59)

The solution exact is analytical and is

u (x) = exp (x) − sinh (1)

sinh (2)
exp (2x) − e

(1 + x2)
. (60)

Fig. 12 shows the exact solution and the numerical one, for two different values of N . One
can note that the numerical solution converges rapidly to the numerical one, the two being almost
indistinguishable for N as small as N = 8. The numerical solution exactly fulfills the boundary
conditions, no matter what N is.

2.5.3 The collocation method

The collocation method is very similar to the Tau-method. They only differ from the choice of test
functions. Indeed, in the collocation method one uses continuous function that are zero at each
but one collocation point. They are indeed the Lagrange cardinal polynomials already seen in Sec.
2.2 and can be written as ξi (xj) = δij . With such test functions, the residual equations (56) are

Lu (xn) = S (xn) , ∀n ≤ N. (61)

The value of Lu at each collocation points is easily expressed in terms of the ũ by making use
of (55) and one gets :

N
∑

i=0

N
∑

j=0

Lij ũjTi (xn) = S (xn) , ∀n ≤ N. (62)

21



-1 -0.5 0 0.5 1
x

0

0.1

0.2

0.3

0.4

0.5

Exact solution
Numerical solution (coloc)

N=4

-1 -0.5 0 0.5 1
x

0

0.1

0.2

0.3

0.4

0.5

Exact solution
Numerical solution (coloc)

N=8

Figure 13: Same as Fig. 12 but for the collocation method.

Let us note that, even if the collocation method imposes that Lu and S coincide at each
collocation point, the unknowns of the system written in the form (62) are the coefficients ũn and
not the u (xn). As for the Tau-method, the system (62) is not invertible and boundary conditions
must be enforced by additional equations. In this case, the relaxed conditions are the two associated
with the outermost points, i.e. n = 0 and n = N , which are replaced by appropriate boundary
conditions to get an invertible system.

Fig. 13 shows both the exact and numerical solutions for Eq. (58).

2.5.4 Galerkin method

The basic idea of Galerkin method is to seek the solution u as a sum of polynomials Gi that
individually verify the boundary conditions. Doing so u automatically fulfills those conditions and
they do not have to be imposed by additional equations. Such polynomials constitute a Galerkin
basis of the problem. For practical reasons, it is better to chose a Galerkin basis that can be
expressed easily in terms of the original orthogonal polynomials.

For instance, with the boundary conditions (59), one can choose :

G2k (x) = T2k+2 (x) − T0 (x) (63)

G2k+1 (x) = T2k+3 (x) − T1 (x) (64)

More generally, the Galerkin basis relates to the usual ones by means of a transformation matrix

Gi =

N
∑

j=0

MjiTj , ∀i ≤ N − 2. (65)

Let us mention that the matrix M is not square. Indeed, to maintain the same degree of approx-
imation, one can consider only N − 1 Galerkin polynomials, due to the two additional conditions
they have to fulfill (see for instance Eqs. (63-64)). One can also note that, in general, the Gi are
not orthogonal polynomials.

The solution u is sought in terms of the coefficients ũG
i on the Galerkin basis :

u (x) =

N−2
∑

k=0

ũG
k Gk (x) . (66)
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Figure 14: Same as Fig. 12 but for the Galerkin method.

By making use of Eqs. (55) and (65) one can express Lu in terms of the ũG
i :

Lu (x) =

N−2
∑

k=0

ũG
k

N
∑

i=0

N
∑

j=0

MjkLijTi (x) . (67)

The test functions used in the Galerkin method are the Gi themselves so that the residual
system reads :

(Lu, Gn) = (S, Gn) , ∀n ≤ N − 2 (68)

where the left-hand-side is computed by means of (67) and by expressing the Gi in terms of the Ti

by (65). Concerning the right-hand-side, the source itself is not expanded on the Galerkin basis,
given that it does not fulfill the boundary conditions. Putting all the pieces together, the Galerkin
system reads :

N−2
∑

k=0

ũG
k

N
∑

i=0

N
∑

j=0

MinMjkLij (Ti|Ti) =

N
∑

i=0

Mins̃i (Ti|Ti) , ∀n ≤ N − 2. (69)

This is a system of N − 1 equations for the N − 1 unknowns ũG
i and it can be directly solved,

being well-posed. Once the ũG
i are known, one can obtain the solution in terms of the usual basis

by making, once again, use of the transformation matrix :

u (x) =
N
∑

i=0

(

N−2
∑

n=0

MinũG
n

)

Ti. (70)

The solution obtained by the application of this method to the equation (58) is shown on
Fig. 14.

2.5.5 The methods are optimal

A numerical method is said to be optimal if it does not introduce an additional error to the one
that would be done by interpolating the exact solution of a given equation.

Let us call uexact such exact solution, unknown in general. Its interpolant is INuexact and the
numerical solution of the equation is unum. The numerical method is then optimal if and only if
‖INuexact − uexact‖∞ and ‖unum − uexact‖∞ behave in the same manner when N → ∞.
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In general, optimality is difficult to check because both uexact and its interpolant are unknown.
However, for the test problem proposed in Sec. 2.5.2 this can be done. Fig. 15 shows the maximum
relative difference between the exact solution (60) and its interpolant and the various numerical
solutions. All the curves behave in the same manner as N increases, indicating that the three
methods previously presented are optimal (at least for this particular case).

2.6 Multi-domain Techniques

2.6.1 Motivations and setting

A seen in Sec. 2.4.3, spectral methods are very efficient when dealing with C∞ functions. However,
they lose some of their appeal when dealing with less regular functions, the convergence to the
exact functions being substantially slower. Nevertheless, at times, the physicist has to deal with
such fields. This is the case for the density jump at the surface of strange stars or the formation
of shocks to mention only two examples.

In order to maintain spectral convergence, one then needs to introduce several computational
domains such that the various discontinuities of the functions lie at the interface between the
domains. Doing so, in each domain, one only deals with C∞ functions.

In the following, three different multi-domain methods are presented to solve an equation of
the type Lu = S on [−1, 1]. L is a second order linear operator and S a given source function.
Appropriate boundary conditions are given at the boundaries x = −1 and x = 1.

For simplicity the physical space is split into two domains:

• first domain : x ≤ 0 described by x1 = 2x + 1, x1 ∈ [−1, 1],

• second domain : x ≥ 0 described by x2 = 2x − 1, x2 ∈ [−1, 1].

24



If x ≤ 0, a function u is described by its interpolant in terms of x1: INu (x) =

N
∑

i=0

ũ1
i Ti (x1 (x)). The

same thing is true for x ≥ 0 with respect to the variable x2. Such setting is obviously appropriate
to deal with problems where discontinuities occur at x = 0, that is x1 = 1 and x2 = −1.

2.6.2 Multi-domain tau method

As for the standard tau-method (see Sec. 2.5.2) and in each domain, the test functions are the
basis polynomials and one writes the associated residual equations. For instance in the domain
x ≤ 0 one gets:

(Tn, R) = 0 =⇒
N
∑

i=0

Lniũ
1
i = s̃1

n ∀n ≤ N, (71)

the s̃1 being the coefficients of the source and Lij the matrix representation of the operator. As
for the one-domain case, one relaxes the last two equations, keeping only N − 1 equations. The
same thing is done in the second domain.

Two supplementary equations are enforced to ensure that the boundary conditions are fulfilled.
Finally, the operator L being of second order, one needs to ensure that the solution and its first
derivative are continuous at the interface x = 0. This translates as a set of two additional equations
involving the coefficients in both domains.

So, one considers

• N − 1 residual equations in the first domain,

• N − 1 residual equations in the second domain,

• 2 boundary conditions,

• 2 matching conditions,

for a total of 2N + 2 equations. The unknowns are the coefficients of u in both domains (i.e. the
ũ1

i and the ũ2
i ), that is 2N + 2 unknowns. The system is well posed and admits a unique solution.

2.6.3 Method based on the homogeneous solutions

The method exposed here proceeds in two steps. First, particular solutions are computed in each
domain. Then, appropriate linear combination with the homogeneous solutions of the operator L
are performed to ensure continuity and impose boundary conditions.

In order to compute particular solutions, one can rely on any of the methods exposed in Sec. 2.5.
The boundary conditions at the boundary of each domain can be chosen to be (almost) anything.
For instance one can use, in each domain, a collocation method to solve Lu = S, demanding that
the particular solution upart is zero at both end of each intervals.

Then, in order to have a solution in the whole space, one needs to add homogeneous solutions
to the particular ones. In general, the operator L is of second order and it admits two independent
homogeneous solutions g and h, in each domain. Let us note that, in some cases, additional
regularity conditions can reduce the number of available homogeneous solutions. The homogeneous
solutions can either be computed analytically if the operator L is simple enough or numerically
but one then needs to have a method for solving Lu = 0.

In each domain, the physical solution is a combination of the particular solution and the
homogeneous ones of the type :

u = upart + αg + βh, (72)
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where α and β are constants that must be determined. In the two domains case, we are left with 4
unknowns. The system they must verify is composed of i) 2 equations for the boundary conditions
ii) 2 equations for the matching of u and its first derivative across the boundary between the
two domains. The obtained system is called the matching system and generally admits a unique
solution.

2.6.4 Variational method

Contrary to the methods previously presented, the variational one is only applicable with Legendre
polynomials. Indeed, the methods requires that the measure is w (x) = 1. It is also useful to extract
the second order term of the operator L and to rewrite it like Lu = u′′ + H , H being of first order
only.

In each domain, one writes the residual equation explicitly :

(ξ, R) = 0 =⇒
∫

ξu′′dx +

∫

ξ (Hu) dx =

∫

ξSdx. (73)

The term involving the second derivative of u is then integrated by parts :

[ξu′] −
∫

ξ′u′dx +

∫

ξ (Hu) dx =

∫

ξSdx. (74)

The test functions are the same as the ones used for the collocation method, i.e. functions
being zero at all but one collocation point: ξi (xj) = δij . By making use of the Gauss quadratures,
the various parts of Eq. (74) can then be expressed as:

∫

ξ′nu′dx =

N
∑

i=0

ξ′n (xi)u′ (xi)wi =

N
∑

i=0

N
∑

j=0

DijDinwiu (xj) (75)

∫

ξn (Hu) dx =

N
∑

i=0

ξn (xi) (Hu) (xi)wi = wn

N
∑

i=0

Hniu (xi) (76)

∫

ξnSdx =
N
∑

i=0

ξn (xi)S (xi)wi = S (xn)wn, (77)

where Dij (resp. Hij) represent the action of the derivative (resp. of H) in the configuration space

g′ (xk) =

N
∑

j=0

Dkjg (xj) (78)

(Hg) (xk) =

N
∑

j=0

Hkjg (xj) . (79)

For points strictly inside each domain, the integrated term [ξu′] of Eq. (74) vanishes and one
gets equations like:

−
N
∑

i=0

N
∑

j=0

DijDinwiu (xj) + wn

N
∑

i=0

Hniu (xi) = S (xn)wn. (80)

This is a set of N − 1 equations for each domains. In the above form, the unknowns are the u (xi),
i.e. the solution is sought in the configuration space.
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As usual two additional equations are provided by appropriate boundary conditions at both
end of the whole domain. One also gets an additional condition by matching the solution across
the boundary between the two domains.

The last equation of the system is the matching of the first derivative of the solution. However,
instead of writing it “explicitly”, this is done by making use of the integrated term in Eq. (74)
and this is actually the crucial step of the whole method. Applying Eq. (74) to the last point xN

of the first domain, one gets :

u′ (x1 = 1) =

N
∑

i=0

N
∑

j=0

DijDiNwiu (xj) − wN

N
∑

i=0

HNiu (xi) + S (xN )wN . (81)

The same thing can be done with the first point of the second domain, to get u′ (x2 = −1) and the
last equation of the system is obtained by demanding that u′ (x1 = 1) = u′ (x2 = −1) and relates
the values of u in both domains.

Before finishing with the variational method, it may be worthwhile to explain why Legendre
polynomials are used. Suppose one wants to work with Chebyshev polynomials instead . The

measure is then w (x) =
1√

1 − x2
. When one integrates the term containing u′′ by part one then

gets
∫

−u′′fwdx = [−u′fw] +

∫

u′f ′w′dx (82)

Because the measure is divergent at the boundaries, it is difficult, if not impossible, to isolate the
term in u′. On the other hand this is precisely the term that is needed to impose the appropriate
matching of the solution.

2.6.5 Merits of the various methods

From a numerical point of view, the method based on an explicit matching using the homogeneous
solutions is somewhat different from the two others. Indeed, one has to solve several systems in a
row but each one is of the same size than the number of points in one domain. On the contrary, for
both the variational and the tau method one has to solve only one system but its size is the same
as the number of points in whole space, which can be quite big for settings with many domains.
However, those two methods do not require to compute the homogeneous solutions, computation
that could be tricky depending on the operators involved and on the number of dimensions. It is
also true that the Tau-method is somewhat more difficult to generalized to the higher-dimensional
case than the collocation method.

The variational method may seem more difficult to implement and is only applicable with
Legendre polynomials, prohibiting the use of any FFT algorithms to compute the coefficients.
However, on the mathematical grounds, it is the only method which is demonstrated to be optimal.
Moreover, some examples have been found where the others methods are not optimal.

The choice of one method or another thus depend on the particularity of the situation. As
for the mono-domain space, for simple tests problems, the results are very similar. Fig. 16 shows
the maximum error between the analytical solution and the numerical one for the three different
methods. All errors are evanescent and reach machine accuracy with the roughly same number of
points.
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Figure 16: Difference between the exact and numerical solutions of the following test problem.
d2u

dx2
+4u = S, with S (x < 0) = 1 and S (x > 0) = 0. The boundary conditions are u (x = −1) = 0

and u (x = 1) = 0. The black curve and circles denote results from the multi-domain Tau method,
the red curve and triangles from the method based on the homogeneous solutions and the blue curve
and diamonds from the variational one.
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3 Multi-dimensional cases: dealing with space and time

In principle, the generalization to more than one dimension is rather straightforward if one uses
the tensorial product. Let us first take an example, with the spectral representation in terms of
Chebyshev polynomials of a scalar function f(x, y), defined on the square (x, y) ∈ [−1, 1]× [−1, 1].
One simply writes

f(x, y) =

M
∑

i=0

N
∑

j=0

aijTi(x)Tj(y), (83)

with Ti being the Chebyshev polynomial of degree i. The partial differential operators can also be
generalized, as being linear operators acting on the space PM ⊗PN . Simple, linear Partial Differen-
tial Equations (PDE) can be solved by one of the methods presented in Section 2.5 (Galerkin, tau
or collocation), on this MN -dimensional space. The development (83) can of course be generalized
to any dimension. Some special PDE and spectral base examples, where the differential equation
decouples for some of the coordinates, shall be given in Section 3.3. From a relativistic point of
view, the time coordinate could be treated in this way and one should be able to achieve spec-
tral accuracy for the time representation of a space-time function a(t, x, y, z) and its derivatives.
Unfortunately, this does not seem to be the case and, we are not aware neither of any efficient
algorithm for dealing with the time coordinate, nor of any published successful code solving any
of the PDE coming from the Einstein equations.

3.1 Time Discretization

Why is time playing such a special role ? It is not obvious to find in the literature on spectral
methods a complete and comprehensive study. A first standard explanation is the difficulty, in
general, to predict the exact time interval on which one wants to study the time evolution. Then,
time discretization errors in both finite-differences and spectral methods are typically much smaller
than are spatial ones. Finally, one must keep in mind that, contrary to finite-differences, spectral
methods are storing all global information about a function on the whole time interval. Therefore,
a historical reason may be that, since until rather recently there were strong memory and CPU
limitations to multi-dimensional simulations, it was not possible to (even hope to) describe a
complete field depending on 3+1 coordinates. To this reason one can add the fact that, in the full
3+1 dimensional case, the matrix representing a differential operator would be of very big size; it
would therefore be very time-consuming to invert it in a general case, even with iterative methods.

