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[1] In this study a simplified initialization scheme, which is ‘‘off-line,’’ is proposed and
applied to an oceanic general circulation model (OGCM) for El Niño–Southern
Oscillation (ENSO) prediction. The initialization scheme is based on the National Centers
for Environmental Prediction ocean reanalysis and a two-dimensional variational (2D-Var)
assimilation algorithm. It focuses on two basic issues in data assimilation: observed
data and computational cost. Compared with a traditional assimilation system, this
simplified scheme avoids model forward integration and the complications of acquiring
and processing raw in situ temperature observations. The off-line scheme only requires
around 1/20 of the computational expense of a traditional algorithm. Two hybrid coupled
models, an OGCM coupled to a statistical atmosphere, and the same ocean model
coupled to a dynamical atmosphere, were used to examine the initialization scheme. A
large ensemble of prediction experiments during the period from 1981 to 1998 shows that
relative to just a wind forced initialization the off-line scheme leads to a significant
improvement in predictive skills of Niño3 sea surface temperature anomaly (SSTA) for all
lead times. The prediction skills obtained by the scheme is as high as that attained by
a more traditional ‘‘on-line’’ assimilation scheme. INDEX TERMS: 4522 Oceanography:

Physical: El Niño; 3337 Meteorology and Atmospheric Dynamics: Numerical modeling and data assimilation;

3339 Meteorology and Atmospheric Dynamics: Ocean/atmosphere interactions (0312, 4504); 4263

Oceanography: General: Ocean prediction; KEYWORDS: ENSO prediction, initialization, ocean model

Citation: Tang, Y., R. Kleeman, A. M. Moore, J. Vialard, and A. Weaver (2004), An off-line, numerically efficient initialization

scheme in an oceanic general circulation model for El Niño–Southern Oscillation prediction, J. Geophys. Res., 109, C05014,

doi:10.1029/2003JC002159.

1. Introduction

[2] There are generally three forms of errors, initial
condition errors, model errors and data errors, that limit
the skill of El Niño–Southern Oscillation (ENSO) dynam-
ical prediction and contribute to the growth of forecast
errors. One of these, the initial condition errors, has an
extremely important impact on model skill as ENSO
prediction is an initial value problem, and the future
evolution of the system depends highly on the initial state
from which it started. On the other hand, compared with

the other two errors, the initial condition errors can be
relatively easily reduced by data assimilation. Since the
mid 1990’s, large efforts have been made to develop
initialization schemes to improve prediction skill and it
has been found that initialization using subsurface tem-
perature observations can significantly improve ENSO
prediction skills [e.g., Kleeman et al., 1995; Ji et al.,
2000; Segschneider et al., 2002].
[3] An essential issue in data assimilation is the avail-

ability of data and its treatment. The oceanic observations,
especially subsurface in situ observations, are still consid-
ered spatially sparse and temporally sporadic [McPhaden et
al., 1998]. It will require considerable effort and computa-
tional expense to assimilate these sparse and sporadic data.
The assimilation of this type of data therefore is often
confined to a few national operational forecast centers or
well-funded assimilation groups using specialized numerical
models and assimilation algorithms. However, the demand
for a good initial condition for individual models is common,
and exists in many situations. The first example is seen in
some theoretical studies such as physical process parame-
terization. The model’s prediction skills are often used as a
test bed to evaluate different parameterization schemes (e.g.,
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comparing the model skill with and without the parameter-
ization scheme). A second example arises from the study of
climate predictability or reliability of the climate prediction.
For these kinds of studies, we aren’t particularly interested in
elaborate methodologies or a highly competitive prediction
skill because neither is the goal of these studies. However,
we do wish the models used to have a useful and respectable
prediction skill level since these studies need to be relevant
for ENSO prediction. Therefore it is of interest to develop an
initialization scheme that can avoid the complications of
acquiring and processing raw in situ temperature observa-
tions, and the expenses on costly model integration. A
possible solution is to apply a well-produced reanalysis
product (such as the one use at the NCEP or the ECMWF)
instead of raw in situ temperature observations. Compared
with sparse and sporadic observations, reanalysis products
are easier and more convenient to use, since they are usually
regular gridded data sets. The high resolution of reanalysis
products also allows us to use them for all types of oceanic
models.
[4] Syu and Neelin [2000] simply inserted the NCEP

