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ABSTRACT

The optimal forcing patterns for El Niño–Southern Oscillation (ENSO) are examined for a hierarchy of
hybrid coupled models using generalized stability theory. Specifically two cases are considered: one where
the forcing is stochastic in time, and one where the forcing is time independent. The optimal forcing patterns
in these two cases are described by the stochastic optimals and forcing singular vectors, respectively. The
spectrum of stochastic optimals for each model was found to be dominated by a single pattern. In addition,
the dominant stochastic optimal structure is remarkably similar to the forcing singular vector, and to the
dominant singular vectors computed in a previous related study using a subset of the same models. This
suggests that irrespective of whether the forcing is in the form of an impulse, is time invariant, or is
stochastic in nature, the optimal excitation for the eigenmode that describes ENSO in each model is the
same. The optimal forcing pattern, however, does vary from model to model, and depends on air–sea
interaction processes.

Estimates of the stochastic component of forcing were obtained from atmospheric analyses and the
projection of the dominant optimal forcing pattern from each model onto this component of the forcing was
computed. It was found that each of the optimal forcing patterns identified may be present in nature and
all are equally likely. The existence of a dominant optimal forcing pattern is explored in terms of the
effective dimension of the coupled system using the method of balanced truncation, and was found to be
O(1) for the models used here. The implications of this important result for ENSO prediction and predict-
ability are discussed.

1. Introduction

On seasonal-to-interannual time scales, climate vari-
ability in the tropical Pacific is dominated by the El
Niño–Southern Oscillation (ENSO). However, there is
also significant large-scale synoptic atmospheric vari-
ability associated with equatorially trapped waves, or-
ganized mesoscale convective systems, and intrasea-

sonal variability [e.g., the Madden–Julian oscillation
(MJO)]. On ENSO time scales this variability can be
viewed as a stochastic process, and a growing body of
literature suggests that a significant fraction of ENSO
variability may be stochastically forced (e.g., Lau 1985;
Lau and Chan 1985, 1986, 1988; Penland and Sardesh-
mukh 1995; Penland 1996; Blanke et al. 1997; Eckert
and Latif 1997; Moore and Kleeman 1999ab; McPhaden
1999; Roulston and Neelin 2000; Zavala-Garay et al.
2003; Federov et al. 2003), an idea recently challenged
by Chen et al. (2004) and discussed further by Ander-
son (2004).

The nature of the stochastic forcing is somewhat of
an unresolved issue. Most studies of stochastic influ-
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ences on ENSO assume that the forcing is independent
of the ENSO cycle, so-called additive forcing. How-
ever, it is known (e.g., Keen 1987; Kessler 2001) that
MJO and westerly wind bursts are modulated signifi-
cantly by the ENSO cycle, in which case the stochastic
forcing will be a function of the underlying circulation,
so-called multiplicative forcing. Multiplicative forcing
can significantly alter the structure of the system prob-
ability density function (PDF) (Horsthemke and Lefe-
ver 1984), and some recent studies suggest that multi-
plicative effects may significantly influence ENSO vari-
ability (e.g., Lengaigne et al. 2004; Perez et al. 2005;
Eisenman et al. 2005). Furthermore, there is a continu-
ing debate on the relative role played by stochastic forc-
ing versus nonlinear dynamics (e.g., Tziperman et al.
1994, 1995; An and Jin 2004), a debate largely fueled by
small but significant departures of the observed ENSO
PDF from a Gaussian distribution, a feature that linear
dynamics fails to explain. Doubtless both stochastic and
nonlinear influences are important, but here our focus
is on stochastic influences.

There has been considerable recent progress in un-
derstanding the response of dynamical systems to sto-
chastic forcing. If favorably aligned, stochastically in-
duced perturbations can grow by extracting energy (or
more generally variance) from the underlying flow. The
resulting stochastically induced variance is a balance
between variance input by the stochastic forcing, vari-
ance lost by dissipation, and variance liberated by per-
turbations from the underlying flow.

The seminal works of Farrell and Ioannou (1993,
1996a,b) on Generalized Stability Theory (GST) show
that the release of variance from the stochastically
forced underlying flow can be understood in terms
of the linear superposition of the eigenmodes of the
system. During the early stages of development, the
evolution of stochastically induced perturbations is de-
scribed by linear dynamics. Inhomogeneties in the un-
derlying flow field render nonorthogonal the eigen-
modes of the linear operators that describe perturba-
tion development, meaning that they can linearly
interfere. The resulting interference patterns can lead
to rapid transient growth of perturbation amplitude,
and maintain high variance.

GST provides a powerful framework for exploring
the dynamics of perturbation growth and variance
maintained by various kinds of forcing. Orthogonal
bases can be identified that account for different frac-
tions of perturbation growth due to impulsive forcing
(singular vectors), forcing that is time invariant (forcing
singular vectors), and forcing that is stochastic in nature
(stochastic optimals). GST has been applied to ENSO
by a number of investigators (e.g., Blumenthal 1991;

Penland and Sardeshmukh 1995; Penland 1996; Klee-
man and Moore 1997; Moore and Kleeman 1996,
1997a,b, 1999a,b, 2001; Moore et al. 2003; Xue et al.
1994, 1997a,b; Thompson 1998; Johnson 1999; Fan et al.
2000; Zavala-Garay et al. 2003; Kleeman et al. 2003) in
an attempt to understand its dynamics and limits of
predictability. Most previous work has been limited to
statistical models of ENSO or dynamical models of in-
termediate complexity. The effective dimension of
these models appears to be quite small (Moore and
Kleeman 2001), and as such the generality of the con-
clusions drawn from these studies, particularly in rela-
tion to the suggested link between ENSO and intrasea-
sonal variability has been openly questioned. The pur-
pose of the present study is to apply GST to more
sophisticated coupled models of ENSO using general
circulation model (GCM) components that potentially
may possess many more degrees of freedom. We will
show that many of the findings and conclusions from
intermediate coupled models appear to be robust.