Thus, there have been very few theoretical developments on the subject, with the exception
of Ierley et al. [86], were the authors have applied spectral methods in time for the study of the
Korteweg de Vries and Burger equations, using Fourier series in space and Chebyshev polynomials
for the time coordinate. It is interesting to note that they observe a time-stepping restriction: they
have to employ multi-domain and patching techniques (see Sec. 2.6) for the time interval, with the
size of each sub-domain being roughly given by the Courant-Friedrichs-Lewy (CFL) condition. So
the most common approach for time representation are finite-differences techniques, which allow
for the use of many well-established time-marching schemes, and the method of lines (for other
methods, including fractional stepping, see Fonrberg [61]).

3.1.1 Method of lines

Let us write the general form of a first-order in time linear PDE:

∂u

∂t
= Lu, (84)
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where L is a linear operator containing only derivatives with respect to spatial coordinates. One
can represent the function u through a finite set UN(t), composed of its time-dependent spectral
coefficients, or values at the collocation points. We note LN the spectral approximation to the
operator L, together with the boundary conditions, if a tau or collocation method is used. LN is
therefore represented as an N ×N matrix. This is the so-called method of lines, which allows one
to reduce a PDE to some ODE, after discretization in all dimensions but one. The advantage is
that many ODE integration schemes are known (Runge-Kutta, symplectic integrators, ...) and can
be used here. We shall suppose an equally-spaced grid in time, with the time-step noted ∆t and
UJ

N = UN (J ×∆t). In order to step from UJ
N to UJ+1

N , one has either to compute the action of LN

on UN
K

∣

∣

K≤J
(explicit schemes) or to solve for a boundary value problem in term of UJ+1

N (implicit

schemes). Both types of schemes have different stability properties, which can be analyzed as
follows. Assuming that LN can be diagonalized in the sense of the definition given in (3.1.3), the
stability study can be reduced to the study of the collection of scalar ODE problems

∂UN

∂t
= λiUN , (85)

where λi is any of the eigenvalues of LN in the sense of Eq. (89).

3.1.2 Stability

The basic definition of stability for an ODE integration scheme is that, if the time-step is lower
than some threshold, then ‖UJ

N‖ ≤ AeKJ∆t, with the constants A and K independent of the
time-step. This is perhaps not the most appropriate definition, since in practice one often deals
with bounded functions and an exponential growth in time would not be acceptable. Therefore,
an integration scheme is said to be absolutely stable (or asymptotically stable), if ‖UJ

N‖ remains
bounded, ∀J ≥ 0. This property depends on a particular value of the product λi × ∆t. For each
time integration scheme, the region of absolute stability is the set of the complex plane containing
all the λi∆t for which the scheme is absolutely stable.

Finally, a scheme is said to be A-stable if its region of absolute stability contains the half
complex plane of numbers with negative real part. It is clear that no explicit scheme can be
A-stable due to the CFL condition. It has been shown by Dahlquist [51] that there is no linear
multi-step method of order higher than 2 which is A-stable. Thus implicit methods are also limited
in time-step size if more than second-order accurate. In addition, Dahlquist [51] shows that the
most accurate second-order A-stable scheme is the trapezoidal one (also called Crank-Nicolson, or
second-order Adams-Moulton scheme)

UJ+1
N = UJ

N +
∆t

2

(

LNUJ+1
N + LNUJ

N

)

. (86)

On Figs. 17 and 18 are displayed the absolute stability regions for the Adams-Bashford and
Runge-Kutta families of explicit schemes (see for instance [44]). For a given type of spatial linear
operator, the requirement on the time-step usually comes from the largest (in modulus) eigenvalue
of the operator. For example, in the case of the advection equation on [−1, 1], with a Dirichlet
boundary condition

Lu =
∂u

∂x
,

u(1) = 0, (87)

and using a Chebyshev-tau method, one has that the largest eigenvalue of LN grows in modulus
as N2. Therefore, for any of the schemes considered on Figs. 17-18, the time-step has a restriction
of the type

∆t . O(N−2), (88)

30



-2 -1.5 -1 -0.5 0 0.5 1

Real part

-1

-0.5

0

0.5

1

Im
ag

in
ar

y 
pa

rt
AB1
AB2
AB3
AB4

Figure 17: Regions of absolute stability for the Adams-Bashford integration schemes of order 1 to
4.
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Figure 18: Regions of absolute stability for the Runge-Kutta integration schemes of order 2 to 5.
Note that the size of the region is increasing with the order.
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Figure 19: Eigenvalues of the first derivative-tau operator (89) for Chebyshev polynomials. The
largest (in modulus) eigenvalue is not displayed; this one is real, negative and goes as O(N2).

which can be related to the usual CFL condition by the fact that the minimal distance between
two points of a (N -point) Chebyshev grid decreases like O(N−2). Due to the above cited Second
Dahlquist barrier [51], implicit time marching schemes of order higher than two also have such
kind of limitation.

3.1.3 Spectrum of simple spatial operators

An important issue in determining the absolute stability of a time-marching scheme for the solution
of a given PDE is the computation of the spectrum (λi) of the discretized spatial operator LN (85).
As a matter of fact, these eigenvalues are those of the matrix representation of LN , together with
the necessary boundary conditions for the problem to be well-posed (e.g. BNu = 0). If one notes
b the number of such boundary conditions, each eigenvalue λi (here, in the case of the tau method)
is defined by the existence of a non-null set of coefficients {uj}1≤j≤N such that

(∀j) 1 ≤ j ≤ N − b, (LNu)j = λiuj ,

BNu = 0. (89)

As an example, let us consider the case of the advection equation (first-order spatial derivative)
with a Dirichlet boundary condition, solved with the Chebyshev-tau method (87). Because of the
definition of the problem (89), there are N −1 “eigenvalues”, which can be computed, after a small
transformation, using any standard linear algebra package. For instance, it is possible, making use
of the boundary condition, to express the last coefficient as a combination of the other ones

uN = −
N−1
∑

j=1

uj (90)

One is thus left with a usual eigenvalue problem for a (N − 1) × (N − 1) matrix. Results are
displayed on Figure 19 for three various values of N . Real parts are all negative: the eigenvalue
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which is not displayed lies on the negative part of the real axis and is much larger in modulus (it
is growing like O(N2)) than the N − 1 others.

This way of determining the spectrum can be, of course, generalized to any linear spatial
operator, for any spectral base, as well as to the collocation and Galerkin methods. Intuitively
from CFL-type limitations, one can see that in the case of the heat equation (Lu = ∂2u/∂x2),
explicit time-integration schemes (or any scheme which is not A-stable) shall have a severe time-
step limitation of the type

∆t . O(N4), (91)

for both Chebyshev or Legendre decomposition bases. Finally, one can decompose a higher-order
in time PDE into a first-order system and then use one of the above proposed schemes. In the
particular case of the wave equation

∂2u

∂t2
=

∂2u

∂x2
, (92)

it is possible to write a second-order Crank-Nicolson scheme directly [110]

UJ+1
N = 2UJ

N − UJ−1
N +

∆t2

2

(

∂2UJ+1
N

∂x2
+

∂2UJ−1
N

∂x2

)

. (93)

Since this scheme is A-stable, there is no limitation on the time-step ∆t, but for explicit or higher-
order schemes this limitation would be ∆t . O(N2), as for advection equation. The solution of
such an implicit scheme is obtained as that of a boundary value problem at each time-step.

3.1.4 Semi-implicit schemes

It is sometimes possible to use a combination of implicit and explicit schemes to loosen a time-step
restriction of the type (88). Let us consider as an example the advection equation with non-constant
velocity on [−1, 1]

∂u

∂t
= v(x)

∂u

∂x
, (94)

with the relevant boundary conditions, which shall in general depend on the sign of v(x). If on the
one hand the stability condition for explicit time schemes (88) is too strong, and on the other hand
an implicit scheme is too lengthy to implement or to use (because of the non-constant coefficient
v(x)), then it is interesting to consider the semi-implicit two-step method (see also [68])

U
J+1/2
N − ∆t

2
L−

NU
J+1/2
N = UJ

N +
∆t

2

(

LN − L−
N

)

UJ
N ,

UJ+1
N − ∆t

2
L+

NUJ+1
N = U

J+1/2
N +

∆t

2

(

LN − L+
N

)

U
J+1/2
N , (95)

where L+
N and L−

N are respectively the spectral approximations to the constant operators−v(1)∂/∂x
and −v(−1)∂/∂x, together with the relevant boundary conditions (if any). This scheme is abso-
lutely stable if

∆t .
1

N max |v(x)| . (96)

With this type of scheme, the propagation of the wave at the boundary of the interval is treated
implicitly, whereas the scheme is still explicit in the interior. The implementation of the implicit
part, for which one needs to solve a boundary-value problem, is much easier than for the initial
operator (94) because of the presence of only constant-coefficient operators. This technique is quite
helpful in the case of more severe time-step restrictions (91), for example for a variable coefficient
heat equation.
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3.2 Spatial Coordinate Systems

Most of interesting problems in numerical relativity involve non-symmetric systems and require the
use of a full set of three-dimensional coordinates. We briefly review hereafter several coordinate
sets (all orthogonal) that have been used in numerical relativity with spectral methods.

• Cartesian (rectangular) coordinates are of course the simplest and most straightforward
to implement; the line element reads ds2 = dx2 + dy2 + dz2. These coordinates are regular
in all space, with vanishing connection which makes them easy to use, since all differential
operators have simple expressions and the associated triad is also perfectly regular. They are
particularly well-adapted to cubic-like domains, see for instance [119, 120], and [62] in the
case of toroidal topology..

• Circular cylindrical coordinates have a line element ds2 = dρ2 +ρ2 dφ2 +dz2 and exhibit
a coordinate singularity on the z-axis (ρ = 0). The associated triad being also singular for
ρ = 0, regular vector or tensor fields have components that are multi-valued (depending on
φ) on any point of the z-axis. As for the spherical coordinates, this can be handled relatively
easily with spectral methods. This coordinate system can be useful for axisymmetric or
rotating systems, see [10].

• Spherical (polar) coordinates will be discussed more in details in Sec. 3.3. Their line
element reads ds2 = dr2+r2 dθ2+r2 sin2 θ dϕ2, showing a coordinate singularity at the origin
(r = 0) and on the axis for which θ = 0, π. They are very interesting in numerical relativity
for the numerous spherical-like objects under study (stars or black hole horizons) and have
been mostly implemented for shell-like domains [32, 82, 119, 148] and for spheres including
the origin [35, 82].

• Prolate spheroidal coordinates consist of a system of confocal ellipses and hyperbola,
describing an (x, z)-plane, and an angle ϕ giving the position, as a rotation with respect to the
focal axis [95]. The line element is ds2 = a2

(

sinh2 µ + sin2 ν
) (

dµ2 + dν2
)

+a2 sinh2 µ sin2 ν dϕ2.
The foci are situated at z = ±a and represent coordinate singularities for µ = 0 and ν = 0, π.
These coordinates have been used in [8] with black hole punctures data at the foci.

• Bispherical coordinates are obtained by rotation of bipolar coordinates around the focal
axis, with a line element ds2 = a2 (cosh η − cosχ)

−2 (
dη2 + dχ2 + sin2 χdϕ2

)

. As for prolate
spheroidal coordinates, the foci situated at z = ±a (η → ±∞, χ = 0, π) and more generally,
the focal axis exhibit coordinate singularities. Still, the surfaces of constant η are spheres
situated in the z > 0(< 0) region for η > 0(< 0), respectively. Thus these coordinate are
very well adapted for the study of binary systems and in particular for excision treatment of
binary black holes [5].

3.2.1 Mappings

Choosing a smart set of coordinates is not the end of the story. As for finite-elements, one would
like to be able to cover some complicated geometries, like distorted stars, tori, etc... or even to be
able to cover the whole space. The reason for this last point is that, in numerical relativity, one
often deals with isolated systems for which boundary conditions are known only at spatial infinity.
A quite simple choice is to perform a mapping from numerical coordinates to physical coordinates ,
generalizing the change of coordinates to [−1, 1], when using families of orthonormal polynomials
or to [0, 2π] for Fourier series.

An example of how to map the [−1, 1] × [−1, 1] domain can be taken from Canuto et al. [44],
and is illustrated on Fig. 20: once known the mappings from the four sides (boundaries) of Ω̂
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Figure 20: Regular deformation of the [−1, 1]× [−1, 1] square.

to the four sides of Ω, one can construct a two-dimensional regular mapping Π, which preserves
orthogonality and simple operators (see Chapter 3.5 of [44]).

The case where the boundaries of the considered domain are not known at the beginning of the
computation can also be treated in a spectral way. In the case where this surface corresponds to
the surface of a neutron star, two approaches have been used. First in Bonazzola et al. [30], the
star (and therefore the domain) is supposed to be “star-like”, meaning that there exist a point from
which it is possible to reach any point on the surface by straight lines. To such a point is associated
the origin of a spherical system of coordinates, so that it is a spherical domain which is regularly
deformed to coincide with the shape of the star. This is done within an iterative scheme, at every
step once the position of the surface has been determined. The other approach is developed in
Ansorg et al. [10], using cylindrical coordinates. It is a square in the plane (ρ, z) which is mapped
onto the domain describing the interior of the star. This mapping involves an unknown function,
which is itself decomposed on a base of Chebyshev polynomials, so that its coefficients are part of
the global vector of unknowns (as the density and gravitational field coefficients).

3.2.2 Spatial compactification

As stated above, the mappings can also be used to include spatial infinity into the computational
domain. Such a compactification technique is not tied to spectral methods and has already been
used with finite-differences methods in numerical relativity by e.g. Pretorius [122]. However,
due to the relatively lower number of degrees of freedom necessary to describe a spatial domain
within spectral methods, it is easier within this framework to use some resources to describe spatial
infinity and its neighborhood. Many choices are possible to do so, either choosing directly a family
of functions well-behaved on an unbounded interval, for example the Hermite functions (see e.g.
Sec. 17.4 in Boyd [39]), or making use of standard polynomial families, but with an adapted
mapping. A first example within numerical relativity was given by Bonazzola et al. [33], with the
simple inverse mapping in spherical coordinates

r =
1

α(x − 1)
, x ∈ [−1, 1] . (97)

This inverse mapping for spherical “shells” has also been used by other authors Kidder & Finn [89],
Pfeiffer et al. [120, 119], or by Ansorg et al. in cylindrical [10] and spheroidal [8] coordinates.
Many more elaborated techniques are discussed in Chap. 17 of Boyd [39], but to our knowledge,
none has been used in numerical relativity yet. Finally, it is important to point out that, in
general, the simple compactification of spatial infinity is not well-adapted to solving hyperbolic
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Figure 21: Two sets of spherical domains describing a binary neutron star or black hole system.
Each set is surrounded by a compactified domain of the type (97), which is not displayed

PDEs and the above mentioned examples were solving only for elliptic equations (initial data, see
Sec. 4). For instance, the simple wave equation (92) is not invariant under the mapping (97), as
it has been shown e.g. by Sommerfeld (see [137], Sec. 23.E). Intuitively, it is easy to see that
when compactifying only spatial coordinates for a wave-like equation, the distance between two
neighboring grid points becomes larger than the wavelength, which makes the wave poorly resolved
after a finite time of propagation on the numerical grid.