reanalysis subsurface temperature into their OGCM, called
as piggyback scheme, and found an improvement in ENSO
prediction skill with the initialization scheme. However, in
the work of Syu and Neelin [2000], OGCM and forcing
fields were very similar to those used in the NCEP assim-
ilation system. There are other situations where the model
used for the assimilation system is rather different from that
which is to be initialized, leading to an interesting question:
whether a reanalysis product can be inserted into an oceanic
model which is very different from that used in the
assimilation system, and how detrimental is the inconsist-
ency between them? In this paper, we will explore the
problem via assimilating the NCEP reanalysis subsurface
temperature [Behringer et al., 1998; referred to hereinafter
as the NCEP data] into our OGCM. The NCEP used GFDL
Modular Ocean Model (MOM2) for its assimilation system,
which is rather different from our OGCM, and both models
use different forcing fields, thus capable of demonstrating
the generality of our technique. In addition, the NCEP
reanalysis is promptly updated each month so that routine
prediction using this product is possible.
[5] The other operationally significant issue in data

assimilation is its computational expense. To further sim-
plify our assimilation scheme, we will use an off-line
strategy instead of the traditional scheme. The off-line
strategy means that the initialization scheme no longer
requires the ocean model’s forward integration during the
assimilation. The model restart files obtained from the
control run are used as the first guess or background. This
scheme will be referred to as the off-line 2D-Var scheme or
off-line scheme throughout this paper.
[6] The paper is structured as follows: Section 2 briefly

describes two hybrid coupled models and the initialization
scheme in which a 2D-Var assimilation algorithm is applied.
Section 3 examines the impact of the initialization scheme
on ENSO prediction by a total 72 predictions from 1981–
1998. The results presented in this section include predic-
tion evaluations and ensemble statistics of skill. Section 4
explores the oceanic analysis of the off-line scheme in terms
of the thermal and dynamical fields. A traditional 2D-Var
assimilation is also performed in this section for comparison

with the off-line scheme. Summary and discussion follow in
section 5.

2. Coupled Models

[7] Two hybrid coupled models (HCMs), an OGCM
coupled to a statistical atmosphere (called HCM1 hereafter),
and the same ocean model coupled to a dynamical atmo-
spheric model of intermediate complexity (call HCM2
hereafter), were used to explore and test the initialization
scheme. The different atmospheric components in the two
HCMs allow us to examine the initialization scheme in a
more general and universal framework. Below is a brief
description for each component of the two coupled models.

2.1. Ocean Model

[8] The ocean model used is based on the OPA version
8.1 [Madec et al., 1999], a primitive equation OGCM. The
turbulent closure hypothesis was used to parameterize
subgrid-scale physical process, i.e., small-scale horizontal
and vertical transports are evaluated in terms of diffusion
coefficients and derivatives of the large-scale flow [Blanke
and Delecluse, 1993]. The model uses an Arakawa C grid
layout, and was configured for the tropical Pacific ocean
between 30�N–30�S and 120�E–75�W. The horizontal
resolution in the zonal direction is 1�, while the resolution
in the meridional direction is 0.5� within 5� of the equator,
smoothly increasing up to 2.0� at 30�N and 30�S. There
were 25 vertical levels with 17 concentrated in the top 250 m
of the ocean. The time step for integration was 1.5 hours.
The boundaries were closed, with no slip conditions. The
detailed formulation of this configuration of the ocean
model is described by Vialard et al. [2002].
[9] The model was first spun up for 30 years with

monthly observed climatological wind stress and heat flux
Qs as forcing fields, where Qs was represented by clima-
tological heat flux Q0, obtained from the ECMWF reanal-
ysis project, plus a relaxation term to T0, the observed
SST, i.e.

Qs ¼ Q0 þ l T � T0ð Þ; ð1Þ

where T is the model SST, Q0 and T0 are the monthly
climatological heat flux and SST, respectively, and l (taken
to be �40 W m�2K�1) controls the rate of relaxation to the
observed SST. A similar annual mean net freshwater flux
forcing was also used.
[10] After the 30-year spin up by the seasonal forcing, the

model seasonal climatology was obtained. We then made a
50-year model control run, by forcing with the NCEP
reanalysis wind stress from 1951 to 2000. The performance
of the model is shown in Figure 1, showing that the ocean
model produces a good simulation of tropical Pacific
SSTA.

2.2. Statistical Atmospheric Model

[11] The Comprehensive Ocean-Atmospheric Data Set
(COADS) [Smith et al., 1996] observed SST and the NCEP
reanalysis wind data set were used to construct the atmo-
spheric model. The time period taken for the model con-
struction was from 1951 to 1980. To remove high frequent
noise and model drift, the NCEP wind was also detrended
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by a linear regression and smoothed with a 3-month running
mean filter. The wind stress used to force the ocean model
was computed from the detrended pseudostress as:

T ¼ mraCa Uj jU ð2Þ

where U is the wind speed (m/s), ra = 1.2 kg m�3 is the
density of air, Ca = 0.0015 is the drag coefficient and m is a
parameter controlling the strength of the forcing.
[12] Both SST and wind stress data were linearly inter-

polated onto the ocean model grid. An empirical orthogonal
function (EOF) analysis was then employed on both data
sets to extract the predictors and predictands. As by Barnett
et al. [1993], the seasonal variations of the responses of
windstress to SSTwere considered in the construction of the
atmospheric model. A separate set of EOFs for each
calendar month was thus used to construct a monthly
varying atmosphere model.
[13] For a specified month, the predictor field SST(x, t),

and the predictand field t(x, t), the zonal or meridional
component of the wind stress, can be expressed in terms of
EOF modes en(x), and fn(x)