The coupled models used in the present study are
described in section 2. GST—as it relates to optimal
forcing patterns, the so-called stochastic optimals—is
briefly reviewed in section 3, and applied to each
coupled model. In section 4 we discuss a related set of
optimal forcing patterns called forcing singular vectors,
and note their similarity to the stochastic optimals. In
sections 3 and 4 robust patterns of forcing are identi-
fied, and in section 5 we search for analogues of these
patterns in estimates of stochastic forcing derived from
atmospheric analyses. The effective dimension of the
system is explored using the method of balanced trun-
cation in section 6, and we conclude with a summary
and conclusions in section 7.

2. The coupled models

Three hybrid coupled models of ENSO were used,
and each shares the same Ocean GCM (OGCM)
coupled to three different atmospheric models. The
choice of models was motivated by that fact that: (i)
atmospheric model physics significantly impacts pertur-
bation growth (Moore and Kleeman 2001; Moore et al.
2003), and (ii) the models were readily available. Each
atmospheric model emphasizes different aspects of air–
sea interaction in the Tropics, and it is the impact of
these processes on the coupled system that we explore
here.

a. The ocean model

The primitive equation OGCM common to each
coupled model is Océan Parallélisé (OPA) 8.1 (Madec

4684 J O U R N A L O F C L I M A T E VOLUME 19

Unauthenticated | Downloaded 06/09/21 02:06 PM UTC



et al. 1998) configured for the tropical Pacific Ocean
(30°N–30°S, 120°E–75°W) (Vialard and Delecluse
1998a,b; Vialard et al. 2001), with 1° resolution, increas-
ing in the meridional direction from 0.5° between 5°N
and 5°S to 2° at 30°N and 30°S. There are 25 levels in
the vertical with 10-m thickness in the upper 150 m, and
realistic bathymetry and coastal geometry are included.

Prior to coupling with each atmospheric model, the
OGCM was first spun up for 30 yr using (i) climato-
logical monthly mean winds derived either from the
Florida State University (FSU; Legler and O’Brien
1985; Stricherz et al. 1992) or the National Centers for
Environmental Prediction–National Center for Atmo-
spheric Research (NCEP–NCAR; Kalnay et al. 1996)
reanalysis wind products; (ii) a surface heat flux Q �
Qh � �(T � Tr) where Qh is the 15-yr European Centre
for Medium-Range Weather Forecasts (ECMWF) Re-
Analysis (ERA-15) climatological seasonal cycle, T is
model SST, Tr is the climatological mean observed sea-
sonal cycle of SST from Reynolds and Smith (1994),
and � � �40 W m�2 K�1; (iii) the annual mean net
freshwater flux forcing Qs composed of ERA-15 net
(E � P) and a relaxation to the annual mean sea sur-
face salinity of Levitus (1982). At the end of each
spinup there are no significant long-term trends in the
upper-ocean circulation. Next the OGCM was run us-
ing the actual monthly mean FSU or NCEP–NCAR
reanalysis winds for the period 1960–99 with Q and Qs

as above.

b. Coupled models 1F and 1N

“Model 1F” and “model 1N” consist of the OGCM
coupled to statistical models of the atmosphere con-
structed using singular value decomposition (SVD)
analysis and principal component analysis (PCA) of
monthly mean SST anomalies (SSTAs) of the OGCM
(from the last 30 yr of the OGCM spinup, 1970–99) and
the monthly mean wind stress anomalies (WSAs) (FSU
for model 1F, NCEP–NCAR for model 1N). Similar
models have been used by others (e.g., Latif and
Villwock 1990; Latif and Flügel 1991; Balmaseda et al.
1995; Syu et al. 1995; Kleeman et al. 1999). In model 1F,
SVD analysis was performed on the covariance matrix
of SSTAs and WSAs computed from the entire 30-yr
period. In the case of model 1N, seasonal variations of
covariance between SSTA and WSA were accounted
for by performing PCA for each calendar month (i.e.,
for each month there is essentially a different atmo-
spheric model) and a linear regression between the
leading principal components computed following Bar-
nett et al. (1993; see Tang et al. 2004a for details).

In model 1F (1N) the OGCM was forced by the sum

of the FSU (NCEP) monthly mean climatological winds
and the wind anomalies computed from the statistical
atmospheric model in response to OGCM SSTAs rela-
tive to the spinup.

c. Coupled model 2

“Model 2” consists of the OGCM coupled to the
Kleeman (1991) global, two-level, steady-state,
anomaly atmospheric model, a good approximation in
the Tropics (Webster 1972; Gill 1980). The atmosphere
is heated by Newtonian relaxation to SSTA, and by
latent heating due to deep convection via a simple
moist static energy–dependent convection scheme.
SSTAs were computed as in models 1F and 1� and
passed to the atmospheric model. The OGCM was
forced by the sum of the wind anomalies and the FSU
monthly mean climatological winds.

3. Stochastic optimals of the coupled models

Synoptic-to-intraseasonal variability can be viewed
as a stochastic forcing that induces perturbations in the
system. We denote by s the perturbation state vector of
each coupled model, and assume that to first order, the
evolution of s is described by

ds�dt � As � f�t�, �1�

where A represents the tangent-linear operator of ei-
ther model 1F, 1N, or 2 linearized about a circulation of
interest, denoted S0, and f(t) represents the stochastic
forcing.

The stochastically induced variance will depend
on the properties of the linear operator A. For red
noise the maximum response occurs when f(t) takes the
form of the leading eigenvectors of Q(t1, t2) � �t2

t1
�t2

t1
e�| t	�t
| /tcRT(t2, t	)XR(t
, t2)dt
dt	, where R (t1, t2) de-
notes the propagator of the unforced form of (1), X is a
real symmetric positive-definite matrix defining the
variance norm, and tc is the decorrelation time of f(t).
Eigenvectors qi of Q with associated eigenvalue qi are
called the stochastic optimals (SOs; see Farrell and Io-
annou 1993, 1996a,b and Kleeman and Moore 1997 for
more details).