3.2.3 Patching in more than one dimension

The multi-domain (or multi-patch) technique has been presented in section 2.6 for one spatial
dimension. In Bonazzola et al. [32] or Grandclément et al. [82], the three-dimensional spatial do-
mains consist of spheres (or star-shaped regions) and spherical shells, across which the solution
can be matched as in one dimensional problems (only through the radial dependence). In gen-
eral, when performing a matching in two or three spatial dimensions, the reconstruction of the
global solution across all domains might need some more care to clearly write down the matching
conditions (see e.g. [119], where overlapping as well as non-overlapping domains are used at the
same time). For example in two dimension, one of the problems that might arise is the counting of
matching conditions for corners of rectangular domains, when such a corner is shared among more
than three domains. It is sufficient to impose continuity of either normal derivative at the corner,
the jump in the other normal derivative being spectrally small (see Chap. 13 of Canuto et al. [44]).

A now typical problem in numerical relativity is the study of binary systems (see also Secs. 4.5
and 5.3) for which two sets of spherical shells have been used by Gourgoulhon et al. [74], as
displayed on Fig. 21. Different approaches have been proposed by Kidder et al. [92], and used
by Pfeiffer [119] and Scheel et al. [129] where spherical shells and rectangular boxes are combined
together to form a grid adapted to binary black hole study. Even more complicated setups to
model fluid flows in complicated tubes can be found in [103].

Multiple domains can thus be used to adapt the numerical grid to the interesting part (manifold)
of the coordinate space; they can be seen as a technique close to the spectral element method [115].
Moreover, it is also a way to increase spatial resolution in some parts of the computational domain
where one expects strong gradients to occur: adding a small domain with many degrees of freedom
is the analog of fixed-mesh refinement for finite-differences.
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Figure 22: Definition of spherical coordinates (r, θ, ϕ) of a point M and associated triad (~er, ~eθ, ~eϕ),
with respect to the Cartesian ones.

3.3 Spherical Coordinates and Harmonics

Spherical coordinates (see Fig. 22) are well-adapted for the study of many problems in numerical
relativity. Those include the numerical modeling of isolated astrophysical single objects, like a
neutron star or a black hole. Indeed, stars’ surfaces have spherical-like shape and black hole
horizon also have this topology, with is best described in spherical coordinates (eventually through
a mapping, see Sec. 3.2.1). As isolated systems in General Relativity, the good boundary conditions
are imposed at infinity, requiring a compactification of space, which is here achieved with the
compactification of the radial coordinate r only.

When the numerical grid does not extend to infinity, e.g. when solving for a hyperbolic PDE,
the boundary defined by r = const is a smooth surface, on which boundary conditions are much
easier to impose. Finally, spherical harmonics , which are strongly linked with these coordinates
can simplify a lot the solution of Poisson-like or wave-like equations. On the other hand, there
are some technical problems linked with this set of coordinates, as detailed hereafter, but spectral
methods can handle them in a very efficient way.

3.3.1 Coordinate singularities

The transformation from spherical (r, θ, ϕ) to Cartesian coordinates x, y, z) is obtained by

x = r sin θ cosϕ, (98)

y = r sin θ sinϕ, (99)

z = r cos θ. (100)

One immediately sees that the origin r = x = y = z = 0 is singular in spherical coordinates
because neither θ nor ϕ can be uniquely defined. The same happens for the z−axis, where θ = 0
orπ, and ϕ cannot be defined. Among the consequences is the singularity of some usual differential
operators, as for instance the Laplace operator

∆ =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(

∂2

∂θ2
+

1

tan θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)

. (101)
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Here, the divisions by r at the center, or sin θ on the z-axis look singular. On the other hand, the
Laplace operator, expressed in Cartesian coordinates is a perfectly regular one and, if it is applied
to a regular function, it should give a well-defined result. So the same should be true if one uses
spherical coordinates: the operator (101) applied to a regular function should yield a regular result.
This means that a regular function of spherical coordinates must have a particular behavior at the
origin and on the axis, so that the divisions by r or sin θ appearing in regular operators are always
well-defined. If one considers an analytic function of the (regular) Cartesian coordinates f(x, y, z),
it can be expanded as a series of powers of x, y and z, near the origin

f(x, y, z) =
∑

i,j,k

aijkxiyjzk. (102)

Replacing the coordinate definitions (98)-(100) into this expression gives

f(r, θ, ϕ) =
∑

n,p,q

anpqr
n+p+q cosq θ sinn+p θ cosn ϕ sinp ϕ; (103)

and rearranging the terms in ϕ:

f(r, θ, ϕ) =
∑

m,p,q

bmpqr
|m|+2p+q sin|m|+2p θ cosq θeimϕ. (104)

With some transformations of trigonometric functions in θ, one can express the angular part in
terms of spherical harmonics Y m

ℓ (θ, ϕ), see Sec. 3.3.2, with ℓ = |m| + 2p + q and obtain the two
following regularity conditions, for a given couple (ℓ, m):

• near θ = 0, a regular scalar field is equivalent to f(θ) ∼ sin|m| θ,

• near r = 0, a regular scalar field is equivalent to f(r) ∼ rℓ.

In addition, the r-dependence translates into a Taylor series near the origin, with the same parity
as ℓ . More details in the case of polar (2D) coordinates are given in Chapter 18 of Boyd [39].

If we go back to the evaluation of the Laplace operator (101), it is now clear that the result
is always regular, at least for ℓ ≥ 2 and m ≥ 2. We detail the cases of ℓ = 0 and ℓ = 1, using
the fact that spherical harmonics are eigenfunctions of the angular part of the Laplace operator
(see Eq. (111)). For ℓ = 0 the scalar field f is reduced to a Taylor series of only even powers of
r, therefore the first derivative contains only odd powers and can be safely divided by r. Once
decomposed on spherical harmonics, the angular part of the Laplace operator (101) acting on the
ℓ = 1 component reads −2/r2, which is a problem only for the first term of the Taylor expansion.
On the other hand, this term cancels with the 2

r
∂
∂r , providing a regular result. This is the general

behavior of many differential operators in spherical coordinates: when applied to a regular field,
the full operator gives a regular result, but single terms of this operator, may give singular results
when computed separately; these singularities canceling between two different terms.

As this may seem an argument against the use of spherical coordinates, let us stress that
spectral methods are very powerful in evaluating such operators, keeping everything finite. As an
example, we use Chebyshev polynomials in ξ for the expansion of the field f(r = αξ), α being a
positive constant. From the recurrence relation on Chebyshev polynomials (42), one has

∀n > 0,
Tn+1(ξ)

ξ
= 2Tn(ξ) − Tn−1(ξ)

ξ
, (105)

which recursively gives the coefficients of

g(ξ) =
f(ξ) − f(0)

ξ
(106)
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form those of f(ξ). The computation of this finite part g(ξ) is always a regular and linear operation
on the vector of coefficients. Thus, the singular terms of a regular operator are never computed,
but the result is the good one, as if the cancellation of such terms had occurred. Moreover, from
the parity conditions it is possible to use only even or odd Chebyshev polynomials, which simplifies
the expressions and saves processor time and computer memory. Of course, relations similar to
Eq. (105) exist for other families of orthonormal polynomials, as well as relations to divide by
sin θ a function developed on a Fourier base. The combination of spectral methods and spherical
coordinates is thus a powerful tool for accurately describing regular fields and differential operators
in a sphere [35]. It is also true for the solution of two important PDEs in physics: the Poisson and
the wave equations, thanks to the use of spherical harmonics.

3.3.2 Spherical harmonics

Spherical harmonics are the pure angular functions

Y m
ℓ (θ, ϕ) =

√

2ℓ + 1

4π

(ℓ − m)!

(ℓ + m)!
Pm

ℓ (cos θ) eimϕ, (107)

where ℓ ≥ 0 and |m| ≤ ℓ. Pm
ℓ (cos θ) are the associated Legendre functions defined by

Pm
ℓ (x) =

(ℓ + m)!

(ℓ − m)!

1

2ℓℓ!
√

(1 − x2)m

dℓ−m

dxℓ−m

(

1 − x2
)ℓ

, (108)

for m ≥ 0. The relation

P−m
ℓ (x) =

(ℓ − m)!

(ℓ + m)!
Pm

ℓ (x) (109)

gives the associated Legendre functions for negative m; note that the normalization factors can
vary in the literature. This family of functions have two very important properties. First, they
represent an orthogonal set of regular functions defined on the sphere; thus any regular scalar field
f(θ, ϕ) defined on the sphere can be decomposed on spherical harmonics

f(θ, ϕ) =

+∞
∑

ℓ=0

m=ℓ
∑

m=−ℓ

fℓmY m
ℓ (θ, ϕ). (110)

Since they are regular, they automatically take care of the coordinate singularity on the z-axis.
Then, they are eigenfunctions of the angular part of the Laplace operator (noted here ∆θϕ):

∀(ℓ, m) ∆θϕY m
ℓ (θ, ϕ) :=

∂2Y m
ℓ

∂θ2
+

1

tan θ

∂Y m
ℓ

∂θ
+

1

sin2 θ

∂2Y m
ℓ

∂ϕ2
= −ℓ(ℓ + 1)Y m

ℓ (θ, ϕ), (111)

the associated eigenvalues being −ℓ(ℓ + 1).
The first property makes the description of scalar fields on spheres very easy: spherical har-

monics are used as decomposition base within spectral methods, for instance in geophysics or
meteorology, and they could be potentially used in numerical relativity, for example for Cauchy-
characteristic evolution or matching [154, 14]. It also helps to describe star-like surfaces being
defined by r = h(θ, ϕ), as event or apparent horizons [107, 2]. The search for apparent horizon is
also made easier: since the function h verifies a two-dimensional Poisson-like equation, the linear
part can be solved directly, just by dividing by −ℓ(ℓ + 1) in the coefficient space.

The second property makes the Poisson equation

∆φ(r, θ, ϕ) = σ(r, θ, ϕ) (112)
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very easy to solve. If the source σ and the unknown φ are decomposed onto spherical harmonics, the
equation transforms into a set of ordinary differential equations for the coefficients (see also [82]):

∀(ℓ, m)
d2φℓm

dr2
+

2

r

dφℓm

dr
− ℓ(ℓ + 1)φℓm

r2
= σℓm. (113)

Then, any ODE solver can be used for the radial coordinate: spectral methods of course (see
Sec. 2.5), but other ones have been used too (see e,g, Bartnik et al. [17, 18]). The same technique
can be used to advance in time the wave equation with an implicit scheme and Chebyshev-tau
method for the radial coordinate [35, 110].

The use of spherical harmonics decomposition can be regarded as a basic spectral method, as
the Fourier decomposition. There are therefore publicly available “spherical harmonics transform”
which consist of a Fourier transform in the ϕ-direction and a successive Fourier and Legendre
transform in the θ-direction. A rather efficient one is the SpharmonicsKit/S2Kit [106], but writing
one’s own functions is also possible [73].

3.3.3 Tensor components

All the discussion in Secs. 3.3.1-3.3.2 has been restricted to scalar fields. For vector, or more
generally, tensor fields in three spatial dimensions, a vector basis must be specified to express
the components. At this point, it is very important to stress out that the choice of the basis is
independent from the choice of coordinates. Therefore, the most straightforward and simple choice,

even if one is using spherical coordinates, is the Cartesian triad
(

ex = ∂
∂x , ey = ∂

∂y , ez = ∂
∂z

)

.

With this basis, from a numerical point of view, all tensor components can be regarded as scalars
and therefore, a regular tensor can be defined as a tensor field whose components with respect
to this Cartesian frame are expandable in powers of x, y and z (as in Bardeen and Piran [16]).
Manipulation and solution of PDEs for such tensor fields in spherical coordinates are generalization
of the techniques for scalar fields, as for instance, for the vector Poisson equation [82], or for the
evolution of the unconstrained Einstein system [91].

The use of an orthonormal spherical basis
(

er = ∂
∂r , eθ = 1

r
∂
∂θ , eϕ = 1

r sin θ
∂

∂ϕ

)

(see. Fig. 22)

requires some more care, as it is outlined hereafter. The interested reader can also find some details
in the works by Bonazzola et al. [35, 29]. Nevertheless, there are systems in General Relativity
where spherical components of tensors can be useful:

• When doing excision for the simulation of black holes, the boundary conditions on the ex-
cised sphere for elliptic equations (initial data) may be better formulated for the spherical
components of the shift or the 3-metric [50, 78, 87]. In particular, the component normal to
the excised surface is easily identified with the radial component.

• Still in 3+1 approach, the extraction of gravitational radiation in the wave zone is made
easier if the perturbation to the metric is expressed in spherical components, because the
transverse part is then straightforward to obtain [147].

Problems arise because of the singular nature of the basis itself, in addition to the spherical
coordinate singularities. The consequences are first that each component is a multi-valued function
at the origin r = 0 or on the z-axis, and then that components of a given tensor are not independent
one from another, meaning that one cannot in general specify each component independently or set
it to zero, keeping the tensor field regular. As an example, we consider the gradient V i = ∇iφ of
the scalar field φ = x, where x is the usual first Cartesian coordinate field. This gradient expressed
in Cartesian components is a regular vector field V x = 1, V y = 0, V z = 0. The spherical
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components of V read

V r = sin θ cosϕ,

V θ = cos θ cosϕ,

V ϕ = − sinϕ, (114)

which are all three multi-defined at the origin, and the last two on the z-axis. In addition, if V θ is
set to zero, one sees that the resulting vector field is no longer regular: for example the square of
its norm is multi-defined, which is not the good property for a scalar field. As for the singularities
of spherical coordinates, these difficulties can be properly handled with spectral methods, provided
that the decomposition bases are carefully chosen.

The other drawback of spherical components is that usual partial differential operators mix the
components. This is due to the non-vanishing connection coefficients associated with the spherical
flat metric [29]. For example, the vector Laplace operator (∇j∇jV i) reads

∂2V r

∂r2
+

2

r

∂V r

∂r
+

1

r2

(

∆θϕV r − 2V r − 2
∂V θ

∂θ
− 2

V θ

tan θ
− 2

sin θ

∂V ϕ

∂ϕ

)

(115)

∂2V θ

∂r2
+

2

r

∂V θ

∂r
+

1

r2

(

∆θϕV θ + 2
∂V r

∂θ
− V θ

sin2 θ
− 2

cos θ

sin2 θ

∂V ϕ

∂ϕ

)

(116)

∂2V ϕ

∂r2
+

2

r

∂V ϕ

∂r
+

1

r2

(

∆θϕV ϕ +
2

sin θ

∂V r

∂ϕ
+ 2

cos θ

sin2 θ

∂V θ

∂ϕ
− V ϕ

sin2 θ

)

, (117)

with ∆θϕ defined in Eq. (111). In particular, the r-component (115) of the operator involves the
other two components. This can make the resolution of a vector Poisson equation, which naturally
arises in the initial data problem [48] of numerical relativity, technically more complicated and the
technique using scalar spherical harmonics (Sec. 3.3.2) is no longer valid. One possibility can be
to use vector, and more generally tensor [105, 163, 147, 41] spherical harmonics as decomposition
bases. Another technique might be to build from the spherical components regular scalar fields,
which can have a similar physical relevance to the problem. In the vector case, one can think of
the following expressions

Θ = ∇iV
i, χ = riV

i, µ = riǫijk∇jV k, (118)

where r = rer denotes the position vector and ǫijk the third rank fully antisymmetric tensor.
These scalars are the divergence, r-component and curl of the vector field. The reader can verify
that a Poisson equation for V i transforms into three equations for these scalars, expandable onto
scalar spherical harmonics. The reason why these fields may be more interesting than Cartesian
components is that they can have more physical or geometrical meaning.

3.4 Going further

The development of spectral methods linked with the problems arising in the field of numerical
relativity has always been active and still is now. Among the various directions of research one
can foresee, the most interesting might be the improvement of time-integration techniques and the
beginning of higher-dimensional studies. In addition to these, it might also be relevant to consider
the development of better-adapted mappings and domains, within the spirit of going from pure
spectral methods to spectral elements [115, 22].