SST x; tð Þ ¼
X

n

an tð Þen xð Þ t x; tð Þ ¼
X

n

bn tð Þfn xð Þ; ð3Þ

where n is the EOF number, and an and bn are the
corresponding time series of the EOF modes. The seasonal
cycle had been removed for both fields prior to the EOF
analysis.
[14] Table 1 shows the variance explained by the first

2 EOF modes for the variables used in the statistical
atmospheric model. As shown in Table 1, for the SST, the
first 2 EOF modes accounted for over 65% of total variance,
whereas the variance contribution by individual modes
became rather small after the first 2 modes (not shown).
In contrast, the first 2 wind stress EOFs explained only
about 40% of the total variance, due to presence of high
frequency oscillations and noise in the wind stress field. The
first two wind EOF modes, however, capture the main low
frequency signals, e.g., ENSO (not shown), and are highly
correlated with the observed SST anomaly averaged over
the Niño3 (150�W–90�W, 5�N–5�S) area. We also per-

formed several sensitivity experiments, and found adding
more EOF modes in fact degrades model predictive skills.
Hence we used the first 2 EOF modes of SST as predictors,
and the first 2 EOF modes of zonal or meridional wind
stress as predictands, for constructing the atmospheric
models.
[15] The linear regression model for a specified month is

similar to that of Barnett et al. [1993]. The atmospheric
model was trained with the data from 1951 to 1980.
Therefore the prediction experiments carried out from
1981 to 1998 in the next section are completely independent
of the construction of the atmospheric model. This strategy
will remove the artificial skill in evaluating the prediction
experiments.

2.3. The Dynamical Atmospheric Model

[16] The dynamical model consists of a Gill-type [Gill,
1980] steady state atmospheric model developed by
Kleeman [1989, referred to hereinafter as Kleeman model]),
and an atmospheric boundary layer (ABL) model developed
by Kleeman and Power [1995]. They are both global
anomaly models with the observed seasonal cycle of surface
wind and observed mean atmospheric wind at 850 mb. The
Kleeman model was coupled to the OGCM via the ABL
model. The OGCM provides SST anomalies to the ABL
model for computing the surface heat flux anomalies
which were in turn imposed on the ocean model. On the
other hand, the surface heat flux anomalies, and potential air

Figure 1. (a) Correlation and (b) RMSE between observed and modeled sea surface temperature (SST)
anomalies derived from the control run forced with the National Centers for Environmental Prediction
(NCEP) wind, from 1981 to 1999. See color version of this figure at back of this issue.

Table 1. Contributions of the First Two Principal Components in

Percentages

The Empirical Orthogonal Functions Mode Obs. SST tx ty
Jan. 79.77 49.47 44.27
Feb. 70.25 44.59 48.38
Mar. 65.79 43.43 45.11
Apr. 65.03 40.87 38.34
May 71.36 38.52 33.50
Jun. 68.88 37.69 31.27
Jun. 72.62 41.56 37.30
Aug. 75.87 47.37 42.28
Sep. 77.50 51.56 41.85
Oct. 80.84 50.96 36.80
Nov. 81.75 48.72 36.44
Dec. 80.19 48.89 39.39
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temperature from the ABL model were passed to the
Kleeman atmospheric model to generate the wind anomalies
which then force the ocean. The intermediate complexity
atmospheric model has been used for routine ENSO pre-
diction and for the study of climate predictability. Complete
details of the Kleeman model and the ABL model can be
found in the work of Kleeman [1989] and Kleeman and
Power [1995], respectively.

2.4. Initialization Scheme

[17] The assimilation method used here is a 2D-Var
algorithm developed by Derber and Rosati [1989]. The
NCEP reanalysis subsurface temperature will be assimilated
into our OGCM using an off-line strategy as described in
the introduction. The reanalysis subsurface temperature data
set is a three-dimensional grid field of 1.5� lat. by 1� lon.,
and 27 standard depth levels between the surface and
3100 m.
[18] Denoting the model’s subsurface temperature by Tb

which was saved in the restart files, and the NCEP reanal-
ysis temperature by (T0), then a cost function can be defined
as