The propagator R and its transpose (the adjoint
propagator) are (7 � 105) � (7 � 105) matrices and are
never explicitly evaluated. Instead the action of R and
RT on s can be computed by respectively integrating
the tangent-linear and adjoint versions of models 1F,
1N, and 2. The operation described by Q can be
affected by forcing the adjoint coupled model
(described by RT) with a time-weighted integral of
the tangent-linear coupled model dynamics given by
�t2

t1
e�| t	�t
/tcXR(t
, t2)dt
 once tc and X have been identi-

fied. The eigenvectors of Q were evaluated iteratively
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using ARPACK (Lehoucq et al. 1998). The tangent-
linear and adjoint versions of the OGCM and the
Kleeman (1991) atmospheric model were developed di-
rectly from the nonlinear FORTRAN code using the
recipe of Giering and Kaminski (1998) as described in
Weaver et al. (2003) and Moore and Kleeman (1996),
respectively. The adjoint statistical atmospheres of
models 1N and 1F are trivial to compute.

A useful measure of the low-frequency ENSO vari-
ability is the square of the Niño-3 index, the measure
of stochastically induced variance used here. It is pos-
sible to compute SOs for either two- or three-dimen-
sional stochastic forcing, the former being where the
stochastic forcing is surface momentum (�), heat (H),
and (E � P) freshwater fluxes, while for the latter the
stochastic forcing is for each prognostic variable at ev-
ery model grid point. Here we consider 2D SOs because
of their relevance to ENSO.

The ideas described here can be applied to stable and
unstable systems. Stability was controlled using a scal-
ing parameter  to adjust the amplitude of wind anoma-
lies imposed on the OGCM. By varying  it was pos-
sible to control the sign of the real part of the largest
eigenvalue, �0, of A. For Re(�0) � 0, the model resides
near the primary bifurcation point, the case considered
here; �0 versus  for models 1F and 2 is presented in
Moore et al. (2003), and a similar analysis was per-
formed for model 1N (not shown).

The eigenvector equation Qqi � qiqi can also be ex-
pressed as qi � qT

i Qqi/q
T
i qi, raising the issue of the

physical meaning of qT
i qi when the elements of qi have

different physical dimensions, since it is customary to
normalize the SOs so that qT

i qi � 1. To circumvent this
issue we first considered each component of the
stochastic forcing independently [i.e., � alone, H alone,
(E � P) alone], so that in each case qT

i qi has the same
physical dimensions throughout. Experiments revealed,
however, that combining the three separate SO calcu-
lations into a single calculation where q is composed of
�, H, and (E � P) yields essentially identical SO pat-
terns for each component of q when compared to those
computed separately, despite the disparity in physical
dimensions in the former case. Thus each SO compo-
nent can be treated in isolation with independent am-
plitude.1

a. Annual mean basic state

We consider first the SOs when S0 describes annual
mean conditions. In this case S0 was the annual mean

basic state of each model component run separately
subject to observed boundary conditions. Choosing S0

to be time invariant renders (1) autonomous, in which
case the eigenvectors of A form a unique basis for
studying the dynamics of the circulation. While S0 is not
a model solution, analysis of the associated autono-
mous system is an important first step because of the
unique nature of the system eigenmodes. The time
mean circulation is likely to be more stable than any
instantaneous flow field (Pedlosky 1987, chapter 7)
placing a lower bound on the response to stochastic
forcing. A similar approach has been used extensively
in meteorology for many years (e.g., Simmons and
Hoskins 1976; Frederiksen 1982; and references
therein; Simmons et al. 1983; Borges and Hartmann
1992; Molteni and Palmer 1993). Time-dependent (i.e.,
nonautonomous) operators will be explored in sections
3b and 3c.

1) BASIC SO PROPERTIES

First, consider the case where the stochastic forcing is
assumed to be white in time, and t2 � t1 � 365 days for
Q(t1, t2). The sensitivity of the SOs to these choices will
be discussed in section 3a(2). If f(t) projects equally
onto each SO then qi accounts for 100qi/tr[Q (t1, t2)]
percent of the stochastically induced variance at time t2,
and 100qi/tr[Q(t1, t2)] is a convenient way of viewing the
SO spectrum, and is of theoretical interest. Figure 1
shows a plot of 100qi/tr[Q (t1, t2)] for the first 10 mem-
bers of the SO spectrum for each model, and in each
case the SO spectrum is dominated by q1. We will dem-
onstrate in section 5 that in fact q1 may account for
almost 25% of the variance of f(t) computed from at-

1 Calculations using a nondimensionalized q (not shown) also
yield identical patterns to those shown later.

FIG. 1. A plot of 100qi/tr[Q] for the first 10 members (i � 1, . . . ,
10) of the SO spectrum for each coupled model and an annual
mean basic state. If the stochastic forcing projects equally onto
each SO then 100qi/tr[Q] represents the fraction of stochastically
induced variance explained by each SO.
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mospheric analyses. The spectra in Fig. 1 for models 1F
and 2 are qualitatively very similar to those shown in
Moore et al. (2003) for the singular vectors (SVs) of the
same models.2 Model 1N was not used in Moore et al.
(2003) but we anticipate that the same result would
hold.

Since the SO spectra are dominated by one member,
we show only q1 for each model. Figures 2, 3, and 4
show the (�x, �y), (H), and (E � P) components of q1

for each model computed using the annual mean basic
state: q1 is typically large scale, except for �y. Since each
component of q1 can be considered as independent, as
discussed above, the relative forcing amplitudes of
each component are arbitrary. Note also that (�x, �y, H,
E � P) for q1 is very similar to the surface structure of
(u, �, T, S) of the dominant SV of each coupled model
at initial time for the same time period using a norm
based on ocean temperature alone (Moore et al. 2003).

Experiments in which each model is subject to sto-
chastic forcing composed of each SO with realistic am-
plitude (Tang et al. 2005) reveal that the (E � P) and
�y components contribute very little to the stochasti-
cally induced variance in each model, so we will neglect
(E � P) and �y. The SOs of Figs. 2, 3, and 4 are gen-
erally confined to the equatorial waveguide, although
for models 1N and 2, some off-equatorial regions are
favored by H such as the warm regions of the SW Pa-
cific and coastal Central America where deep convec-
tion anomalies are possible in model 2. For model 1F, �x

favors the central and east Pacific, while in models 1N
and 2 it is the central and west Pacific that are favored.
In models 1F and 1N, H forms a dipole spanning the
entire Pacific, while in model 2 it is the west Pacific that
is preferred.