3.4.1 High-order time schemes

When using spectral methods in time-dependent problems, it is sometimes frustrating to have
so accurate numerical techniques for the evaluation of spatial derivatives, and the integration
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of elliptic PDEs, whereas the time derivatives, and hyperbolic PDEs, do not benefit from the
exponential convergence. Some tentative studies are being undertaken in order to represent also
the time interval by spectral methods [6] and, if these techniques can be applied in general three-
dimensional simulations, it would really be a great improvement.

Nevertheless, there are other, also more sophisticated and accurate, time-integration techniques
that are currently investigated for several stiff PDEs [88], among which Korteweg-de Vries and
nonlinear Schrödinger equations [93]. Many such PDEs share the properties of being stiff (very
different time-scales/ characteristic frequencies) and combining low-order non-linear terms with
higher-order linear terms. Einstein evolution equations can also be written in such a way [29]. Let
us consider a PDE

∂u

∂t
= Lu + Nu, (119)

with the notations of Sec. 3.1.1 and N being a nonlinear spatial operator. Following the same
notations and within spectral approximation, one recovers

∂UN

∂t
= LNUN + NNUN . (120)

We detail hereafter five methods to solve this type of ODEs (see also [88]):

• Implicit-explicit techniques use some explicit multi-step scheme to advance the nonlinear
part NN , and an implicit one for the linear one.

• Split-step are effective when the equation splits into two equation which can be directly
integrated (see [93] for examples with the nonlinear Schrödinger and Korteweg-de Vries equa-
tions).

• Integrating factor is a change of variable that allows for the exact solution of the linear
part

VN = e−LNtUN , (121)

and to use an explicit multi-step method for the integration of the new nonlinear part

∂VN

∂t
= e−LNtNNeLNtVN . (122)

• Sliders can be seen as an extension of the implicit-explicit method described above. In
addition to splitting to problem into a linear and nonlinear part, the linear part itself is split
into two or three regions (in Fourier space), depending on the wavenumber. Then, different
numerical schemes are used for different groups of wavenumbers: implicit schemes for high
wavenumbers and explicit high-order methods for the low wavenumbers. This method is
restricted to Fourier spectral techniques in space.

• Exponential time-differencing have been known for some time in computational electro-
dynamics. These methods are similar to the integrating factor technique, but one considers
the exact equation over one time-step

UJ+1
N = eLN∆tUJ

N + eLN∆t

∫ ∆t

0

e−LN τNN (UN (N∆t + τ), N∆t + τ)dτ. (123)

Various orders for these schemes come from the approximation order of the integral. For
example Kassam and Trefethen [88] consider a fourth-order Runge-Kutta type approximation
to this integral, where the difficulty comes from the accurate computation of functions which
suffer from cancellation errors.
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3.4.2 More than three spatial dimensions

There have been some interest for the numerical study of black holes in higher dimensions: as
well with compactified extra-dimensions [138], as in brane world models [136, 96]; recently, some
simulations on the head-on collision of two black holes have already been undertaken [156]. With
the relatively low number of degrees of freedom per dimension needed, spectral methods should
be very efficient in simulations involving four spatial dimensions, or more. We give here starting
points to implement 4-dimensional (as needed by e.g. brane world models) spatial representation
with spectral methods. The simplest approach is to take Cartesian coordinates (x, y, z, w), but a
generalization of spherical coordinates (r, θ, ϕ, ξ) is also possible and necessitates less computational
resources. The additional angle ξ is defined in [0, π], with the following relations with Cartesian
coordinates

x = r sin θ cosϕ sin ξ,

y = r sin θ sin ϕ sin ξ,

z = r cos θ sin ξ,

w = r cos ξ.

The four-dimensional flat Laplace operator appearing in constraint equations [136] reads

∆4φ =
∂2φ

∂r2
+

3

r

∂φ

∂r
+

1

r2

(

∂2φ

∂ξ2
+

2

tan ξ

∂φ

∂ξ
+

1

sin2 ξ
∆θϕφ

)

, (124)

where ∆θϕ is the two-dimensional angular Laplace operator (111). As in the three-dimensional
case, it is convenient to use the eigenfunctions of the angular part, which are here

Gℓ
k(cos ξ)Pm

ℓ (cos θ)eimϕ, (125)

with k, ℓ, m integers such that |m| ≤ ℓ ≤ k. Pm
ℓ (x) are the associated Legendre functions defined

by Eq. (108). Gℓ
k(x) are the associated Gegenbauer functions

Gℓ
k(cos ξ) = (sinℓ ξ)G

(ℓ)
k (cos ξ) with G

(ℓ)
k (x) =

dℓGk(x)

dxℓ
, (126)

and Gk(x) being the k-th Gegenbauer polynomial C
(λ)
k with λ = 1. Since the Gk are also particular

case of Jacobi polynomials with α = β = 1/2 (see, for example [95]), they fulfill recurrence relations
that make them easy to implement as spectral decomposition basis, like the Legendre polynomials.
These eigenfunctions are associated with the eigenvalues −k(k + 2):

∆4

(

Gℓ
k(cos ξ)Pm

ℓ (cos θ)eimϕ
)

= −k(k + 2)Gℓ
k(cos ξ)Pm

ℓ (cos θ)eimϕ. (127)

So as in 3+1 dimensions, after decomposing on such a basis, the Poisson equation turns into
a collection of ODEs in the coordinate r. This type of construction might be generalized to
even higher dimensions, with the choice of appropriate type of Jacobi polynomials for every new
introduced angular coordinate.
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4 Stationary computations and initial data

4.1 Introduction

In this section, we restrict ourselves to problems where time does not appear explicitly. This is
especially the case for systems which are stationary, like neutron stars in rotation or binary systems
on circular orbits. The computation of initial data also falls into this class, given that it consists
of finding a particular solution of Einstein equations at a given time only. Indeed, when using
the standard 3+1 decomposition of spacetime, the initial data that are passed to the evolution
equation can not be totally arbitrary and must satisfy a set of equation called Einstein’s constraint
equations. For more details on the initial data problem we refer to the review by G.B. Cook [48].

So in treating the problems considered here, one can forget about the issues specific to time
presented in Sec. 3. One of the most straightforward implication is that the codes can be completely
spectral (i.e. with respect to the three dimensions of space) and thus one can hope to achieve very
good accuracy with moderate computer resources only.

4.2 Single compact stars

The computation of the structure of stationary compact stars dates back to 1939 with the famous
solution of Tolman-Oppenheimer-Volkoff. During the last years, the need for accurate models has
been more pressing especially with the coming online of the gravitational wave detectors which
could help to probe the interior of such compact stars. Isolated stars, in rotation, are essentially
axisymmetric but some physical effects can induce some symmetry breaking effect that could lead
to the emission of gravitational waves. In the following, one will present some computations that
aim at including some of those effects, like the spontaneous symmetry breaking, the inclusion of
magnetic field, the effect of exotic dense matter, mainly with strange quarks or the influence of
an interior composed of two different superfluids. With the exception of the papers by M. Ansorg
[9, 10, 11], the results presented here have been computed by the Meudon group.

4.2.1 Formalisms

The first computation of models of relativistic rotating stars in general relativity, by means of
spectral methods, is presented in [33]. The equations are solved in spherical coordinates (see Sec.
3.2). Doing so, the fields only depend on the azimuthal angle θ and the radius r. The fields
are expanded on spherical harmonics with respect to the angle and with respect to Chebyshev
polynomials with respect to r. The use of spherical harmonics gives a natural way of dealing with
coordinate singularity on the z-axis. In [33] the whole space is divided into two spherical domains,
the outer one extending up to infinity by making use of the compactification in 1/r seen in Sec.
3.2.2. With such setting, Einstein equations reduce to a set of four elliptic equations with sources
extending up to infinity that are solved using a version of the algorithm based on matching with
the homogeneous solutions (presented in Sec. 2.6.3), for each spherical harmonics. The system is
closed by giving a description of the matter, being, for instance a polytropic fluid, with or without
magnetic field and is solved by iteration.

In the paper [33], a particular emphasize is put on methods to measure the accuracy of the
method. For non-rotating stars, the error is found to decrease exponentially, as the number of
coefficients increases, i.e. it is evanescent (see Fig. 5 and 6 of [33]). This is expected as, for non-
rotating stars, all the fields are C∞ (see Sec. 2.4.3). However, for fastly-rotating configurations,
the error only decays as a power-law (see Fig. 7 of [33]). This comes from the fact that quantities
like the energy density are no longer C∞ across the star’s surface, thus causing the appearance of
a Gibbs-like phenomenon. Nevertheless, the results are in good agreement (to the level of a 0.1%)
with those obtained by other numerical methods, as can be seen in [113].
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Spectral convergence can be recovered by using surface-adapted coordinates as first done in
[28]. A regular mapping 3.2.1 of the numerical coordinates to the physical ones is introduced so
that the surface of the star lies at the boundary between two domains. For polytrops with γ < 2,
this get rids of any Gibbs phenomenon and the error is evanescent once again (see Fig. 5 and 6
of [30]). However, for γ > 2, some quantities are still diverging at the surface but the convergence
can be made closer and closer to the spectral one by analytically regularizing the density (see Sec.
IV of [30]). Doing so, the error decreases as a power-law but the decrease can be made arbitrary
fast at the cost of increasing the number of operations and so the computational time.

Up to 2006, the neutron stars were computed using quasi-isotropic coordinates. However, in
order to use those configurations as initial data for evolutionary codes, it may be useful to allow
for other choices. Among the possible gauges, the Dirac one is one of the most promising [29]. In
[99] models of rotating neutron stars, in the Dirac gauge are computed, for both polytropic and
realistic equations of state. Compared to the quasi-isotropic coordinates, the use of this new gauge
implies to solve one tensorial-like Poisson equation. Configurations obtained with the two different
formalisms are shown to be in very good agreement.

4.2.2 Rotating neutron star models

Even before adapting mappings were available, interesting results could be obtained. In two papers
[125, 126], models of rotating neutron stars with various equations of state have been computed.
Among the most surprising findings, let us mention the existence of supra-massive stars. Those
stars do not connect to the non-rotating limit. Indeed, their high mass can only be supported in
presence of a centrifugal force. One of the remarkable feature of such stars is the fact that they
actually spin up when they lose angular momentum, on the contrary to what is observed for normal
stars. This effect can also be seen for neutron stars containing hyperons and thus a softer equation
of state [162]. Let us mention that, in this case, the stability analysis of the configurations required
the great precision spectral methods with adapted coordinates could provide.

It is known that isolated pulsars spin down due to magnetic breaking. As the rotational
frequency decreases, it is possible that the star will encounter a transition from one state of
matter to another. Stationary rotating models have been used to determine the properties of such
transitions [157, 158]. A puzzling result is that the amount of energy released in a first order
phase transition does note depend on the orbital velocity of the star [158] and is the same as for
non-rotating ones.

4.2.3 Spontaneous symmetry breaking

It is known that stars can encounter a spontaneous symmetry breaking when rotating fast enough.
When such phenomenon occurs, triaxial configurations are formed that are potential emitters of
gravitational waves. The departure from axisymmetry is studied in two papers by the Meudon
group [28, 27]. The idea of the method is to start from a axisymmetric neutron star configuration
and to follow the growth or decay of some triaxial instabilities. Well-established results in the
Newtonian results are recovered and this work presents the first results in general relativity, for
various equations of states. For a few of them, the frequency at which symmetry-breaking occurs
lies in the frequency band of the LIGO and Virgo detectors.

In 2002, this work has been extended in [65] by making use of surface-fitting coordinates.
This enables the authors to obtain results in the incompressible case by dealing properly with
discontinuities lying at the surface of the star. Classical results in the incompressible case are thus
recovered and it is found that the inclusion of relativity has only a moderate effect. Indeed the
critical ratio between the kinetic energy and the absolute gravitational one T/ |W | at which the
triaxial instability occurs is only 30 % larger for relativistic stars, with respect to their classical
counterparts.
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If relativistic effects only slightly stabilize the stars, the same is not true for differential rotation.
Indeed, in [124], the authors study various rotation profiles and equations of state using the same
technique as in [28, 27] to determine the onset of instability. It appears that the critical value of
T/ |W | can be almost twice as high as for uniformally rotating stars.

4.2.4 Configurations with magnetic field

Even if magnetic fields are strong in neutron stars, the structure of the objects is not affected until
it reaches huge values, of the order of at least 1010T. In [25], models of rapidly rotating stars
with poloidal fields are constructed, for various equations of state. The magnetic effects are taken
into account consistently by solving the appropriate Maxwell equations, also by means of spectral
methods. The maximum mass of highly magnetized neutrons stars is found to be higher from 13 to
29 % than for the non-magnetized stars. The magnetic field induces an additional pressure which
can help to support more massive stars, thus explaining this increase.

The presence of a magnetic field can also lead to a deformation of the neutron star. Such defor-
mation could lead to the formation of a triaxial configuration, which would then emit gravitational
wave. In [28] the emitted signal is computed. Typically the system radiates at two frequencies :
Ω and 2Ω where Ω is the angular velocity of the star.

In a more recent work by the Meudon group [112], magnetized configurations have been com-
puted using coordinates matched to the surface of the star, thus making the computation much
more accurate. Gyromagnetic ratios of rapidly rotating neutron stars of various equations of state
are obtained. The limit of a ratio g = 2, value for a charged black hole, is never reached.

4.2.5 Strange stars

It is believed that the fundamental state of nuclear matter is not the ordinary matter but rather
a plasma of deconfined quarks u, d and s, called strange matter. If this is the case, neutron stars
would rather be strange stars. The main difference between those two types of compact stars
is that strange ones are somewhat smaller and thus more compact. In particular, they would
support higher rotation rates. There is a strong density jump at the surface of a strange star and
surface-fitting coordinates are required in order to deal with it.

Fastly rotating models of strange stars are computed in [77, 64]. Due to higher compactness, it
is found that strange stars can rotate significantly faster than their neutron star counterparts. The
attained T/ |W | can be twice as large. As in the neutron star case, supermassive configurations,
that spin-up with angular momentum loss are found. The influence of strange matter on the
emission of gravitational waves is studied in [66] where viscosity effects and triaxial instabilities
are taken, carefully, into account.

It is believed that millisecond pulsars have been spun up by accreting matter from a companion.
However, the details of this mechanism are dependent on the nature of the compact object. In
[161], the differences between accretion onto a neutron star and onto a strange star are investigated,
using 2D stationnary models computed by spectral methods.

4.2.6 Quasi-periodic oscillations

Quasiperiodic oscillations (QPOs) are observed in the kHz regime and are believed to be a signature
of matter falling onto a compact object. In the standard picture, the frequency of the QPOs, is
the one of the last stable orbit around the compact object. Let us mention that the presence of a
last stable orbit around an extended body is not an effect of relativity but can also be seen in the
Newtonian regime, as shown in [159].
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The precise structure of the accreting object has a great influence on the QPO. In a series
of papers [160, 67, 3, 20], comparisons are made between observations and various compact stars
models that could account for QPOs.

Using the multi-domain feature of Lorene, strange stars with a crust can also be computed
[159], one domain describing the interior of the star and another one the crust. It is shown that
the presence of the crust could change the value of the QPO by up to 20 %.

4.2.7 More complex configurations

In this section, objects in more exotic configurations are presented. This is an illustration of
both the complexity of the neutron stars physics and the ability of spectral methods to deal with
complicated systems.

The observation of the glitches in isolated pulsars is consistent with the presence of a superfluid
interior. The simplest model is to consider two fluids, one composed of neutron and the other
one of protons and electrons, both being superfluid. However, those two components could have
different velocities, in particular different rotation rates. Such configurations are computed in [123].
The multi-domain feature of Lorene is crucial to be able to follow the two different fluids. Among
the various results obtained, let us mention the confirmation of the existence of prolate-oblate
configurations.