I ¼ 1

2
DTi

TE�1DTi þ
1

2
D DTið Þ � DT0

i

� �T
F�1 D DTið Þ � DT0

i

� �
ð4Þ

where DTi is the correction to the ith layer model
temperature Ti

b contained in restart files, E is an estimate
of error covariance matrix of Ti

b, dTi
0 is the difference

between the ‘observations’ Ti
0 and the interpolated Ti

b, F is
the ‘observed’ error covariance of T0, and D is a bilinear
operator that interpolates from the model grid to the
observation stations.
[19] The error covariance matrices E and F determine the

spatial structure and amplitude of the correlation field. As
by Derber and Rosati [1989], the horizontal covariances in
E are defined to be approximately Gaussian, while vertical
covariances are ignored. The horizontal covariance between
any two points is approximately given by

ae�r2= b2 cosfð Þ; ð5Þ

where f is the latitude of the grid point, r the distance
between any two points, a = 0.01 (�C)2, and b = 570 km, as
by Derber and Rosati [1989]. The function I in equation (4)
is minimized using a preconditioned conjugate gradient
algorithm [Gill et al., 1981]. The preconditioning in the
algorithm is supplied by the E matrix, which allows the
solution to be found without directly inverting the E matrix.
Further details about the algorithm can be found in the work
of Derber and Rosati [1989] and Gill et al. [1981].
[20] As by Derber and Rosati [1989], the vertical corre-

lation is ignored in the background error covariance matrix,
the cost function I is thus minimized in each layer indepen-
dently. This strategy is also used in the ECMWF operational
OI (optimal interpolation) scheme.
[21] For the observation error covariance matrix F, a

common assumption is that the observational errors are
uncorrelated; i.e., that the matrix F is diagonal. However,
the ‘observations’ used here are actually from a reanalysis,
suggesting that the ‘observational’ errors are probably
spatially correlated. In this case, the assumption that the
matrix F is diagonal is not correct and could lead to an

overweighting of the ‘observations’ in the optimization. In
principle, the problem can be solved by a nondiagonal
matrix for F, although this would greatly increase the
complexity of the algorithm for solving equation (4). To
avoid the complications of defining the inverse of a non-
diagonal matrix F, we adopt a simpler strategy of thinning
the reanalysis ‘observations’ used in (4), and hence reducing
the effects of correlated observation errors. To achieve this,
we discard ‘data’ at grid points on even-order latitudes. The
observation error variances are set to (0.5�C)2 in this study.
[22] dTi

a can be obtained by minimizing I of (4) using a
preconditioned conjugate gradient algorithm [Derber and
Rosati, 1989], where a denotes the analysis. The ith layer
corrected temperature is thus simply written Ti

a = Ti
b + dTi

a.
In this procedure, the ocean model is not directly involved
in the optimization process except that it provides the model
temperature Ti

b by restart files. In this study, the temper-
atures of the upper 17 layers of the ocean model were
analyzed (i.e., i = 1, 2, 3. . .17). The domain over which (4)
was minimized is the tropical Pacific, 15�S–15�N.

3. El Niño––Southern Oscillation (ENSO)
Prediction

[23] Next we examine the predictions by the two HCMs
described above. Two initialization schemes, one from the
control run (simply forced with the NCEP wind stress), the
other one from the off-line scheme, were used. A total of
72 predictions were made for each experiment from January
1981 to December 1998, starting at three months intervals
(1 January, 1 April, 1 July, 1 October), and continued for
12 months.
[24] Figures 2a and 2c show correlation skills of the

predictions initialized by the control run and the off-line
scheme, where the predicted Niño3 SSTA is compared
against the observed values. Compared with the persistence
skill, the predictions initialized by the off-line scheme beat
persistence from the second month for both models whereas
the predictions initialized from the control run beat persist-
ence from the fourth month for HCM1 and the seventh
month for HCM2. For HCM2 (Figure 2a), the prediction
skills rapidly decline with lead time, reaching a minimum at
8 months, beyond which the skill rebounds and increases till
a lead time of 12 months, in contrast to the predictive skills
of HCM1 (Figure 2c), which simply decline with lead time
in the first 8 months, and then stabilize till the end.
However, with initialization by the off-line scheme, there
is an obvious improvement in the performance of both
models in correlation skills for all lead times, in particular
for lead times over 4–6 months. Likewise, there are also
some improvements in root mean square error (RMSE) for
the predictions initialized by the off-line scheme (Figures 2b
and 2d), in particular for the lead times of >5–6 months.
The off-line scheme also improved the prediction skills of
Niño3.4 SSTA (170�W–120�W, 5�N–5�S) for all lead
times for HCM1 and HCM2 (not shown).
[25] Figure 2 was obtained from 72 predictions. The

finite sample size implies some uncertainty in the com-
puted correlation coefficient and RMSE. To determine the
extent of this uncertainty we used the bootstrap method
of sample point omissions. For each lead time, a data pair
of predictions and observations was constructed. Such a
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pair was then divided into equal-in-length blocks each
containing data corresponding to a certain period of time.
The division was randomly altered by changing the
division starting point. Many additional samples were
constructed using the moving blocks bootstrap sampling
[Efron and Tibshirani, 1993]. Correlation and RMSE of
each sample were calculated, and an ensemble of correla-
tion and RMSE can therefore be obtained respectively. The
standard deviation s of the ensemble was used to measure
the uncertainty of the correlation or RMSE.
[26] The uncertainty estimations (+s and �s) superim-