The similarity in structure between the dominant SV
at initial time and the SO patterns and their corre-
sponding spectra is consistent with the fact that each
model appears to possess a single dominant low-
frequency coupled ocean–atmosphere mode that de-
scribes ENSO (Moore et al. 2003). This suggests that
regardless of how the models are perturbed (i.e., an
impulse versus continuous stochastic forcing) there ap-
pears to be a unique optimal spatial structure for the
forcing. We return to this point in sections 4 and 6.

2) SENSITIVITY STUDIES

The SOs of the annual mean basic state were also
computed by varying (t2 � t1) between 3 and 24 months,

and the structure of q1 was found to vary little. In gen-
eral, q1 for models 1F and 2 is less pronounced in the
west Pacific for t2 � t1 � 3 months compared to longer
intervals, consistent with the role of equatorial Kelvin
waves on the ENSO dynamics of these models. For
short t2 � t1 there is insufficient time for Kelvin waves
to cross the basin and influence the tropical eastern
Pacific, so a more effective way of exciting variability in
the Niño-3 region is to directly perturb the east.

The SOs are also insensitive to the temporal decor-
relation time of the stochastic forcing, tc, which was
varied between one model time step (i.e., white noise)

2 Singular vectors are the fastest growing of all possible pertur-
bations in the linear limit and maximize growth of the chosen
norm. Using the above notation they are the eigenvectors of RT

(t2, t1)XR(t1, t2).

FIG. 2. The spatial structure of wind stress (�x, �y), surface heat
flux H and surface freshwater flux (E – P) for q1 for model 1F and
an annual mean basic state. In each case the contour interval is
arbitrary, and shaded and unshaded regions are of opposite sign.
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and 9 months. We also explored the sensitivity of the
SOs to the choice of norm associated with X. The lead-
ing SO is essentially unchanged if we use the squared
Niño-3 index, Niño-4 index, or Niño-1 � Niño-2 in-
dexes. For norms that are good indicators of ENSO
variability (i.e., norms based on the upper-ocean ther-
mal structure) the structure of q1 is relatively insensi-
tive to the choice of norm, a result that mirrors that of
the SVs described in Moore et al. (2003). In addition,
the patterns of (�x, �y, H, E �P) for the 2D SOs and
those of the surface components of (u, �, T, S) for the
3D SOs are very similar.

The coupled models were all tuned to be close to the
primary bifurcation point (i.e., the point where they can
support self-sustaining oscillations) since this is one of

the more interesting and perhaps most relevant dy-
namical regimes for ENSO. In this case q1 is relatively
insensitive to whether the system is just above or just
below the bifurcation point. When the system is far
below the bifurcation point, the structure of q1 differs
somewhat from that considered here (not shown). As 
decreases and the ENSO mode becomes more stable
the shape of the spectra in Fig. 1 remain largely un-
changed, although the relative separation of the first
two eigenvalues decreases, but even for small  the first
SO dominates (not shown).

b. The seasonal cycle

Next we explore how the SOs are influenced by a
nonautonomous A, and specifically by the phase of the

FIG. 3. Same as Fig. 2 except for model 1N. FIG. 4. Same as Fig. 2 except for model 2.
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seasonal cycle. In this case S0 is the monthly average
seasonal cycle of each component of the coupled sys-
tem run separately and interpolated linearly in time.
Four sets of SOs were computed for each model by
computing Q(t1, t2) for t2 � t1 � 365 days, where t1 � 0
corresponds to 1 January, 1 April, 1 July, and 1 Octo-
ber, and f(t) white in time. The rational was to explore
whether the relative phase of the seasonal cycle during
the 365-day period has any significant effect on the
SOs compared to the case of annual mean S0. The case
t2 �t1 � 180 yields qualitatively similar results (not
shown).

For models 1F and 1N, the SO patterns (not shown)
were all very similar to those for annual mean S0 (cf.
Figs. 2 and 3), irrespective of start date. In contrast, the
phase of the seasonal cycle does influence the SOs of
model 2 as shown in Fig. 5, where the H structure of q1

varies considerably. For all start dates, the model 2 SOs

have an H component that favors coastal Central
America, while the west Pacific is favored only for the
1 April start. For a 1 January start date, H is mainly in
the tropical east Pacific, with some signature in the
west. For the 1 April start date, H is confined mainly to
the tropical west Pacific; H for a 1 July start date ex-
hibits no signature in the equatorial east or west Pacific,
but for a 1 October start some of the equatorial signa-
ture begins to reappear. Further experiments (not
shown) reveal that the seasonal shifts in H are due to
seasonal variations in the basic state atmospheric heat-
ing. Interestingly the average of the H patterns in Fig. 5
does not resemble H for q1 of the annual mean S0 in
Fig. 4c.

The q1 structure of �x for model 2 appears relatively
insensitive to the time of year and is controlled by
ocean dynamics for the chosen norm, as demonstrated
by computing the SOs for the OGCM alone using the

FIG. 5. The spatial structure of �x and H for q1 computed from model 2 and a seasonally varying basic state with
start date (a), (b) 1 Jan; (c), (d) 1 Apr; (e), (f) 1 Jul; and (g), (h) 1 Oct. In each case the contour interval is arbitrary,
and shaded and unshaded regions are of opposite sign.
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squared Niño-3 index norm. This is not, however, a
general result since other temperature-based norms
yield very localized SOs associated with local shear and
frontal regions, reminiscent of the OGCM SVs de-
scribed by Moore et al. (2003).

Figure 6 shows 100qi/tr[Q(t1, t2)], i � 1, . . . , 10 for
each model as a function of start date. In each case q1

dominates the spectrum, there is little seasonal varia-
tion in the explained variance, and 100qi/tr[Q (t1, t2)] is
very similar to the annual mean case (Fig. 1).