Neutron stars are usually assumed to be at zero-temperature. This approximation is, however,
no longer true for newborn neutron stars, just after the supernova. The effect of finite temperature
on the neutron star structure is taken into account in [152] The authors found that the newborn
neutron stars was unlikely to undergo the bar mode instability but that secular ones could take
place and result in a significant emission of gravitational waves. Another interesting result of
[152] is the existence of toroidal-like configurations, which appear for a broad range of parameters
and before the mass-shedding limit. In such cases, the surface of the star is highly deformed and
surface-fitting coordinates are required.

Apart from the Meudon group, axisymmetric rotating neutron stars have been computed in
[9, 10] by a code developed by M. Ansorg and collaborators. The code is based on Lewis-Papapetrou
coordinates (ρ, ξ) , which are closely related to usual cylindrical coordinates. Typically space
is decomposed into two domains : one for the interior of the star and another to the exterior
which extend up to spatial infinity. Compactification of space and surface-fitting mappings are
used. Both variables are expanded on Chebyshev polynomials. Instead of solving the equations
harmonics by harmonics and iterate, as is done by the Meudon group, the equations are written
with a collocation method (see Sec. 2.5.3) and solved as one single system. The price to pay is
that the size of the system is somewhat larger (i.e. in m2, m being the total number of coefficients
for each coordinates) and has to be solved by iteration (typically the Newton-Raphson’s method).
With those techniques, impressive accuracy is reached. The surface-fitting coordinates are very
general and highly distorted configurations can be follow up to the mass-shedding limit.

The coordinates used in [9, 10] are more general than the ones used by the Meudon group, in
the sense that they can account for more complicated configurations. Indeed, the code developed in
Meudon is limited to star-like configurations whereas, for instance, toroidal ones can be computed
by M. Ansorg code. This is especially what is shown in [11] where relativistic axisymmetric toroidal
configurations of matter, known as the Dyson rings, are computed. Such rings have been obtained
up to the mass-shedding limit. Transition to the limit of an extreme Kerr black hole is also
discussed.

4.3 Single black holes

Compared to the compact star case, single black holes have not been very much studied. This is
probably because the structure of a stationnary black hole is somewhat simpler than the one of a
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compact star. However, as will be seen, there is still a few things that can be investigated.
Spacetimes containing a single black hole constitute a good benchmark for numerical methods,

a lot of results being known analytically. In [89], the authors have implemented a spectral solver
and applied it to various test problems. The solver itself is two dimensional and thus applicable
only to axisymmetric systems. There is a single domain that consists of the whole space outside a
sphere of given radius (i.e. the black hole). Space is compactified by using the standard variable
1/r. The two physical variables (r, θ) are mapped onto squares in R

2 and then expanded on
Chebyshev polynomials. The equations are written using a 2-dimensional collocation method (see
Sec. 2.5.3) and the resulting system is solved by an iterative algorithm (here Richardson’s method
with preconditioning). This solver is applied to solve the Einstein’s constraint equations for three
different systems : i) a single black hole ii) a single black hole with angular momentum iii) a black
hole plus Brill waves. In all three cases, spectral convergence is recovered and accuracy of the
order of 10−10 is reached with 30 points in each dimension.

A black hole is somewhat simpler than a neutron star, in a sense that there is no need for
a description of matter (no equation of state for instance). However, in some formalisms, the
presence of a black hole is enforce by imposing non-trivial solution on some surfaces (typically
spheres). The basic idea is to demand that the surface is a trapped surface. Such surfaces are
known to lie inside event horizons and so are consistent with the presence of a black hole. However,
in non-stationnary cases, the set of equations to be used is not easy to derive. The authors of [87]
implemented, numerically, various set of boundary conditions to investigate their properties. Two
different and independent spectral codes are used. Both codes are very close to those used in the
case of neutron stars, one of them being based on Lorene library [73] (see Sec. 4.2.1) and the other
one has been developed by M. Ansorg and shares a lot a features with [9, 10]. Such numerical tools
have proved useful in clarifying the properties of some sets of boundary conditions that could be
imposed on black hole horizons.

The work [98] tackles the reverse problem : does a given configuration contain a trapped
surface and can it be located, at each time step ? Several algorithms have been proposed in
the past to find the locus where the expansion of the outgoing light rays vanishes (thus defining
the trapped surface). However [98] is the first implementation that uses spectral methods. The
code uses the standard Lorene setting i.e. a multi-domain decomposition of space and spherical
coordinates (see Sec. 4.2.1 for more details). The horizon finder has been successfully tested on
known configurations, like Kerr-Schild black holes. The use of spectral methods makes it both fast
and accurate. Even if the code is using only one set of spherical coordinates (hence its presentation
in this section), it can be applied to situations with more than one black hole, like the well-known
Brill-Lindquist data.

4.4 Rings around black holes

The problem of uniformly rings surrounding a black hole can be view as an intermediate step
between one body, axisymmetric configurations and the two body problem. Indeed, even if one
has to deal with two components, the problem is still axisymmetric. In [12], configurations of a
black hole surrounded by one uniformly rotating ring of matter are computed in general relativity.
The matter is assumed to be a perfect fluid. To solve the equations, space is divided into five
computational domains. One of them describes the ring itself, another one the region around the
black hole and another extends up to infinity. One of the difficulty is that the surface of the ring is
not know a priori and so the domains must be dynamically adapted to its surface. Cylindrical-type
coordinates are used and, in each domain, are mapped onto squares of numerical coordinates. The
actual mappings depend on the domain and can be found in Sec. IV of [12].

Numerical coordinates are expended onto Chebyshev polynomials. The system to be solved
is obtained by writing Einstein equations in the collocation space and also includes things like
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regularity conditions on the axis and appropriate boundary conditions on both the horizon of the
black hole and at spatial infinity. As in [9, 10], the system is solved iteratively, using Newton-
Raphson’s method.

Both Newtonian and relativistic configurations are computed. The ratio between the mass of
the black hole and the mass of the ring has been varied from 0 (no black hole) and up to 144.
The inner mass shedding of the ring can be obtained. One of the most interesting results is the
existence of configurations for which the ratio Jc/M

2
c between the black hole angular momentum

and the square of its mass exceeds one, contrary to what can be achieved for an isolated black
hole.

4.5 Binary compact stars

4.5.1 Formalism

Systems consisting of binary compact objects are known to emit gravitational waves. Due to this
emission, no closed orbits can exist and the objects follow a spiral-like trajectory. It implies that
such systems have no symmetries that can be taken into account and full time-evolutions should
be made. However, when the objects are relatively far apart, the emission of gravitational waves is
small and the inspiral slow. In this regime, one can hope to approximate the real trajectory with
a sequence of closed orbits. Moreover, the emission of gravitational waves is known to efficiently
circularize eccentric orbits so that only circular orbits are usually considered.

So a great deal of work has been devoted to the computation of circular orbits in general
relativity. This can be done by demanding that the system admits an helical Killing vector ∂t+Ω∂ϕ,
Ω being the orbital angular velocity of the system. Roughly speaking, this means that advancing
in time is the same thing as turning the system around its axis. Working on the corotating frame,
one is left with a time-independent problem.

Additional approximations must be made in order to avoid any diverging quantities. Indeed,
when using the helical symmetry, the system has an infinite lifetime and can fill the whole space
with gravitational waves, thus causing quantities like the total mass to be infinite. To deal with
that, various techniques can be used, the most simple one consists in preventing the appearance of
any gravitational waves. This is usually done by demanding that the spatial metric is conformally
flat. This is not a choice of coordinates but a true approximation that has a priori no reason to be
verified. Indeed, even for a single rotating black hole, one can not find coordinates in which the
spatial 3-metric is conformally flat so that we do not expect it to be the case for binary systems.
However, both comparisons with post-Newtonian results and non-conformally flat results, tend to
show that this approximation is relatively good.

Under those assumptions, Einstein equations reduce to a set of five elliptic equations for the
lapse, the conformal factor and the shift vector. Those equations encompass both the Hamiltonian
and momentum constraint equations and the trace of the evolution equations. To close the system,
one must provide a description of the matter. It is commonly admitted that the fluid is irrotational,
the viscosity in neutron stars being to small to synchronize the motion of the fluid with the orbital
motion. Under such approximation, the motion of the fluid is described by an additional elliptic
equation for the potential of the flow. The matter terms entering the equations via the stress-
energy tensor can then computed, once an equation of state is given. A evolutionary sequence can
be obtained by varying the separation between the two stars.

4.5.2 Numerical procedure

Up to now, only the Meudon group has solved those equations by means of spectral methods. Two
sets of domains are used, one centered on each star. Each set consists in spherical-like domains
that match the surface of the star and extend up to infinity. Functions are expanded on spherical
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harmonics with respect to the angles (θ, ϕ) and Chebyshev polynomials with respect to the radial
coordinates. Each Poisson equation ∆N = SN is split into two parts ∆N1 = SN1

and ∆N2 = SN2
,

such that SN = SN1
+ SN2

and N = N1 + N2. The splitting is of course not unique and only
requires that SNi

is mainly centered around the star i so that it is well described by spherical
coordinates around it. The equation labelled i is then solved using the domains centered on the
appropriate star. The splittings used for the various equations can be found explicitly in Sec. IV-C
of [74].

The elliptic equations are solved using the standard approach by the Meudon group found in
[82]. For each spherical harmonics, the equation is solved using a Tau-method and the matching
between the various domains is made using the homogeneous method (see Sec. 2.6.3). The whole
system of equations is solved by iteration and most of the computational time is spent when
quantities are passed from on set of domains to the other one by means of a spectral summation
(this requires N6 operations, N being the number of collocation points in one dimension). A
complete and precise description of the overall procedure can be found in [74].

4.5.3 Binary neutron stars

The first sequence of irrotational neutron star binaries computed by spectral means is shown in
[32]. Both stars are assumed to be polytrops with an index γ = 2. The results are in good
agreement with those obtained, simultaneously, by other groups with other numerical techniques.
One of the important point that has been clarified by [32] concerns the evolution of the central
density of the stars. Indeed, at the end of the nineties, there was a claim that both stars could
collapse, individually, to black holes, before coalescence, due to the increase of central density as
the two objects spiral towards each other. Should that have been true, this would have had a
great impact on the emitted gravitational wave signal. However it turned out that this was coming
from a mistake in the computation of one of the matter term. The correct behavior, confirmed by
various groups and in particular by [32], is a decrease in the central density as the stars get closer
and closer (see Fig. I of [32]).

If the first sequence computed by spectral methods is shown in [32], the complete description and
validation of the method are given in [74]. Convergence of the results with respect to the number
of collocation points is exhibited. Global quantities like the total energy or angular momentum
are plotted as a function of the separation and show remarkable agreement with results coming
from analytical methods (see Figs. 8 to 15 of [74]). Relativistic configurations are also shown to
converge to the Newtonian counterparts when the compactness of the stars is small (Figs. 16 to
20 of [74]).

Newtonian configurations of compact stars with various equations of state are computed for
both equal masses [145] and various mass ratios [142]. One of the main result of the computations
concerns the nature of the end point of the sequence. For equal masses, the sequence ends at
contact for synchronized binaries and at mass shedding for irrotational configurations. This is to
be contrasted with the non-equal mass case where the sequence always ends at the mass shedding
limit of the smallest object.

Properties of the sequences in the relativistic regime are discussed in [143, 144]. In [143]
sequences with γ = 2 are computed, for various compactness and mass ratios, for both synchronized
and irrotational binaries. The nature of the end point of the sequences is discussed and similar
behavior than in the Newtonian regime is observed. The existence of a configuration of maximum
binding energy is also discussed. Such existence could have some observational implications because
it could be an indication of the onset of a dynamical instability. Sequences of polytrops with
various indexes ranging from 1.8 to 2.2 are discussed in [144]. In particular, the authors are lead to
conjecture that, if a configuration of maximum bounding energy is observed in Newtonian regime,
it is also observed in conformal relativity for the same set of parameters.
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In [58] the authors derive, from the sequences computed in [143], a method to constraint the
compactness of the stars from the observations. Indeed, from results [143], one can easily determine
the energy emitted in gravitational waves per interval of frequency (i.e. the power-spectrum of the
signal). For large separation, that is for small frequencies, the curves follow the Newtonian one.
However, there is a break frequency at the higher end (see Fig. 2 of [58]). The location of this
frequency depends mainly on the compactness of the stars. More precisely, the more compact the
stars are, the higher the break frequency is. Should such frequency be observed by the gravitational
wave detectors, this could help put constraints one the compactness of the neutron stars and thus
on the equation of state of such objects.

4.5.4 Extensions

Using the same framework as in [74], sequences of binary compact stars have also been computed
[97]. Contrary to the neutron star case, the matter density does not vanish at the surface of the stars
and one really needs to use surface-matching domains to avoid any Gibbs phenomenon that would
spoil the convergence of the overall procedure. Sequences are computed for both synchronized and
irrotational binaries and a configuration of maximum binding energy is attained in both cases.
This is not surprising: the strange stars are more compact than the neutron stars and are less
likely to be tidally destroyed before reaching the extremum of energy, making it easier to reach
dynamical instability.

All the works presented above are done in the conformal flatness approximation. As already
stated in Sec. 4.5.1 this is only an approximation and one expects that the true conformal 3-metric
will depart from flatness. However, in order to maintain asymptotic flatness of spacetime, one
needs to get rid of the gravitational wave content. One such waveless approximation is presented
in [133] and implemented in [149]. Two independent codes, one of them being an extension of the
work described in [74]. The number of equations to be solved is then greater than in conformal
flatness (one has to solve for the conformal metric), but the algorithms are essentially the same.
It turned out that the deviation from conformal flatness is rather small. The new configurations
are slightly further from post-Newtonian results than the conformally flat ones, which is rather
counter-intuitive and might be linked to a difference in the definition of the waveless approximation.

4.6 Binary black hole systems

4.6.1 Digging the holes

If the computation of binary black holes in circular orbits has a lot of common features with the
neutron star case, there is also some differences that need to be addressed. In at least one aspect,
black holes are much simpler objects because they are solution of Einstein equations without
matter. So the whole issue of investigating various equations of state is irrelevant and there is no
need to solve any equation for the matter. However, there is a price to pay and one must find a
way to impose the presence of holes in the spacetime. Two main ideas have been proposed and
they basically rely on a different point of view on what a black hole is.

In the puncture method, the emphasize is put on the central singularity and one demands
that various quantities, like the conformal factor, diverge at points called the punctures. Such
discontinuities are taken out analytically and the equations are solved numerically for the regular
parts, in the whole space. The physical parameters of the holes, like their masses and spins, are
encoded in the way the various fields behave at the punctures.

In the apparent horizon method, one focuses on the horizons of the holes. By imposing appro-
priate boundary conditions on, basically, two spheres, one ensures the presence of two black holes.
The boundary conditions are based on the concept of trapped surface and apparent horizons. Ein-
stein equations are then solved everywhere outside those surfaces. The physical state of the black
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holes are precisely encoded in the boundary conditions.

4.6.2 First configurations

The first configurations of binary black holes computed by means of spectral methods can be found
in [81]. The formalism and various hypothesis are given in the companion paper [72]. The assump-
tions are very similar to what is done for binary neutron stars (see Sec. 4.5.1). Helical symmetry
is enforced and conformal flatness assumed. The holes are described by the apparent horizon tech-
nique. However, the boundary conditions used have been shown to be only approximately valid
(up to a rather good accuracy). The numerical techniques are very similar to the ones employed
for binary neutron star configurations (see Sec. 4.5.2). Two sets of spherical domains are used,
one for each black hole. Boundary conditions are imposed on the surface between the nucleus and
the first shell. Both sets extend up to infinity using a compactification in 1/r.