posed on the original skills are displayed in Figure 2 (short
line). Clearly, the increase in the correlation skills at all lead
times results from the improvement in the initial conditions
due to the off-line scheme, rather than from the uncertainty
of the finite sample size. This is a little different from the
contribution of the off-line scheme to RMSE skills, which
was mainly performed on the predictions of lead time over
5 months.
[27] Figure 3 shows the SSTA predicted by HCM1 at a

lead time of 9 months using the two initialization schemes.
Generally it was found that the initialization from the off-
line scheme leads to better predictions of ENSO warm
events, particularly in the strength and phase prediction.
There are some spurious phase precedences and relatively
weak amplitude in El Niño predictions initialized by the
control run, i.e., the predicted warming being earlier and
weaker than observations. For example, the 1987/1988 and
1991/1992 warm events were predicted around 1 year

earlier than the observations in Figure 3a. The spurious
phase precedences also occurred at the predictions of other
lead times and in HCM2 (not shown). However, some of the
deficiencies could be alleviated in the predictions initialized
by the off-line scheme as shown in Figure 3c, probably due
to the off-line scheme leading to a more realistic initial
thermal field (see next section).
[28] It should be noted that the off-line scheme led to a

poor prediction of 1988–1989 cold event. Compared with
observation and the prediction by control run, the prediction
by the off-line scheme delayed the cooling about one year.
This is due mainly to the assimilation of the thermal field
generating an unfavored condition for the cold event. An
‘‘on-line’’ scheme (2D-Var) [Derber and Rosati, 1989] also
shows the same delay in the prediction (not shown).
[29] Shown in Figures 4 and 5 are the predictions for two

typical ENSO events, the 1982/83 and 1997 El Niño, in
which HCMs and both initialization schemes were used.
Compared with the observed SSTA, all experiments predict
the anomalous warming in the equatorial Pacific, but most
predictions suffered an unrealistically early decay. The
predicted warming strength also was weaker than the
observation. Some of these deficiencies are alleviated by
the off-line scheme however.
[30] The advantage of the off-line scheme could be

further demonstrated by the prediction of the 1987 El Niño
event in that the model intrinsic damping has less impact on
the prediction of the weak anomalous warming. Figure 6
shows the predicted SSTA along the equator, indicating that

Figure 2. (a, c) Correlation and (b, d) RMSE between observed and predicted SST anomalies in the
Niño3 region, as a function of lead time. The predictions are initialized every 3 months from January
1981 to December 1998. Thick line is from the prediction initialized from the off-line scheme. Thin line
is from the prediction initialized from the control run. Error bars from bootstrapping are also shown as the
short line overlapped in the thin line. HCM2 (left) and HCM1 (right).
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the off-line scheme generated a much better prediction than
the control run for both HCMs. This is likely due mainly
to the fact that the off-line scheme leads to a more realistic
simulation of subsurface heat content anomalies both in
terms of the intensity and the eastward propagation (see
Figure 9).

4. Analysis of Initial Field

[31] Using two coupled models and hindcast experiments,
we have presented evidence that the new initialization
scheme can yield significant improvement in ENSO pre-
diction skill. In this section, we will further explore the off-
line scheme by examining its impact on the initial fields of
the prediction.

4.1. Thermal Fields

[32] We first examine the thermal structure of the initial
fields. Shown in Figure 7 are the correlations between the
observed temperature anomalies and the modeled tempera-
ture anomalies at the surface, and at the depth of 60 m and
120 m during 1981–1998. The modeled temperature
anomalies were derived from the restart files generated by
either the control experiment or the off-line scheme. The
observed SST is from COADS with 2� lat by 2� long. The
observed subsurface temperatures are from the data set of

the Joint Environmental Data Analysis Center at the
Scripps Institution of Oceanography. This data set consists
of all available XBT, CTD, MBT and hydrographic
observations, optimally interpolated by White [1995] to a
three-dimensional grid of 2� lat. by 5� lon., and 11 standard
depth levels between the surface and 400 m. As can be
seen in Figure 7, the off-line scheme has the best simu-
lation for the SSTA, and then for temperature anomalies at
60 m and 120 m. The improvement in the simulation of
subsurface temperature anomalies mainly occurs in the
equatorial Pacific, especially in the western Pacific. The
RMSE between the observation and model also exhibited
similar features (not shown).
[33] It has been well documented that the variations of

subsurface temperature in the equatorial western Pacific
play a crucial role in ENSO evolution, explaining perhaps
why the off-line scheme can lead to better predictions.
Further evidence that the off-line scheme generates a better
simulation for the thermal field along the equatorial Pacific
can also be found in Figure 8, which shows the correlation
and RMSE of the top 250 m-depth-averaged heat content
anomalies (Heat content is defined here as the integral of
the temperatures over the top 250 m, calculated from

HC ¼ ShiTi
Shi

where hi and Ti are respectively the thickness

and temperature of level i.) between model and observation.