c. The ENSO cycle

The sensitivity of the SOs to the phase of the ENSO
cycle was explored using actual hindcasts made with
each model for 1980–99. The resulting SOs for models
1N and 2 have also been used to generate hindcast
ensembles to explore ENSO predictability (Tang et al.
2004b, 2005). The coupled models were initialized using
the ocean data assimilation method described by Tang
et al. (2003), and 12-month hindcasts were run with
start dates 1 January, 1 April, 1 July, and 1 October
each year. Only models 1N and 2 were considered in
this case because of the inferior hindcast skill of model
1F. In the case of model 1N,  was reduced by 40% to
match that used by Tang et al. (2003). For lead times
less than 6 months, model 1N hindcast skill for Niño-3
SST anomalies (rms error and anomaly correlation)
was found to be relatively insensitive to , although q1

does change somewhat [see section 3a(b)].
An issue here is the validity of the tangent-linear

assumption. Using the same OGCM, Weaver et al.
(2003) showed that for the large scales of motion typi-
cally associated with ENSO, the tangent-linear assump-
tion is valid for periods �6 months. However, in addi-
tion to the large-scale seasonal-to-interannual time-
scale phenomena, the OGCM also resolves tropical
instability waves (TIWs; Vialard et al. 2003). The tan-
gent-linear assumption associated with TIWs is violated
on the time scale of a month or less (Weaver et al. 2003)
presumably because of the existence of rapidly growing
unstable eigenmodes of A associated with the shear be-
tween the equatorial currents of the eastern and central
equatorial Pacific. Interestingly such modes do not ap-
pear when S0 is defined by the annual mean or seasonal
cycle.

A dual approach was adopted in an attempt to mini-
mize the excitation of TIWs associated with S0 defined
by hindcasts. First, as in sections 3a and 3b, the squared
Niño-3 index was adopted as the variance norm since it
is reasonable to assume that the spatial patterns of posi-
tive and negative SST anomalies associated with TIWs
will, by and large, spatially average to zero over the
Niño-3 region. Second, a linear interpolation of the
monthly averaged hindcast model trajectory was used
to define S0 because monthly averages are more stable
than instantaneous flows. While this dual approach was
successful most of the time, there were periods when
some SOs consistently favored the TIW region for
growth, presumably because of the propensity for even
the monthly mean ocean circulation to support rapidly
growing unstable modes that do not spatially average to
zero in the Niño-3 region. The �x structure of a typical
SO associated with TIW generation is shown in Fig. 7.

FIG. 6. Plots of 100qi/tr[Q] for the first 10 members (i � 1, . . . ,
10) of the SO spectrum as a function of start date using a season-
ally varying basic state: (a) model 1F, (b) model 1N, and (c)
model 2.
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The optimal excitations of the TIWs are small scale and
distinct from the large-scale SOs associated with
ENSO.

As noted in section 3b, the SOs of the seasonal cycle
identify geographic regions where stochastically in-
duced perturbations associated with ENSO are likely to
undergo rapid growth. In addition, these areas appear
to be fairly robust, varying only with the phase of the
seasonal cycle. The same areas of preferred perturba-
tion growth were also found throughout the ENSO
cycle of individual hindcasts. However, there are two
important points to note: 1) the structure of the large-
scale SOs of ENSO compared to those of the seasonal
cycle is significantly influenced by the time evolution of
S0; 2) the position of the large-scale SOs within the
spectrum varies with S0, as does the fraction of stochas-
tically induced variance 100qi/tr[Q (t1, t2)] they de-
scribe. To explore how these properties vary from
one hindcast to the next, we computed diagnostic quan-
tities designed to isolate the optimal excitation for
ENSO in each case. This approach is also useful for
summarizing what is clearly a large number of SO pat-
terns (i.e., 20 yr � 4 start dates per year � 10 SO
patterns per start date).

The dominant SO of ENSO associated with each
start date in section 3b (i.e., where S0 defines the sea-
sonal cycle) was viewed as the representative SO of
hindcasts started at the same time of the year. We will
denote these SOs as qr

1,n where n � 1, . . . , 4 and n � 1
corresponds to a 1 January start, n � 2 to a 1 April start,
and so forth. The spatial correlation of the qr

1,n with
each of the first 10 members of the hindcast SO spectra,
for the appropriate start date given by n, identifies the
analog of qr

1,n associated with each hindcast. The hind-
cast SOs with the maximum spatial correlation were
identified, and the corresponding correlations for �x

and H denoted �� and �H, respectively. The fraction of
stochastically induced variance associated with the SO
with spatial correlations �� and �H was also computed
according to 100qi/tr[Q (t1, t2)] and will be denoted Vm.

In all cases we chose t2 � t1 � 365 days and assumed
white noise forcing in time.

Figure 8 shows ��, �H, and Vm versus hindcast start
date. In each case, particularly for model 1N (Fig. 8a),
�� and �H are relatively high, indicating that a large-
scale SO pattern exists similar to that of the corre-
sponding phase of the seasonal cycle of (i.e. qr

1,n). The
spatial correlations are somewhat lower in model 2
(Fig. 8b) than in model 1N and exhibit a pronounced
seasonal cycle due to the fact that during model 2 hind-
casts the western Pacific and Central American coast
are almost never favored by the H components of the
SOs. The H patterns for the model 2 SOs are primarily
located in the central and east Pacific, indicating that

FIG. 7. A typical �x component of q1 when the TIW generation
region is favored by the SOs of individual model hindcasts. The
contour interval is arbitrary and shaded and unshaded regions are
of opposite sign.

FIG. 8. The correlation diagnostic �� (solid line), �H (dashed
line), and variance diagnostic Vm (heavy solid line) vs start date
using hindcast basic-state trajectories from (a) model 1N and (b)
model 2. Each diagnostic is defined in section 3c such that �� and
�H are measures of the similarity of the SO qi for i � 1, . . . , 10,
which most closely resembles the q1 of the corresponding phase of
the seasonal cycle discussed in section 3b. Here Vm is the value of
100qi/tr[Q] for the SO identified by �� and �H.
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anomalous convective heating in the atmosphere over
the warm pool and coastal Central America is less ac-
tive during hindcasts than during the climatological sea-
sonal cycle. Further experiments (not shown) reveal
that this is due primarily to the tendency of the ocean
surface to systematically cool in the west during the
course of a 12-month hindcast, placing the atmosphere
below the moist static energy threshold for perturba-
tion deep convection.