The first application of the helical symmetry to binary black holes can be found in [81] and
this technique proved to be valuable. Indeed, for the first time, a good agreement was found
between numerical results and post-Newtonian ones. A detailed comparison can found in [52].
In particular, the location of the minimum of energy is shown to coincide at the level of a few
percent. This improvement with respect to previous numerical works is mainly due to difference
in the physical hypothesis (i.e. the use of helical symmetry). One important product of [81] is
the use of a new criterion to determine the appropriate value of the orbital angular velocity Ω.
Indeed, for neutron stars, this is done by demanding that the fluid of both stars is in equilibrium
[74]. This, of course, is not applicable for black holes. Instead, in [72, 81], it is proposed to find
Ω by demanding that the ADM mass and the Komar-like mass coincide. Without going into to
much details, this amounts to demanding that, far from the binary and at first order in 1/r, the
metric behaves like the Schwarzschild one. It is shown in [72] that it can be linked to a relativistic
virial theorem. It has since then be shown that this criterion could also be used for neutron stars
[144] and that it was equivalent to the use of a variational principle called the effective potential
method [47].

4.6.3 Further investigations

Apart from the Meudon group, two other spectral codes have been developed in the context of
binary black holes and successfully applied to address some of the issues raised by the work of
[72, 81].

One of those codes is due to the Cornell group by H. Pfeiffer and collaborators and is described
extensively in [120, 119]. The code is multi-domain and two main types of domains are used
i) square domains where each Cartesian-like coordinate is expanded on Chebyshev polynomials
and ii) spherical domains where spherical harmonics are used for the angles (θ, ϕ) and Chebyshev
polynomials for the radial coordinate. Space can be compactified by a standard use of the variable
1/r. The two types of domains can be setup in various manner to accommodate the desired
geometry. When using both square and spherical domains, there are regions of space that belong
to more than one domain. This is to be contrasted with work by the Meudon group where domains
are only touching but not overlapping. For overlapping systems one must make the additional
requirement that the fields take the same value when expressed in either spectral expansion. The
algorithm of [120] solves differential equations by using a multi-dimensional collocation method.
The size of resulting system is roughly equal to the number of collocation points. It is then solved
iteratively via a Newton-Raphson algorithm with line search. Careful preconditioning is required
to ensure convergence of the scheme. Various tests are passed by the code in [120], where elliptic
equations and systems are solved in either spherical or bispherical topologies. In the cases presented
the error is evanescent.
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In [117] the code is used to investigate different ways of solving the constraint equations. Three
different decompositions are used: the conformal TT one, the physical TT one and the thin-
sandwich decomposition. When solving for the constraint equations only, one also needs to precise
some freely specifiable variables, which, roughly, describe the physical state of the system. In [117],
those specifiable variables are fixed using a superposition of two Kerr-Schild black holes. The net
result of [117] is that global quantities, like the total energy, are very sensitive to the choice of
decomposition. The variation of total energy can be as large as 5%, which is the order of the
energy released by gravitationnal waves. It is also shown that the choice of extrinsic curvature
tensor is more crucial than the one of conformal metric, in concordance with an underlying result
of [81]. Let us precise that the equations used in [72, 81] are equivalent to using the thin-sandwich
decomposition. The freely speciafiable variables are obtained by both the imposition of the helical
Killing symmetry and by solving an additional equation for the lapse function (resulting in the
so-called extended thin-sandwich formalism).

The code developed by the Cornell group has been applied to binary black holes in circular
orbits in [47]. This work is an extension of [72, 81]. The difference lies in the use of more
elaborate and better boundary conditions on the horizons of the black holes. This has two main
applications. First, by allowing for non-vanishing lapse on the horizons, the authors of [47] are
solving the constraint equations exactly. This is to be contrasted with results of [81], where the
momentum constraint equation was only solved up to some small correction. If this is important
conceptually the results from [81] and [47] show a rather good agreement. This is not surprising
because the correction used by the Meudon group was known to be small (see Fig. 10 and 11 of
[81]). The boundary conditions used in [47] also enable the authors to compute sequences of both
corotating and irrotational black holes. Another important result of [47] is the comparison of two
criteria for determining the orbital angular velocity Ω. They indeed show that the the effective
potential method first introduced in [49] and the method based on the virial theorem proposed in
[72] are in very good agreement.

By slightly extending the boundary conditions used in [47], the authors of [116] proposed to
reduce to eccentricity of the binary black hole configurations. This is done by giving the holes
a small radial velocity by modifying the boundary condition on the shift vector. The code and
other equations are the same as in [47]. Time evolution of the obtained initial data show indeed
that this technique can reduce the eccentricity of the binary. However, the effect on the emitted
gravitational wave is small and probably unimportant.

The other spectral code used to compute configuration of binary black holes is due to M. Ansorg
[5]. It shares a lot of features with the code developed by the same author in the context of rotating
stars [9, 10] already discussed in Sec. 4.2.7. Space is decomposed in two domains. One of them
lies just outside the horizons of the holes and bispherical-like coordinates are used. The other
domain extends up to infinity and an appropriate mapping is used in order to avoid the singularity
of the bispherical coordinates at spatial infinity (see Sec. IV of [5]). The angle of the bispherical
coordinates (i.e. the angle around the x-axis joining the two holes) is expanded onto Fourier
series and the two other coordinates onto Chebyshev polynomials. Like in [12, 120], the partial
differential equations are solved using a collocation method and the resulting system is solved by
iteration, after appropriate preconditioning. The code is used to compute essentially the same
configuration as those shown in [47]. An interesting point made in [5] is the detailed investigation
of convergence of the results when increasing the resolution. As can bee seen in Fig. 4 of [5], the
error starts by decreasing exponentially but, for high number of points, it seems that the error only
follows a power-law. This is an indication that some Gibbs-like phenomenon must be present. It is
conjectured in [5] that this comes from logarithm terms that can not be dealt with properly with
a compactification in 1/r. The same kind of effect is investigated in some details in [82], where
some criteria for the appearance of such terms are discussed.

A code very similar to the one used in [5] has also been used to compute spacetimes with black
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holes using the puncture approach [8]. Given that the black holes are no longer described by their
horizons, one do not need to impose inner boundary conditions. The absence of this requirement
enabled the author of [8] to use a single domain to describe the whole space, from the puncture
up to infinity. The other features of the spectral solver are the same as in [5]. This method has
been successfully applied to the computation of binary black hole configurations in the puncture
framework. The authors have, in particular, investigated high mass ratios between the bodies and
compared their results with the ones given in the test-mass limit around a Schwarzschild black
hole. The discrepancy is found to be of the order of 50% for the total energy. It is believed that
this comes from the fact that the mass of each puncture can not be directly related to the local
black hole mass (see discussion in Sec. VII of [8]).

Let us finally mention that the algorithms developed by M. Ansorg in [9, 10, 8, 5] have all been
unified in [7] to accommodate any type of binaries. Various domain decompositions are exhibited
that can be used to represent neutron stars, excised black holes or puncture black holes, with
compactification of space. The algorithms are shown to be applicable to limiting cases like large
mass ratios.

4.7 Black hole-neutron star binaries

Until recently the binaries consisting of a neutron star and a black hole received fewer attention
than the other types of systems. It was believed, and this was partly true, that this case could
be easily handled once the cases of binary neutron stars and binary black holes were understood.
However, such binaries are of evident observational interest and could be the most promising source
of gravitational waves for the ground-based detectors [21].

The first application of spectral methods to the black hole-neutron star binaries can be found
in [139]. The main approximation is to considered that the black hole is not influenced by the
neutron star. Technically, this means that the Einstein equations are split into two parts (i.e. like
for binary neutron stars 4.5.2). However the part of the fields associated to the black hole are fixed
to their analytical value. As the fields are not solved for the black hole part, the results should
depend on the actual splitting, the equations being non-linear. The part of the fields associated
with the neutron star are solved using the standard setting for the Meudon group. Of course, this
whole procedure is only valid if the black hole is much more massive than the neutron star and
this is why [139] is limited to mass ratios of 10. In this particular case, it is shown that the results
depend to the level of a few percent on the choice of splitting, which is a measure of the reached
accuracy. It is also shown that the state of rotation of the star (i.e. synchronized or irrotational)
has few influence on the results.

In [140] the equations of the extended thin-sandwich formulation are solved consistently. Like
for the binary neutron star case, two sets of spherical coordinates are used, one centered around each
object. The freely specifiable variables are derived from the Kerr-Schild approach. Configurations
are obtained with a moderate mass ratio of 5. However the agreement with post-Newtonian results
is not very good and the data seem to be rather noisy (especially the deformation of the star).
This may be an indication that the Kerr-Schild approach does not lead to accurate quasicircular
configurations.

Quasiequilibrium configurations based on an helical Killing vector and conformal flatness have
been obtained independently by [80] and [141]. Both codes are based on the Lorene library [73]
and use two sets of spherical coordinates. They differ mainly in the choice of boundary conditions
for the black hole. However it is shown in the erratum of [80] that the results match pretty well
and are in very good agreement with post-Newtonian results. Mass ratios ranging from 1 to 10
are obtained in [141] and the emitted energy spectra are estimated.
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4.8 Spacetimes with waves

The work [118] presents a method to produce initial data configuration containing waves. Given a
fixed background metric, it shows how to superimposed a given gravitational wave content. The
equations are solved numerically using a multi-domain spectral code based on [120, 119]. Space
is covered by various spherical-like shells and is described up to infinity. Let us mention that
the origin is covered by a square domain because regularity conditions at the origin, in spherical
coordinates, are not handled by [120, 119]. Such setting is used to generate spacetimes containing
i) pure quadrupolar waves ii) flat space with ingoing pulse and iii) a single black hole superimposed
with an ingoing quadrupolar wave.

4.9 Hyperboloidal initial data

If the 3+1 decomposition is the most widely used for numerical relativity, some other possibilities
have been proposed, with possibly better features. In particular, one can vary the foliation of
spacetime to get hyperboloidal data. With such setting, at infinity, spacetime is foliated by light
cones instead of spatial hypersurfaces, which makes extraction of gravitational waves, in principle,
easier.

In [62] one is interested in generating hyperboloidal initial data sets from data in physical
space. The technique proceeds in two steps. First a non-linear partial differential equation (the
Yamabe equation) must be solved to determine the appropriate conformal factor ω. Then, the
data are constructed by dividing some quantities by this ω. This second step involves an additional
difficulty: ω vanishes at infinity but the ratios are finite and smooth. It is demonstrated in [62]
that spectral methods can deal with those two steps. Some symmetry is assumed so that the
problem reduces to a 2-dimensional one. The first variable is periodic and expanded on Fourier
series whereas Chebyshev polynomials are used for the other one. The Yamabe equation is solved
using an iterative scheme based on Richardson’s iteration procedure. The construction of the fields,
hence the division by a field vanishing at infinity, is then handled by making use of the non-local
nature of the spectral expansion (i.e. by working in the coefficient space ; see Sec. 4 of [62] for
more details).
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5 Dynamical Evolution of Relativistic Systems

The modeling of non-stationary physical systems is traditionally the ultimate goal in numerical
simulation. Within the field of numerical relativity, the need for studies of dynamical systems
is even more pronounced because of the seek for gravitational wave patterns. Unfortunately, as
presented in Section 3.1, there is no efficient spectral time discretization yet and one normally
uses finite-order time-differentiation schemes. Therefore, the accuracy of time-evolution studies is
usually limited by the temporal discretization, and does not exhibit standard spectral (exponen-
tial) decay with the number of degrees of freedom. This situation might explain why, except for
gravitational collapse [69, 109], very few studies using spectral methods have dealt with dynamical
situations until the Cornell/Caltech group began to use spectral methods in numerical relativity,
in the beginning of years 2000 [92, 91].

In this section, we review the status of the numerical simulations, using spectral methods, in
some fields of General Relativity and Relativistic Astrophysics. Dedicated reviews exist for most
of the themes presented here and the interested reader should consult them for physical details and
comparisons with other numerical and analytical techniques. Among the systems which have been
studied, one can find gravitational collapse [63] (stellar core collapse or collapse of a neutron star
to a black hole), oscillations of relativistic stars [94] and evolution of “vacuum” spacetimes. These
include the cases of pure gravitational waves or scalar fields, evolving in the vicinity of a black
hole or as (self-gravitating) perturbations of Minkowski flat spacetime. Finally, we shall discuss
the situation of compact binaries [121, 24] spectral numerical simulations.

5.1 Single Stars

The numerical study of the evolution of stars in General Relativity involves two parts: first one
has to solve for the evolution of matter (relativistic hydrodynamics, see [60]), and second one must
compute the new configuration of the gravitational field. Whereas the second part is now being
well studied, in particular since it is the most important to obtain gravitational radiation and
to deal with the evolution of black holes (see Sec. 5.2), the first part has not benefited from so
many efforts in the past decade. One is facing the paradox: spectral methods have been primarily
developed for the simulation of hydrodynamic systems (see Sec. 1.2) but they are not often used
for relativistic hydrodynamics. This might be understood as a consequence of the general problem
of spectral methods to deal with discontinuous fields: the Gibbs phenomenon (see Sec. 2.4.3).
Relativistic flows in astrophysics are often supersonic and therefore contain shocks. Although some
techniques have been devised to deal with them in one-dimensional studies (see e.g. [36]), there
have been no multi-dimensional convincing work. Other problems coming from multi-dimensional
relativistic hydrodynamics which can spoil the exponential convergence properties are the density
sharp profiles near neutron star surfaces. These can imply a diverging or discontinuous radial
derivative of the density, thus slowing down the convergence of the spectral series.

5.1.1 Core Collapse

The physical scenario studied here is the formation of a neutron star from the gravitational collapse
of degenerate stellar core. This core can be thought as to be the iron core of a massive star at
the end of its evolution (standard mechanism of type II supernova). The degeneracy pressure of
the electrons can no longer support the gravity and the collapse occurs. When the central density
reaches nuclear values, the strong interaction stiffens the equation of state, stopping the collapse
in the central region and a strong shock is generated. This mechanism has been long thought to
be a powerful source of gravitational radiation, but recent simulations show that the efficiency
is much lower than previously estimated [55, 133]. The appearance of a strong hydrodynamic
shock is, in principle, a serious problem to numerical models using spectral methods. Nevertheless,
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a first preliminary study in spherical symmetry and in Newtonian theory of gravity has been
undertaken in 1986 by Bonazzola and Marck [34], with the use of “natural” viscosity. The authors
showed a mass conservation to a level better than 10−4 using one domain with only 33 Chebyshev
polynomials. In 1993, the same authors performed the first three-dimensional simulation (still in
Newtonian theory) of the pre-bounce phase [37], giving a computation of the gravitational wave
amplitude, which was shown to be lower than standard estimates. Moreover they showed that,
for a given mass, the gravitational wave amplitude depends only on the deformation of the core.
These three-dimensional simulations were made possible thanks to the use of spectral methods,
particularly for the solution of the Poisson equation for the gravitational potential.

Shock waves give thus difficulties to spectral codes and have been either smoothed with some
viscosity, or ignored with the code stopping before their appearance. The idea developed first be-
tween the Meudon and Valencia groups was then to use some more appropriate techniques for the
simulation of shock waves: namely the High-Resolution Shock-Capturing (HRSC) techniques, also
known as Godunov methods (see Living Reviews by Mart́ı and Müller [104], and by Font [60]). On
the other hand, one wants to keep nice properties of spectral methods, in particular for the solution
of elliptic equations or for the representation of more regular fields, like the gravitational one. The
combination of both types of methods (HRSC and spectral) was first achieved in 2000 by Novak
and Ibáñez [111]. They studied a spherically symmetric core collapse in tensor-scalar theory of
gravity, which is a more general theory than General Relativity and allows a priori for monopolar
gravitational waves. The system of PDEs to be solved resembles the General Relativity one, with
the addition of a scalar non-linear wave equation for the monopolar dynamical degree of freedom.
It was solved by spectral methods, whereas the relativistic hydrodynamics equations were solved
by Godunov techniques. Two grids were used, associated to each numerical technique, and inter-
polations between both were done at every time-step. Although strong shocks were present in this
simulation, they were sharply resolved with HRSC techniques and gravitational field, represented
through spectral methods, did not exhibit any Gibbs-like oscillations, and monopolar gravitational
waveforms could thus be given. In collaboration with the Garching-hydro group, this numerical
technique has been extended in 2005 to three-dimensions, but in the so-called “conformally flat”
approximation of General Relativity (see Secs. 4.5 and 4.6) by Dimmelmeier et al. [54]. This ap-
proach using spectral methods for the gravitational field computation is now sometimes referred
as “Marriage des Maillages” (French for grid wedding) and is currently employed by the core-
collapse code CoCoNuT of Dimmelmeier et al. [53, 54] to study general relativistic simulations to
a proto-neutron star, with a microphysical equation of state as well as an approximate description
of deleptonization [55].