Figure 3. Time-longitude diagrams of predicted sea surface temperature anomaly (SSTA) with HCM1
along the equator at the lead time of 9 months, initialized by the (a) control run and by (c) the off-line
scheme. For comparison, (b) the observed SSTA is shown. See color version of this figure at back of this
issue.
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[34] The physical basis for ENSO prediction is that a
delayed oscillation exists between the equatorial western
Pacific and the equatorial eastern Pacific which has been
demonstrated by many studies [e.g., Schopf and Suare,
1988; Battisti, 1988]. The delayed oscillation can be
characterized by a phase shift of the variations of upper
ocean heat content anomalies (HCA) between the western
Pacific and the eastern Pacific, with the variations in the
west leading those in the east. This phase-shift relation
can be explored via a Hovmöller diagrams of upper
ocean heat content anomalies along the equator as shown
in Figure 9. As can be seen, the HCA has a more realistic
feature of eastward propagation in the off-line scheme
(Figure 9b) than in the control experiment (Figure 9a)
when compared with the observation (Figure 9c). This
is especially obvious in some moderate El Niño events such
as in 1986/87 and in the early 1990s events. The lag
correlation of HCA between the west (Niño4, 160�E–
150�W, 5�N–5�S) and the east (Niño3) in the two initial-
ization schemes also showed that the off-line scheme indeed
led to a better east-west delayed relation than the control run.
For example, while Niño3 SSTA lagged Niño4 SSTA by
9 months, the correlation coefficient was 0.42 for the off-line
scheme compared with a correlation 0.30 for the control
experiment.
[35] Shown in Figure 10 are SSTA simulation against

observation, indicating that the off-line scheme has a better

skill, in particular for the simulation of amplitude for strong
El niño events such as 1983 and 1997.

4.2. Dynamical Fields

[36] As discussed above, a more realistic thermal structure
in the prediction initial field, characterized by a more realistic
eastward propagation of upper ocean heat content anomalies,
can be obtained by the off-line scheme. The feature of the
eastward propagation of HCA is reminiscent of the delayed
action oscillator mechanism. The capability of better char-
acterizing the delayed action oscillator mechanism in the off-
line scheme might be a major reason why the off-line scheme
leads to a considerable improvement in ENSO predictions.
[37] One issue of potential concern in the off-line scheme is

possible imbalances between the dynamical and thermal
fields, since there is no adjustment and correction in the
dynamical variables to response to the correction in the
subsurface temperature. Theoretically, such imbalances could
degrade the model prediction skill. However, the ensemble
predictions discussed above show good skill in the off-line
case, suggesting that the imbalances are likely to be very small
or unimportant to prediction. On the other hand, the imbal-
ances may be able to be adjusted quickly through geostrophic
balance in the coupling (prediction) run. To further
explore this, we performed a traditional 2D-Var assimilation
experiment with the same ‘observations’. A traditional
2D-Var assimilation usually consists of the following steps:

Figure 4. Time-longitude diagrams of predicted SSTA along the equator for the 1982/83 warm event.
The predictions were carried out with the two hybrid coupled models (HCMs), initialized by the control
run and the off-line scheme, on 1 January 1982. For comparison, the observed SSTA is shown. See color
version of this figure at back of this issue.
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Figure 6. Same as in Figure 4 but for the 1987 warm event. The prediction was initialized on 1 January
1987. See color version of this figure at back of this issue.

Figure 5. Same as in Figure 4 but for the 1997 warm event. The prediction was initialized on 1 January
1997. See color version of this figure at back of this issue.
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(1) producing oceanic analyses at t = ti for the variables
assimilated using equations (4) and (2) integrating the ocean
model forward one step using the oceanic analyses as new
initial conditions. (3) repeating (1) and (2) until a period of
time (called the assimilation window) is performed. The
difference between a traditional 2D-Var and the off-line
scheme is that during the latter, step (2) is omitted. In the
traditional scheme, all model variables are updated at each
step so that the imbalance of model physical fields in
the assimilation could be well alleviated by the model’s
instantaneous adjustment. As such, examining the differences
of dynamical fields between the off-line scheme and the
traditional assimilation allows us to identify the nature of
the imbalances caused by the off-line scheme.
[38] We performed the traditional 2D-Var for 2 years. The

start time was randomly chosen in 1993. The assimilation
interval is 3 days, i.e., the observations were inserted into
the model once every 3 days. We arbitrarily choose the
surface zonal current as our object of examination.
[39] Shown in Figure 11 are two zonal current fields at