Here Vm is an excellent indicator of when the SOs
associated with the TIWs (cf. Fig. 7) emerge. When this
occurs, the large-scale coherent patterns qr

1,n associated
with the seasonal cycle are no longer dominant and
occupy a position further down the spectrum and as
such Vm decreases dramatically. Figure 8 shows that the
two coupled models behave quite differently in this re-
spect. In model 1N (Fig. 8a), aperiodic decreases in Vm

occur for different start dates, but by and large the SO
associated with �� and �H is often dominant (i.e., large
Vm also). For model 2 (Fig. 8b) Vm is very small for
many of the hindcasts, indicating that the TIW region is
preferred for stochastically induced perturbation
growth. Figure 8b also shows that Vm is typically largest
in model 2 during hindcasts with a 1 July start date,
indicating that the SO associated with �� and �H (cf.
Figs. 5e,f) typically dominates for these cases. Low val-
ues of Vm do not mean that no large-scale SO is present,
only that it does not occupy pole position in the spec-
trum; the relatively large values of �� and �H indicate
that much of the time the large-scale SOs of Fig. 5 are
present. The low values of Vm are most likely an indi-
cation that TIW activity is greater during model 2 hind-
casts than during those of model 1N, although this has
not been explored.

Generally, the SO spectrum is typically dominated by
one SO member (not shown), although there are often
times when this is not the case and the spectrum is
rather flat. By and large, there is no discernable rela-
tionship between the shape of the SO spectrum and the
phase of the seasonal cycle or ENSO cycle.

d. Nonnormality as a control of SO structure

The structure of the SOs depends on the model dy-
namics responsible for maintaining variance in the cho-
sen norm. In the equation that describes the time evo-
lution of the norm, there will be terms that describe (i)
the generation of variance directly by the stochastic
forcing, (ii) destruction of variance by dissipation, and
(iii) source/sink terms due to the gain and loss of vari-
ance associated with S0. If the source/sink terms are
weak, or collocated with the region in which variance is
measured, the most effective means of generating vari-
ance is by local forcing, and the SOs will favor the

region that defines the norm (i.e., in our case Niño-3).
On the other hand, if the source/sink terms are large,
and not collocated with the region defining the norm,
remote or nonlocal forcing may be a more efficient
means of generating variance, in which case the SOs
may favor regions other than the region associated with
the norm.

An alternative view of these same ideas is offered by
GST in terms of the geometry of the system eigen-
modes, where the sources of variance associated with S0

can be viewed in terms of a linear superposition of the
nonorthogonal eigenmodes of the system. The resulting
evolution of such perturbations is initially characterized
by superexponential growth, which can far exceed that
due to the most unstable eigenmode of the system, if
indeed such a mode exists. The variance sustained by
nonmodal growth depends on how nonnormal the sys-
tem described by (1) happens to be, since it is the non-
normal character of A that allows its nonorthogonal
eigenmodes to linearly interfere. Nonmodal growth of
the norm associated with this process can be identified
with the source terms of variance associated with S0 in
the norm evolution equation (e.g., Chhak et al. 2006),
and here nonnormality is strongly controlled by the air–
sea interaction processes (Moore and Kleeman 2001;
Moore et al. 2003). In models 1F and 1N the number of
coupled ocean–atmosphere modes is dictated by the
number of SVD or EOF patterns retained, in the
present case only two. This means that only two inde-
pendent linear combinations of surface wind and SST
anomalies are possible that define the quadrature
phases of the ENSO mode (see also Roulston and Nee-
lin 2003). Moore and Kleeman (2001) and Moore et al.
(2003) also showed that such low-dimensional statistical
atmospheric models yield operators A in (1) that are
more normal than coupled models that include the
Kleeman (1991) dynamical atmosphere. The more nor-
mal a system happens to be, the more the SOs resemble
the structure of the eigenmode that they tend to excite.
The more nonnormal the system, then the more dis-
similar the SOs are compared to this eigenmode.

In the case of models 1F and 1N, the small number of
degrees of freedom of the statistical atmospheric com-
ponent (i.e., two) renders these coupled models more
normal than model 2, which has potentially many more
degrees of freedom by virtue of its dynamical atmo-
sphere. Thus the SOs of models 1F and 1N tend to
resemble one phase of the ENSO mode in these mod-
els, and the most efficient way to stochastically induce
variance is by inducing perturbations that resemble the
ENSO mode, which also corresponds to locally forcing
variance in the Niño-3 region.

For model 2, the SOs have a very different structure
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to the ENSO mode because, in this case, atmospheric
heating associated with deep penetrative convection in-
creases the degree of nonnormality of the system
(Moore and Kleeman 2001). In this case a more effi-
cient means of generating variance is to perturb the
system in the west Pacific, resulting in ENSO that mani-
fests itself farther east as an increase in variance in the
Niño-3 region. Physically, it is inhomogeneities in the
atmospheric wind and specific humidity fields that ren-
der model 2 more nonnormal than its statistical coun-
terpart.

4. Forcing singular vectors of the coupled models

Another problem of interest is the case where f
is time independent, and solutions of (1) can be writ-
ten s(t2) � R(t1, t2)s(t1) � M(t1, t2)f, where M(t1, t2) �
�t2

t1
R(t, t2)dt. If s(t1) � 0, it is of interest to ask what form

f must take in order to maximize the response. The
relevant time-invariant forcing f is the eigenvector with
the largest eigenvalue of MT(t2, t1)XM(t1, t2). The eigen-
vectors of MT(t2, t1)XM(t1, t2) are referred to as forcing
singular vectors (FSVs; Barkmeijer et al. 2003).

In addition to the SOs of each basic state we have
also computed the FSVs. Since the matrix X that de-
fines the squared Niño-3-index is rank 1, there is only
one FSV for each basic state. Figure 9 shows the �x and
H components of the FSV associated with the seasonal
cycle S0 for t2 � t1 � 365 days and a 1 January start date
for each coupled model. The FSVs for other start dates
are very similar and not shown. Comparing Figs. 9a,b
and 2a,c, Figs. 9c,d and 3a,c, and Figs. 9e,f and 5a,b
shows that q1 and the FSV are qualitatively similar in
all three models. A comparison of the FSVs for each
hindcast trajectory described in section 3c reveals the
same result: q1 and the FSV are always very similar.

Recall that the surface patterns of (u, �, T, S) for the
3D SVs at initial time (Moore et al. 2003) are also very
similar to the patterns of (�x, �y, H, E � P) of the SOs.
Therefore it appears that irrespective of how a particu-
lar coupled model is perturbed, be it with an impulse, a
forcing that is stochastic in time, or a forcing that is
constant in time, the spatial pattern of the surface forc-
ing that is optimal for producing the most rapid growth
or largest variance in the Niño-3 index is the same in
each case for time intervals �12 months.