5.1.2 Neutron Star Collapse to a Black Hole

To our knowledge, all studies of the neutron star collapse to a black hole, which used spectral
methods, are currently restricted to spherical symmetry. However, in this case and contrary to the
core-collapse scenario, there is a priori no shock wave appearing in the evolution of the system
and spectral methods are highly accurate also at modeling the hydrodynamics. Thus, assuming
spherical symmetry, the equations giving the gravitational field are very simple, first because of the
Birkhoff’s theorem, which gives the gravitational field outside the star, and then from the absence
of any dynamical degree of freedom in the gravitational field. For example, when choosing the
radial (Schwarzschild) gauge and polar slicing, Einstein equations, expressed within 3+1 formalism,
turn into two simple constraints which are simply solved by integrating with respect to the radial
coordinate (see [69]).

In this work by Gourgoulhon, a Chebyshev tau-method is used. The evolution equations for the
relativistic fluid variables are integrated with a semi-implicit time scheme and a quasi-Lagrangian
grid: the boundary of the grid is comoving with the surface of the star, but the grid points remains
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the usual Gauss-Lobatto collocation points (Sec. 2.3.2). Due to the singularity-avoiding gauge
choice, the collapsing star ends in the “frozen-star” state, with the collapse of the lapse. This
induces strong gradients on the metric potentials, but the code was able to follow the collapse
down to very small values of the lapse, at less than 10−6. The code is very accurate at determining
whether a star at equilibrium is unstable, by triggering the physical instability from numerical
noise at very low level. This property has later been used by Gourgoulhon et al. [76] to study
the stability of equilibrium configurations of neutron stars near the maximal mass, taking into
account the effect of weak interaction processes. The addition of some inward velocity field to
initial equilibrium configurations enabled Gourgoulhon [70] to partially answer the question about
the minimal mass of black holes: can the effective mass-energy potential barrier associated with
stable equilibrium states be penetrated by stars with substantial inward radial kinetic energy?
In [70], Gourgoulhon found the possibility to form a black hole with a starting neutron star which
was 10% less massive than the usual maximal mass.

The spectral numerical code developed by Gourgoulhon [69] has been extended to also simulate
the propagation of neutrinos, coming from thermal effect and non-equilibrium weak interaction
processes. With this tool, Gourgoulhon and Haensel [75] have simulated the neutrino bursts
coming from the collapse of neutron stars, with different equations of state. Another modification
of this spectral code has been done by Novak [109], extending the theory of gravity to tensor-
scalar theories. This allowed for the simulation of monopolar gravitational waves coming from
the spherically symmetric collapse of a neutron star to a black hole [109]. From a technical point
of view, the solution of a non-linear wave equation on curved spacetime has been added to the
numerical model. It uses an implicit second-order Crank-Nicolson scheme for the linear terms
and an explicit scheme for the non-linear part. In addition, as for the hydrodynamics, the wave
equation is solved on a grid, partly comoving with the fluid. The evolution of the scalar field
showed that the collapsing neutron star “expelled” all of its scalar charge before the appearance
of the black hole.

5.1.3 Relativistic Stellar Oscillations

Because of their very high accuracy, spectral methods are able to track dynamical instabilities in
the evolution of equilibrium neutron star configurations, as shown in the previous section with the
works of Gourgoulhon et al. [69, 76]. In these works, when the initial data represented a stable
neutron star, some oscillations appeared, which corresponded to the first fundamental mode of the
star. As another illustration of the accuracy, let us mention the work by Novak [108], who followed
the dynamical evolution of unstable neutron stars in tensor-scalar theory of gravity. The instability
is linked with the possibility for these stars to undergo some “spontaneous scalarization”, meaning
that they could gain a very high scalar charge, whereas the scalar field would be very weak (or
even null) outside the star. Thus, for a given number of baryons there would be three equilibria
for a star: two stable ones with high scalar charges (opposite in sign) and an unstable one with a
weak scalar charge. Starting from this last one, the evolution code described in [109] was able to
follow the transition to a stable equilibrium, with several hundreds of damped oscillations for the
star. This damping is due to the emission of monopolar gravitational waves, which carry away the
star’s kinetic energy. The final state corresponds to the equilibrium configuration, independently
computed by a simple code solving the generalized Tolman-Oppenheimer-Volkoff system with a
scalar field, up to 1% error, after more than 50000 time-steps.

It is therefore quite natural to try and simulate stellar pulsations (see the Living Reviews by
Kokkotas and Schmidt [94], and by Anderson and Comer [4]) using spectral methods. Unfor-
tunately, there have been only a few such studies, which are detailed hereafter. The work by
Lockitch et al. [102] has studied the inertial modes of slowly rotating stars in full general rela-
tivity. They wrote down perturbation equations in the form of a system of ordinary differential

58



equations, thanks to a decomposition onto vector and tensor spherical harmonics. This system is
then a nonlinear eigenvalue problem for the dimensionless mode frequency in the rotating frame.
Equilibrium and perturbation variables are then expanded onto a basis of Chebyshev polynomials,
taking into account the coordinate singularity at the origin and parity requirements. The authors
were therefore able to determine the values of the mode frequency making the whole system singu-
lar and looked for eigenfunctions, through their spectral decomposition. They found that inertial
modes were slightly stabilized by relativistic effects.

A different and maybe more natural approach, namely the time integration of the evolution
equations, has been undertaken by Villain et al. [150, 151] with a spectral hydrocode, in spherical
coordinates. The code solves the linearized Euler or Navier-Stokes equations, with the anelastic
approximation. This approximation, which is widely used in other fields of astrophysics and
atmospheric physics, consists in neglecting acoustic waves by assuming that time derivatives of
the pressure and the density perturbations are negligible. It allows for a characteristic time which
is not set by acoustic propagation time, but is much longer and the time-step can be chosen so
as to follow the inertial modes themselves. In their 2002 paper [150], the authors study inertial
modes (i.e. modes whose restoring force is the Coriolis force, among which the r−modes [4]) in
slowly rotating polytrops with γ = 2, in the linear regime. First, this is done in the framework of
Newtonian gravity, where the anelastic approximation implies that the Eulerian perturbations of
the gravitational potential do not play any role in the velocity perturbations. Second, they study
the relativistic case, but with the so-called Cowling approximation, meaning again that the metric
perturbations are discarded. In both regimes and trying different boundary conditions for the
velocity field at the surface of the star, they note the appearance of a polar part of the mode and
the “concentration of the motion” near the surface, showing up in less than 15 periods of the linear
r−mode. A more recent work [151] deals with the study of gravity modes, in addition to inertial
modes, in neutron stars. The interesting point of this work is the use of quite a realistic equation of
state for nuclear matter, which is valid even when the beta equilibrium is broken. The authors were
thus able to show that the coupling between polar and axial modes is increasing with the rotation
of the star, and that the coupling of inertial modes with gravity modes in non-barotropic stars can
produce fast energy exchanges between polar and axial parts of the fluid motion. From a numerical
point of view, one of the key ingredients is the solution of the vector heat equation, coming from
the Euler or Navier-Stokes equations. This is done by a poloidal-toroidal [38] decomposition of the
velocity field on two scalar potentials, which is very natural within spectral methods. Moreover,
to ensure the correct analytical behavior at the origin, all scalar quantities are projected at each
time-step to a modified Legendre function basis.

More recently, a complete non-linear study of rotating star pulsations has been set by Dim-
melmeier et al. [56]. They used the general-relativistic code CoCoNuT (see above, Sec. 5.1.1)
in axial symmetry, with a HRSC hydrodynamic solver, and spectral methods for the simplified
Einstein equations (conformally flat three-metric). They noted that the conformal flatness condi-
tion did not have much effect on the dynamics, when comparing with the Cowling approximation.
Nevertheless, they found that differential rotation was shifting the modes to lower frequencies and
they confirmed the existence of the mass-shedding induced damping of pulsations.

5.2 Vacuum and Black Hole Evolutions

If one wants to simulate the most interesting astrophysical sources of gravitational radiation, one
must have a code able to follow, in a stable manner, gravitational waves themselves on a background
spacetime. It has been observed by all numerical relativity groups that the stability of a numerical
code, which solves Einstein field equations, does not only depend on the numerical algorithm, but
also on the particular formulation of the equation. It is therefore a crucial step to devise such
a stable formulation, and more particularly with spectral methods, because they add almost no
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numerical dissipation and thus, even the smallest instability is not dissipated away and can grow
up to unacceptable level. The situation becomes even more complicated with the setup of an
artificial numerical boundary at a finite distance from the source, needing appropriate boundary
conditions to control the physical wave content, and possibly to limit the growth of unstable modes.
All these points have been extensively studied since 2000 by the Caltech-Cornell groups and their
pseudospectral collocation code [89, 91, 128, 127, 101, 85, 90, 100, 40]; they have been followed in
2004 by the Meudon group [29] and in 2006 by Tichy [148].

Next, it is necessary to be able to evolve black holes. Successful simulation of binary black holes
have been performed using the so-called black-hole puncture technique [43, 15]. Unfortunately, the
dynamical part of Einstein fields are not regular at the puncture points and it seems difficult to
regularize them so as to avoid any Gibbs-like phenomenon using spectral methods. Therefore
the excision technique is employed, removing part of the coordinate space inside the apparent
horizon. There is no need for boundary condition on this new artificial boundary, provided that
one uses free-evolution scheme [128], solving only hyperbolic equations. On the other hand, with
a constrained scheme, elliptic-type equations are to be solved [29] and, as for initial data (see.
Sec. 4.3 and 4.6) boundary conditions must be provided e.g. on the apparent horizon, from the
dynamical horizon formalism [79].

5.2.1 Formulation and boundary conditions

Several formulations have been proposed in the literature for the numerical solution of Einstein
equations, using spectral methods. The standard one is the 3+1 (a.k.a Arnowitt-Deser-Misner -
ADM) formalism of general relativity [13, 155] (for a comprehensive introduction, see the lecture
notes by Gourgoulhon [71]), which has been reformulated into the Baumgarte-Shapiro-Shibata-
Nakamura (BSSN) [19, 132] for better stability. But first, let us mention an alternative charac-
teristic approach based on expanding null hypersurfaces foliated by metric 2-spheres developed by
Bartnik [17]. This formalism allows for a simple analysis of the characteristic structure of the equa-
tions and uses the standard “edth” (ð) operator on S2 to express angular derivatives. Therefore,
Bartnik and Norton [18] used spin-weighted spherical harmonics (see Sec. 3.3.2) to numerically
describe metric fields.

Coming back to the 3+1 formalism, Einstein’s equations split into two subsets of equations.
First, the dynamical equations specifying the way the gravitational field evolves from one time-slice
to the next; then, the constraint equations which must be fulfilled on each time-slice. Still, it is
well-known that for the Einstein system, as well as for the Maxwell’s equations of electromagnetism,
if the constraints are verified on the initial time-slice, then the dynamical equations guarantee that
they shall be verified in the future of that time-slice. Unfortunately, when numerically doing such
free evolution, i.e. solving only for the dynamical equations, small violations of the constraints
due to round-off errors appear to grow exponentially (for an illustration with spectral methods,
see e.g. [128, 148]). The opposite strategy is to discard some of the evolution equations, keeping
the equations for the two physical dynamical degrees of freedom of the gravitational field, and to
solve for the four constraint equations: this is a constrained evolution [29].

The advantages of the free evolution schemes are that they usually allow for a writing of the
Einstein’s equations in the form of a strongly- or symmetric-hyperbolic system, for which there
are many mathematical theorems of existence or well-posedness. In addition, it is possible to
analyze such systems in terms of characteristics, which can give very clear and easy-to-implement
boundary conditions [90]. Using finite-differences numerical methods, it is also very CPU-time
consuming to solve for constraint equations, which are of elliptic type, but this is not the case
with spectral methods. On the other hand, constrained evolution schemes have by definition the
advantage of not being subject to constraint-violation modes. Besides, the equations describing
stationary space-times are usually elliptic and are naturally recovered when taking the steady-state
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limit of such schemes. Finally, elliptic PDEs usually do not exhibit instabilities and are known to
be well-posed. To be more precise, constrained evolution has been implemented by the Meudon
group [29], within the framework of BSSN formulation. Free-evolution schemes have been used by
Tichy [148] (with the BSSN formulation) and by the Caltech-Cornell group, which has developed
their Kidder-Scheel-Teukolsky (KST) scheme [91] and have later used the Generalized-Harmonic
(GH) scheme [100]. The KST scheme is in fact a 12-parameters family of hyperbolic formulations
of Einstein’s equations, which can be fine-tuned in order to stabilize the evolution of e.g. black
hole spacetimes [128].

Even when doing so, constraint-violating modes grow exponentially and basically three ways
of controlling their growth have been studied by the Caltech-Cornell group. First, the addition
of multiples of the constraints to the evolution system in a way to minimize this growth. The
parameters linked with these additional terms are then adjusted to control the evolution of the
constraint norm. This was called “active constraint control” by Lindblom et al. [101], and tested
on a particular representation of the Maxwell equations. Second, the same authors devised con-
straint preserving boundary conditions, where the idea was to get maximally dissipative boundary
conditions on the constraint evolution equations [101, 90]. This second option appeared to be
more efficient, but still did not completely eliminate the instabilities. Finally, bulk constraint
violations cannot be controlled by constraint-preserving boundary conditions alone, so Holst et
al. [85] derived techniques to project at each time-step the solution of the dynamical equations
onto the constraint submanifold of solutions. This method necessitates the solution of a covari-
ant inhomogeneous Helmholtz equation to determine the optimal projection. Nevertheless, the
most efficient technique seems to be the use of the GH formulation, which also incorporates mul-
tiples of the constraints thus exponentially suppressing bulk constraint violation, together with
constraint-preserving boundary conditions [100].

Boundary conditions are not only important for the control of the constraint-violation modes
in free evolutions. Because they cannot be imposed at spatial infinity (see Sec. 3.2.2), they must
be completely transparent to gravitational waves and prevent any physical wave from entering the
computational domain. A first study of interest for numerical relativity has been done by Novak
and Bonazzola [110], where gravitational waves are considered in the wave zone, as perturbations
of flat spacetime. The specificity of gravitational waves is that they start at the quadrupole level
(ℓ = 2) in terms of spherical harmonics expansion. Standard radiative boundary conditions (known
as Sommerfeld boundary conditions [137]) being accurate only for the ℓ = 0 component, a gener-
alization of these boundary conditions has been done to include quadrupolar terms [110]. They
strongly rely on the spectral decomposition of the radiative field in terms of spherical harmonics
and on spherical coordinates. More specific boundary conditions for the Einstein system, in order
to control the influx of the radiative part of the Weyl tensor, have been devised by Kidder et al. [90]
for the KST formulation and adapted to the GH formulation by Lindblom et al. [100].