three different times, respectively obtained from the off-line

scheme and the traditional assimilation scheme. At the end
of 1 month, the two fields are almost identical with a spatial
correlation of 0.99. As the time increases, the influence of
model adjustment on the zonal current can be clearly seen
along the equator, the traditional assimilation scheme gen-
erating stronger equator current in the eastern Pacific.
However, the differences between the two schemes are
not very large. For example, the spatial correlation between
the two schemes is still up to 0.86 and 0.83 at t = 12 and
t = 24. Figure 11 suggests that the imbalance that exists
between thermal and dynamical fields in the off-line scheme
is relatively small. Such a relatively small imbalance could
be quickly adjusted in the prediction run, and may have
little impact on the forecast. Figure 12 shows the evolution
of u in a forecast initialized by the off-line scheme and by
the traditional assimilation scheme. As can be seen, the
difference of u between the two schemes quickly decreases
as the forecast integration increases. At the end of the
6 months, the structure of u from the off-line scheme has
adjusted to a pattern similar to that from the traditional
assimilation scheme. Table 2 further demonstrates the

Figure 7. Correlations of modeled temperature anomalies from the control run and the off-line scheme
at the surface (top), at 60 m depth (middle) and 120 m depth (bottom) relative to the observed
counterparts during January 1981–December 1998. The areas with correlation over 0.7 are shaded.
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Figure 8. Correlations (a, b) and RMSE (c, d) of modeled HCA from the control experiment and the
off-line scheme relative to the observed HCA during January 1981–December 1998. The areas with
correlation over 0.7 and RMSE <0.7�C are shaded.

Figure 9. Time-longitude plots of the HCA along the equator during 1981–1998 from (a) the control
experiment, (b) the off-line scheme, and (c) the observations. Contour interval is 1.5�C and the absolute
values above 0.5�C are shaded.
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adjustment process, where the relative sum of error squared
(RSES) is defined as

RSES ¼ u1 tð Þ � u2 tð Þð Þtr u1 tð Þ � u2 tð Þð Þ
u2 ftð Þtru2 tð Þ

ð6Þ

u1(t) and u2(t) are the zonal current, respectively generated
by the off-line scheme and the traditional assimilation
scheme. RSES depicts the relative differences of two fields,
i.e., the portion of the differences explained by the u2

variances. Also shown in Table 2 are the correlations
between u1(t) and u2(t) at different times.
[40] It is worth noting that a traditional scheme could also

lead to imbalances since the dynamics of models is some-
times not enough to get rid of the imbalances, as reported by
some work [e.g, Burgers et al., 2002; Troccoli and Haines,
1999]. A typical example is a systematic error in the wind
stress, leading to large errors in zonal currents. In this sense,
a traditional scheme might not be necessarily more ‘‘in
balance’’ than the off-line scheme. However, Vialard et al.
[2002] and Weaver et al. [2003] found that the traditional
scheme can lead to a good adjustment of currents for the
OGCM.

5. Discussion and Summary

[41] Generally, there are two practical problems afflicting
the initialization of an OGCM for ENSO prediction; one is
the complications of acquiring and processing raw in situ
temperature observations, and the other is the relatively
expensive computational cost. The practical problems may

cause unnecessary difficulties for many ENSO researchers.
In particular those without the interest and sufficient com-
putational resource for working on data assimilation will be
adversely impacted. To alleviate these problems, we have
proposed an off-line scheme. In this scheme, the NCEP
reanalysis temperature was used instead of in situ subsur-
face temperature, and then a traditional 2D-Var assimilation
algorithm is simplified by omitting the original model
forward integration during the assimilation cycle. With
two quite different but realistic hybrid coupled models,
we tested and validated the off-line scheme using a total
of 72 predictions from 1981 to 1998. The prediction
statistics show convincingly that our ENSO forecasting
models initialized using the off-line scheme have predictive
skill for Niño3 SSTAwhich is significantly improved over a
windstress forced only initialization technique. The effect is
most noticable for lead times longer than 4–6 months. The
predictive skill from the off-line scheme is about the same
as that from a traditional 2D-Var assimilation algorithm.
This implies that researchers of ENSO predictability who
wish to use accurate analyses may not need to bother with
the complication of processing raw data and the costly
expense of traditional assimilation algorithms which use
forward integration steps of the ocean model.
[42] To shed some light on the off-line scheme, we

analyzed the initial fields generated by the off-line scheme.
It was found that compared to the control run, the off-line
scheme generated a better simulation for thermal fields
along the equatorial Pacific. Consequently, the thermal
fields were better characterized by the delayed action
oscillator mechanism, leading to better predictive skills.