The Niño-3 index is an excellent indicator of the low-
frequency variability of the tropical Pacific associated

→

FIG. 9. The �x and H components of the FSVs of models (a), (b)
1F; (c), (d) 1N; and (e), (f) 2 for a 1 Jan start date using a sea-
sonally varying basic state. In each case the contour interval is
arbitrary, and shaded and unshaded regions are of opposite sign.
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with ENSO. In each coupled model, ENSO is described
by a single dominant coupled ocean–atmosphere mode
(Moore et al. 2003). On seasonal-to-interannual time
scales, the only means of sustaining growth of the Niño-
3-index is by exciting the ENSO mode. Since there is
apparently only one dominant low-frequency ENSO
mode in each coupled model, it is reasonable to assume
that there is only one optimal excitation for this mode,
irrespective of how the mode is forced. If true in nature
and more complex coupled GCMs, this result has im-
portant ramifications for data assimilation in support of
seasonal forecasts, the growth of forecast errors, and
ENSO predictability. This will be discussed in more
detail in section 6.

5. Occurrence of the stochastic optimal patterns in
atmospheric analyses

Sections 3 and 4 reveal that, for a given model, the
geographic areas favored for perturbation growth by
the SOs and FSVs are robust, but the areas favored do
vary in time with the underlying S0. Differences be-
tween the SOs and FSVs from model-to-model are sub-
stantial, and controlled by the atmospheric components
as discussed in section 3d. Since each coupled model
captures certain aspects of ENSO as observed (see
Moore et al. 2003), it is natural to ask which of the SO
patterns might be closest to that of ENSO in nature.

One possible way to answer this question is to see if
perturbations like the SOs of the models ever appear in
atmospheric analyses, which are our best estimate of
nature. To do this we must first isolate the stochastic
component f(t) of ocean surface forcing within the
analyses. Unfortunately, there is no unique definition
of f(t), and several can be found in the literature (e.g.,
Willebrand 1978; Frankignoul et al. 1979; Rienecker
and Ehret 1988; Kleeman and Moore 1997). In the fol-
lowing, we draw on the analysis of Zavala-Garay et al.
(2003) who define f(t) to be that component of surface
forcing that is not instantaneously correlated with
variations in SST. In this way f(t) represents the forcing
due only to the internal variability of the atmosphere.

It is beyond the scope of the present paper to present
the details of the Zavala-Garay et al. (2003) analysis.
Suffice to say, their estimates of the stochastic forcing
were derived from daily NCEP–NCAR reanalysis data
of surface wind stress and heat flux.3 Because of the

large uncertainties associated with the surface heat flux
estimates, we restrict our attention to the zonal surface
wind stress component of f(t).

We can represent f(t) as a linear combination of the
SOs, so that f(t) � �iai(t)qi. Since the SOs form an
orthonormal set (i.e., qT

i qj � �ij) we can compute the
amplitude ai of any qi using the scalar-product ai(t) �
qT

i f(t). The contribution of any qi to f is then given by
fi(t) � ai(t)qi. Table 1 shows the values of the time mean
of fT

1 (t)f1(t)/fT(t)f(t) and its standard deviation for the
period 1980–99 computed using q1 from each model
and for the annual mean basic state of section 3a. Table
1 indicates that, on average, q1 of models 1F, 1N, and 2
explains about 22%, 24%, and 23%, respectively, of the
variance of f, although at certain times this can be as
large as 45% in all models based on variations of two
standard deviations. These numbers are insensitive to
whether the daily winds or time-averaged winds are
used (we also explored weekly and monthly averages).

The statistical significance of the SO projections in
Table 1 was estimated by comparing them with the pro-
jection of f(t) onto two randomly chosen sets of wind
stress patterns: (i) spatially uncorrelated patterns cre-
ated using a Gaussian random number generator, and
(ii) spatially correlated patterns created by selecting at
random pairs of monthly mean FSU wind stress
anomaly fields for the tropical Pacific, then differencing
the two fields. In each case 1000 orthogonal patterns
were generated, denoted ri, i � 1, . . . , 1000, using a
Gram–Schmidt orthogonalization procedure (Press et
al. 1996). Each orthogonal pattern was normalized so
that rT

i rj � �ij, and the projection bi(t) � rT
i f(t) com-

puted. The relative contribution of each random pat-
tern was then computed according to pi � wT

i (t)wi(t)/
fT(t)f(t), where wi(t) � bi(t)ri. The time mean of the pi

will be denoted pi, and the mean of all 1000 pi will be
denoted p with standard deviation � p. In Table 1 the

3 Similar analyses of f(t) derived from daily ECMWF and
monthly FSU winds are presented in Kleeman and Moore (1997)
and Roulston and Neelin (2000), respectively.

TABLE 1. The mean and standard deviation (std dev) of 20-yr
time series (1980–99) of the projection of q1 (namely, fT

1 f1/fTf) on
the stochastic component of the NCEP zonal wind stress for each
model. Also shown is the 95% confidence interval (c.i.) based on
the projection of f(t) on the two sets of 1000 randomly chosen
fields described in section 5. One set of fields is spatially uncor-
related (c.i. random) and the other set is spatially correlated and
computed from randomly chosen pairs of FSU wind anomalies
(c.i. FSU).

Model Mean Std dev

Model 1F 0.22 0.12
Model 1N 0.24 0.13
Model 2 0.23 0.12
c.i. random 0.17 N/A
c.i. FSU 0.21 N/A
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values of p � 2�p computed using the two sets of ran-
dom patterns are given and represent a measure of the
95% confidence interval (c.i.) that the variance ex-
plained by any SO is no more significant than that of a
randomly chosen pattern of wind stress. Table 1 reveals
that for each model the projection of q1 on f is distin-
guishable from that of a randomly chosen field at the
95% confidence level, while the projections of q2, q3,
and q4 are generally not significant (not shown). Table
1 therefore suggests that the dominant SOs of all three
models are present in the real atmosphere if we accept
that NCEP–NCAR reanalysis winds in the tropical Pa-
cific provide reliable estimates of f(t) in nature.