5.2.2 Gauges and wave evolution

The final ingredient before performing a numerical simulation of the dynamical Einstein system is
the gauge choice. For example, the analytical study of the linearized gravitational wave in vacuum
has been done with the harmonic gauge, for which the coordinates {xµ} verify the scalar covariant
wave equation

Hµ = gµν∇σ∇σxν = 0. (128)

This is the definition of the form Hµ, where gµν is the metric and ∇σ the associated covariant
derivative. Recent works by the Cornell group used the GH formulation in which the gauge choice
is achieved through the specification of Hµ as an arbitrary function of {xµ} and Gµν , which can
be set for instance to its initial value [129]. Still, it is with the KST formulation, and with lapse
and shift set from the analytic values, that Boyle et al. [40] have submitted their collocation
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pseudospectral code to the so-called “Mexico City tests” [1]. These are a series of basic numerical
relativity code tests to verify their the accuracy and stability, including small amplitude linear
plane wave, gauge wave and Gowdy spacetime evolutions. These tests have been passed by the
Caltech-Cornell code, using Fourier basis for all three Cartesian coordinates, and a fourth-order
Runge-Kutta time-stepping scheme. In the particular case of the linear plane wave, they exhibited
the proper error behavior, as the square of the wave amplitude, because all non-linear terms are
neglected in this test. The authors have also shown that the use of filtering of the spherical
harmonics coefficients was very effective in reducing nonlinear aliasing instabilities.

Within the constrained formulation of Einstein’s equations, the Meudon group has introduced a
generalization of the Dirac gauge to any type of spatial coordinates [29]. Considering the conformal
3+1 decomposition of Einstein’s equations, the Dirac gauge requires that the conformal 3-metric
γ̃ij (such that det γ̃ij = 1) be divergence-free with respect to the flat 3-metric (defined as the
asymptotic structure of the 3-metric and with the associated covariant derivative D̄)

D̄iγ̃
ij = 0. (129)

Time coordinate is set by the standard maximal slicing condition. These conditions turn to be
dynamical gauge conditions: the lapse and the shift are determined through the solution of elliptic
PDEs at each time-step. With this setting, Bonazzola et al. have studied the propagation of a
three-dimensional gravitational wave, i.e. the solution of the fully nonlinear Einstein equations in
vacuum. Their multidomain spectral code based on the Lorene library [73] was able to follow
the wave using spherical coordinates, including the (coordinate) singular origin, and to let it out
of the numerical grid with transparent boundary conditions [110]. Evolution was performed with
a second-order semi-implicit Crank-Nicolson time scheme, and the elliptic system of constraint
equations was solved iteratively. Since only two evolution equations were solved (out of six), the
other were used as error indicators and proved the awaited second-order time convergence.

5.2.3 Black hole spacetimes

As stated at the beginning of Sec. 5.2, the detailed strategy to perform numerical simulations
of black hole spacetimes depends on the chosen formulation. With the characteristic approach,
Bartnik and Norton [18] modeled gravitational waves propagating on a black hole spacetime, in
spherical coordinates but with a null coordinate z = t− r. They interestingly combined a spectral
decomposition on spin-weighted spherical harmonics for the angular coordinates and an eighth-
order scheme using spline convolution to calculate derivatives in the r or z direction. Integration
in these directions was done with a fourth- or eighth-order Runge-Kutta method. For the spectral
part, they had to use Orszag’s 2/3 rule [44] for anti-aliasing. This code achieved 10−5 as global
accuracy and was able to evolve the black hole spacetime up to z = 55M . More recently, Tichy
has evolved a Schwarzschild black hole in Kerr-Schild coordinates in the BSSN formulation, up
to t ≃ 100M [148]. He used spherical coordinates in a shell-like domain, excising the interior of
the black hole. The expansion functions are Chebyshev polynomials for the radial direction, and
Fourier series for the angular ones.

Most successful simulations in this domain have been performed by the Caltech-Cornell group,
who seem to be able to stably evolve forever not only a Schwarzschild, but also a Kerr black hole
perturbed by a gravitational wave pulse [100], using their GH formulation with constraint damping
and constraint-preserving boundary conditions. However, several attempts have been reported by
this group before that, starting with the spherically symmetric evolution of a Schwarzschild black
hole by Kidder et al. [92]. Problems had arisen when trying three-dimensional simulations of such
physical systems with the new parameterized KST formalism [91]. Using spherical coordinates in a
shell-like domain, the authors decomposed the fields (or Cartesian components for tensor fields) on
a Chebyshev radial base and scalar spherical harmonics. The integration in time was done using
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a fourth-order Runge-Kutta scheme and the gauge variables were assumed to keep their analytical
initial values. The evolution was limited by the growth of constraint-violating modes at t ∼ 1000M .
With a fine-tuning of the parameters of the KST scheme, Scheel et al. [128] have been able to extend
the lifetime for the numerical simulations to about 8000M . On the other hand, when studying the
behavior of a dynamical scalar field on a fixed Kerr background, Scheel et al. [127] managed to
get nice results on the late time decay of this scalar field. They had to eliminate high-frequency
numerical instabilities, with a filter on the spherical harmonics basis, following again Orszag’s 2/3
rule [44] and truncating the last third of coefficients. It is interesting to note that no filtering
was necessary on the radial (Chebyshev) basis functions. Somehow more complicated filtering rule
has been applied by Kidder et al. [90], when trying to limit the growth of constraint-violation
in three-dimensional numerical evolutions of black hole spacetimes, with appropriate boundary
conditions. They have set to zero the spherical harmonics terms with ℓ ≥ ℓmax − 3 in the tensor
spherical harmonics expansion of the dynamical fields. The stable evolutions reported by Lindblom
et al. [100] thus might be due to the following three ingredients:

• GH formalism, exponentially suppressing all small short-wavelength constraint violations,

• constraint-preserving boundary conditions,

• filtering of spherical harmonics spectral coefficients.

Perhaps, some of these recipes could be helpful to other groups, even working with different nu-
merical methods, to improve their numerical relativity evolution codes.

5.3 Binary Systems

As seen in previous section 5.2, not many groups using spectral methods are able to solve all the
three-dimensional Einstein equations in a stable way. When dealing with black holes, the situation
is even worse. Therefore, there still has not been any complete success, using spectral methods for
such simulations of compact object binary systems, at the moment of writing this review. We only
report on three recent partial works on the field, dealing with each type of binary system (neutron
stars and/or black holes) and leave space for future studies on this rapidly evolving field. We note,
of course, that successful numerical evolutions of such systems have been performed with other
numerical methods, by Shibata et al. [134, 131] for binary neutron stars, Shibata and Uryū [135]
for black hole-neutron star binaries and by Pretorius [122], Campanelli et al. [43] and Baker et
al. [15] for binary black holes.

5.3.1 Binary neutron stars

Numerical simulations of the final stage of inspiral and merger of binary neutron stars has been
performed by Faber et al. [59], who have used spectral methods in spherical coordinates (based
on Lorene library [73]) to solve the Einstein equations in the conformally flat approximation
(see Secs. 4 and 5.1.1). The hydrodynamic evolution has been computed using a Lagrangian
smoothed particle hydrodynamics (SPH) code. As for the initial conditions, described in Sec. 4.5,
the equations for the gravitational field reduce, in the case of the conformally flat approximation,
to a set of five non-linear coupled elliptic (Poisson-type) PDEs. The considered fields (lapse, shift
and conformal factor) are “split” into two parts, each component being associated to one of the
stars in the binary. Although this splitting is not unique, the result obtained is independent
from it because the equations with the complete fields are solved iteratively, for each time-step.
Boundary conditions are imposed to each solution of the field equations at radial infinity, thanks
to a multidomain decomposition and a u = 1/r compactification in the last domain. The authors
used ∼ 105 SPH particles for each run, with an estimated accuracy level of 1 − 2%. Most of the
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CPU time was spent in calculating the values of a quantity know at the spectral representation,
at SPH particle positions. Another difficulty has been the determination of the domain boundary
containing each neutron star, avoiding any Gibbs phenomenon. Because the conformally flat
approximation discards gravitational waves, the dissipative effects of gravitational radiation back
reaction were added by hand. The authors used the slow-motion approximation [153] to induce a
shrinking of the binary systems, and the gravitational waves were calculated with the lowest-order
quadrupole formulas. The code has passed many tests and, in particular, they have evolved several
quasi-equilibrium binary configurations without adding the radiation reaction force with resulting
orbits that were nearly circular (change in separation lower than 4%. The code was thus able to
follow irrotational binary neutron stars, including radiation reaction effects, up to the merger and
the formation of a differentially rotating remnant, which is stable against immediate gravitational
collapse for reasonably stiff equations of state. All the results agreed pretty well with previous
relativistic calculations.

5.3.2 Black hole-neutron star binaries

A similar combination of numerical techniques has been used by Faber et al. [57] to compute the
dynamical evolution of merging black hole-neutron star binaries. In addition to the conformally
flat approximation, the authors considered only the case of extremely large mass ratio between
the black hole and the neutron star, holding thus the black hole position fixed and restricting the
spectral computational grid to a neighborhood of the neutron star. The black hole surrounding
metric was thus supposed to keep the form of a Schwarzschild black hole in isotropic coordinates.
The neutron star was restricted to low compactness (only a few percents) in order to have systems
that disrupt well outside the last stable orbit. The system was considered to be in corotation and,
as for binary neutron stars, the gravitational radiation reaction was added by hand. As stated
above, the numerical methods used SPH discretization to treat dynamical evolution of matter, and
the spectral library Lorene [73] to solve the Einstein field Poisson-like equations in the conformally
flat approximation. But here, the spectral domains associated with the neutron star did not extend
to radial infinity (no compactified domain) and approximate boundary conditions were imposed,
using multipole expansion of the fields. The main reason is that the black hole central singularity
could not be well described on the neutron star grid.

The authors have studied the evolution of neutron star-black hole binaries with different poly-
tropic indices for the neutron star matter equation of state, the initial data being obtained as
solutions of the conformal thin-sandwich decomposition of Einstein equations. They found that,
at least for some systems, the mass transfer from the neutron star to the black hole plays an im-
portant role in the dynamics of the system. For most of these systems, the onset of tidal disruption
occurred outside the last stable orbit, contrary to what had been previously proposed in analytical
models. Moreover, they have not found any evidence for significant shocks within the body of the
neutron star. This star possibly expanded during the mass loss, eventually loosing mass outward
and inward, provided that it was not too far within the last stable orbit. Although the major part
of released matter remained bound to the black hole, a significant fraction could be ejected with
sufficient velocity to become unbound from the binary system.

5.3.3 Binary black holes

Encouraging results concerning binary black holes simulations with spectral methods have been
obtained by Scheel et al. [129]. They have used two coordinate frames to describe the motion of
black holes in the spectral grid. Indeed, when using excision technique (punctures are not regular
enough to be well represented by spectral methods), excision boundaries are fixed on the numerical
grid. This can cause severe problems when, due to the movement of the black hole, the excision
surface can become timelike and the whole evolution problem is ill-posed in the absence of boundary
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conditions. So one solution may seem to be the using of comoving coordinates, but the authors
report that the GH formulation they use appear to be unstable with this setting. They therefore
consider a first system of inertial coordinates (with respect to spatial infinity) to define the tensor
components in the triad associated with these coordinates; and a second system of comoving (in
some sense) coordinates. In the case of their binary black hole tests [129], they define the comoving
coordinates dynamically, with a feedback control system that adjusts the moving coordinate frame
to control the location of each apparent horizon center.

The spectral code uses 44 domains of different types (spherical and cylindrical shells, rectan-
gular blocks) to describe the binary system. Most of the numerical strategy to integrate Einstein
equations is taken from their tests on the GH formulation by Lindblom et al. [100] and have already
been detailed in Sec. 5.2.1. the important technical ingredient detailed by Scheel et al. [129] is the
particular filtering of tensor fields in terms spherical harmonics. The dual-coordinate-frame rep-
resentation can mix the tensor spherical harmonic components of tensors. So, in their filtering of
the highest-order tensor spherical harmonic coefficients, the authors had to take into account this
mixing by transforming spatial tensors to a rotating frame tensor spherical harmonic basis before
filtering and then transforming back to inertial frame basis. this method allowed them to evolve
binary black hole spacetimes for more than four orbits, until t & 600MADM. There is therefore no
doubt about the future capability of spectral methods to also evolve for binary black hole systems
until the final merger, with potentially a much higher accuracy.
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6 Conclusions

We would like to conclude our overview of spectral methods in numerical relativity by pointing a
few items that we feel are particularly interesting.

6.1 Strengths and Weaknesses

The main advantage of spectral methods, especially with respect to finite difference ones, is the very
rapid convergence of the numerical approximant to the real function. This implies that very good
accuracy can usually be reached with only a moderate number of points. This obviously makes the
codes both faster and less demanding in memory. Various examples of convergence can be found
in Sec. 2. However, this rapid convergence is only achieved for C∞ functions. Indeed, when the
functions are less continuous, spurious oscillations appear and the convergence only follows a power-
law. This is the Gibbs phenomenon (see the extreme case of Fig. 11). Gibbs-like phenomenon
are very likely to prevent codes from converging or to make time evolutions unstable. So spectral
methods must rely heavily on domain decomposition of space and the domains must be chosen
so that the various discontinuities lies at the boundaries. Because of this, spectral methods are
usually more difficult to implement than standard finite differences (see for instance the intricate
mappings of [7]). The situation is even more complicated when the surfaces of discontinuities are
not known in advance or have complicated shapes.

Spectral methods also very efficient at dealing with problems that are related to coordinate
singularities. Indeed, if the basis functions fulfill the regularity requirements, then all the functions
will automatically satisfy them. In particular, it makes the use of spherical coordinates much easier
than with other methods, as explained in Sec. 3.3.

Another nice feature is the fact that a function can be represented either by its coefficients or
its values at the collocation points. Depending on the operation one has to perform, it is easier
to work on one representation or the other. When working in the coefficients space, one take
full advantage of the non-locality of the spectral representation. A lot of operations that would
be difficult otherwise can then be easily performed, like computing the ratio of two quantities
vanishing at the same point (see for instance [62]).

6.2 Combination with other Methods

Spectral methods have also demonstrated that they can be a valuable tool when combined with
other methods. For instance, when shocks are present, spectral methods alone have trouble deal-
ing with discontinuities at the shock interface. However, this can be efficiently dealt with using
Godunov methods. Such a combination has already been successfully applied to the simulation of
the oscillations of compact stars in [56] and of core collapse [114].

Spectral methods have also been used in conjunction with a description of the fluid based
on SPH (smoothed particle hydrodynamics) in the case of binary neutron stars [59] and for the
merger of one neutron star and one black hole [57]. In both cases, the fluid is described by an
ensemble of particles on which forces are applied. Such technique can account for complicated fluid
configurations, like the spiral arms that are formed during the merger. Such arms would be tricky
to follow by means of spectral methods alone. On the other hand, the equations describing gravity
are nicely solved by some spectral solvers.

6.3 Future Developments

Finally, we would like to point out a few of the directions of work that could lead to interesting
results. Of course, we are not aware of what the other groups have planed for the future.
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Appropriate choice of coordinates is evidently important. However, for binary systems, rather
few results have been using the natural choice of the bispherical coordinates. So far, variations
of such coordinates have only been used by M. Ansorg and collaborators and only in the context
of initial data [8, 5, 7]. We believe that applying those coordinates, or similar coordinates, to
evolutionary codes could lead to interesting results, in terms of both speed and accuracy.

The application of spectral methods to theories more complicated the general relativity is also
something that can be imagined. One of the possible field of application is the one of branes, where
there is an additional dimension to spacetime. The fact that spectral methods are accurate with
relatively few degrees of freedom, makes them a good candidate to simulate things with extra-
dimensions. The addition of gauge fields is also something that could be studied with spectral
methods, to investigate the possibility of “hairy” black holes, for instance. Of course, those are
just a few leads on what the future applications of spectral methods to the fields of relativity might
be.
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[8] Ansorg, M., Brügmann, B., and Tichy, W., “A single-domain spectral method for black hole
puncture data”, Phys. Rev. D, 70, 064011, (2004).
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