Figure 10. Same as Figure 9 but for SSTA. Contour interval is 1.5�C and the absolute values above
0.5�C are shaded.
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Figure 11. The velocity of the surface zonal current (u) from the off-line scheme (left) and traditional
assimilation scheme (right) at three different times. See color version of this figure at back of this issue.
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Although the off-line scheme led to some imbalances
between the model dynamical and thermal variables, the
imbalances were found to be relatively small, and quickly
adjusted during the prediction run via geostrophic adjust-
ment. As such, the imbalances had little impact on the
model prediction skill. In fact, the prediction skills achieved
by the off-line schemes were almost as good as those
initialized by the traditional assimilation scheme as shown
in Figure 13, which compares the prediction skills of Niño3
SSTA initialized by the two schemes. In Figure 13, the
period of 1993–1998 was chosen because it contains the
strongest El Niño event and also has been used by ECMWF
to test a 3D-Var and 4D-Var assimilation system using the
same OGCM as here [Weaver et al., 2003; Vialard et al.,
2003]. Considering that the off-line scheme only requires
around 1/20 computational expense of the traditional 2D-

Var algorithm used in Figure 13, we conclude that the off-
line scheme is practically useful and powerful.
[43] An interesting question that we haven’t discussed so

far is whether the NCEP data can directly initialize the
OGCM for improving the prediction skills, as by Syu and
Neelin [2000]. Compared with the off-line scheme, the
direct strategy used by Syu and Neelin [2000] is even
simpler, as it only requires to interpolate the NCEP data

Figure 12. The predicted zonal current u, initialized from the off-line scheme (left) and the traditional
assimilation scheme (right) at several lead times. See color version of this figure at back of this issue.

Table 2. Correlation and RSES of Zonal Surface Current u

Between Two Schemes

t = 1 t = 3 t = 6

Correlation coefficient 0.83 0.87 0.96
RSES 0.45 0.23 0.09
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Figure 14. (a) Correlation and (b) RMSE between observed and predicted SST anomalies in the Niño3
region, as a function of lead time. The predictions are initialized every 3 months from January 1981 to
December 1998 with model 1. Solid line is from the prediction initialized from the off-line scheme.
Dashed line is from the prediction initialized from the direct strategy, i.e., simply interpolating the NCEP
data to model grids.

Figure 13. (a) Correlation and (b) RMSE between observed and predicted SST anomalies with HCM1
in the Niño3 region, as a function of lead time. The predictions are initialized every month from January
1993 to December 1998. Thick line is from the prediction initialized from the off-line scheme, dashed
line is from the prediction initialized from the control run, and thin line is from the traditional assimilation
scheme.
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to the model grid and there is no optimization involved. In
fact, the direct strategy is a specific case of the off-line
scheme. With the weights to the model background set to
zero, namely the reanalysis data is assumed to provide all
useful information, the off-line scheme simply becomes the
direct strategy. This assumption might approximately hold
if the model that is to be initialized is very similar to that
which generated the reanalysis data set (for example as in
the study of Syu and Neelin [2000]). However, as the model
used for the reanalysis data set is generally rather different
from that which is to be initialized, the reanalysis data
contains inconsistent information concerning background
state. As a consequence, the model background should be
included in the scheme. Figure 14 shows the prediction
skills of HCM1 initialized by the direct strategy. Compared
with Figure 2, the direct strategy leads to significantly worse
skill than our off-line scheme, an in fact worse than the
control run. This is possibly because the direct strategy
introduces considerable inconsistency into the model, lead-
ing to big dynamical imbalance amongst the model variables.

[44] Acknowledgment. This work is supported by NSF grant
25-74200-F0960.
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Figure 1. (a) Correlation and (b) RMSE between observed and modeled sea surface temperature (SST)
anomalies derived from the control run forced with the National Centers for Environmental Prediction
(NCEP) wind, from 1981 to 1999.

Figure 3. Time-longitude diagrams of predicted sea surface temperature anomaly (SSTA) with HCM1
along the equator at the lead time of 9 months, initialized by the (a) control run and by (c) the off-line
scheme. For comparison, (b) the observed SSTA is shown.
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Figure 4. Time-longitude diagrams of predicted SSTA along the equator for the 1982/83 warm event.
The predictions were carried out with the two hybrid coupled models (HCMs), initialized by the control
run and the off-line scheme, on 1 January 1982. For comparison, the observed SSTA is shown.
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Figure 5. Same as in Figure 4 but for the 1997 warm event. The prediction was initialized on 1 January
1997.

Figure 6. Same as in Figure 4 but for the 1987 warm event. The prediction was initialized on 1 January
1987.
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Figure 11. The velocity of the surface zonal current (u) from the off-line scheme (left) and traditional
assimilation scheme (right) at three different times.
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Figure 12. The predicted zonal current u, initialized from the off-line scheme (left) and the traditional
assimilation scheme (right) at several lead times.
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