6. Balanced truncation

The preceding analyses suggests that, on seasonal-to-
interannual time scales, the effective dimension of the
coupled ocean–atmosphere system (as distinct from ei-
ther component alone) is small. In fact the existence of
a single dominant coupled mode suggests that the sys-
tem dimension may be O(1). In this section we attempt
to quantify this idea in a formal way using the method
of balanced truncation (Moore 1981; Glover 1984; Far-
rell and Ioannou 2001a).

A method commonly used for attempting estimates
of the dimensionality of an asymptotically stable dynami-
cal system is to subject (1) to spatially uncorrelated, white
noise forcing and then compute the eigenmodes of the
covariance matrix P � ��

0 X1/2R(0, t)RT(t, 0)X1/2dt of the
system response. The eigenmodes of P are the EOFs of
the system response, and each explains a specific frac-
tion of the variance. Considering only those EOFs that
account for a large fraction of the variance is therefore
one way of attempting to identify the dominant degrees
of freedom. However, Farrell and Ioannou (2001a)
demonstrate that for nonnormal systems, using EOFs
alone may be fundamentally misleading because they
describe only a subset of the important system dynam-
ics, and represent only the response of the system. In-
formation about the perturbations that yield the EOF
response may be lost because they may contribute little
to the variance tr[P], and may be almost orthogonal to
the EOFs. These perturbations are the eigenvectors of
Q � ��

0 RT(t, 0)XR(0, t)dt, the SOs discussed earlier.
For nonnormal systems the appropriate method for

state-space reduction is balanced truncation (Moore
1981; Glover 1984; Mehrmann and Stykel 2005), which
seeks to simultaneously retain information contained in
both the EOFs and SOs. In the present case, the dom-
inant EOF describes the mature phase of the ENSO
mode, while the dominant SO represents the optimal
excitation of this mode, and both may have very differ-

ent structures, as in model 2 (Moore and Kleeman
1999a, 2001).

The idea behind balanced truncation is to apply an
internal coordinate transformation T to s described by
(1) in which the EOFs and SOs become identical, and
identify the dominant directions of variability in this
new coordinate system in order to simultaneously iden-
tify relevant information described by both. The trans-
formed variable x � Ts and the transformed P and Q
are given by P̃ � TPTT and Q̃ � T�1T

QT�1 (Farrell and
Ioannou 2001a). The coordinate transformation that si-
multaneously diagonalizes P̃ and Q̃ rendering them
equal is given by T � �1/2GTP�1/2, where G is the uni-
tary matrix (i.e., GTG � I) that diagonalizes P1/2QP1/2 so
that P1/2QP1/2 � G�2GT, and � is a diagonal matrix
(Moore 1981; Glover 1984). The diagonal elements �2

i

of �2 are the eigenvalues of QP arranged in descending
order along the diagonal, and �i are called the Hankel
singular values. In the new coordinate system the SOs
and EOFs are identical, and the system is truncated by
retaining only the first K Hankel singular values and
corresponding SOs and EOFs.

Here we will consider the autonomous A resulting
from the annual mean basic state of section 3a.4 To
capture variability outside the Niño-3 region, the norm
used in this case was the basin-integrated squared
SSTA. Figure 10 shows �i/�1 of each model for i �
1, . . . , 10, and reveals that �1 is an order of magnitude
larger than the next member of the spectrum for model
1F, while for model 2, �1 � 4�2 and model 1N, �1 � �2.
In all three models the ratio �1/�2 decreases (increases)

4 Practically, the upper limit of the integrals defining P and Q
will be replaced by a finite time interval, which for the models
used here is 365 days as discussed in section 3a.

FIG. 10. A plot of �i/�1 for the first 10 members (i � 1, . . . , 10)
of the Hankel singular value spectrum from each model using an
annual mean basic state.
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as the system moves away from the bifurcation point
and becomes more (less) stable.

Computation of T requires that we compute P�1/2,
which is impractical. Instead, following M. Fisher et al.
(2004, unpublished manuscript) a modified form of the
Lanczos algorithm can be used to compute the eigen-
vectors of QP given by G̃ � P�1/2G. Visual inspection
reveals that the surface patterns of (u, �, T, S) for eigen-
vector t1 � �1/2

1 P�1/2g1 for all models are almost iden-
tical to the patterns of (�x, �y, H, E � P) for the 2D SOs
shown in Figs. 2, 3, and 4. As noted in section 2, it is also
possible to compute 3D SO patterns, and in this case t1

is qualitatively similar to the 3D SO of each model. The
vectors t2, t3, etc. are associated with off-equatorial re-
gions of localized barotropic and baroclinic transient
growth that are not relevant to the low-frequency
ENSO dynamics. To illustrate, Fig. 11 shows the SST
structure of t2 that is common to all three models.
Clearly only t1 is relevant to ENSO variability in the
equatorial waveguide, a fact that highlights the appar-
ent low dimensionality of the ENSO dynamics.

The dimension of a discrete dynamical operator is
equal to the range of the operator, namely, the number
of nonzero singular values. It is generally accepted that
SVD is the most reliable method for determining nu-
merically the rank of a matrix (Klema and Laub 1980;
Golub and van Loan 1989). Balanced truncation is es-
sentially a method for performing SVD on the dynami-
cal operator that describes the time-integrated action of
the system dynamics on stochastic forcing. It is impor-
tant to note that the entire linearized discrete dynamical
operator is used meaning that the balanced truncation
vectors provide direct information about the rank and
dimensionality of the discrete dynamical operator and
its continuous counterpart. Therefore, in as much as the
discretized model operators describe the true dynamics
of the system, balanced truncation provides direct in-
formation about the dimensionality of the dynamics,
and identifies the manifold on which the dynamics take
place (Mehrmann and Stykel 2005).

Using models 1N and 2, Tang et al. (2005) have

shown that the predictability of ENSO is directly re-
lated to the amplitude of the ENSO eigenmode that is
present in the forecast initial conditions. They have also
demonstrated that data assimilation influences the pre-
dictive skill of ENSO forecasts via changes in the am-
plitude of the ENSO eigenmode in the initial condi-
tions. The results of this section are in direct agreement
with these ideas and show that the Tang et al. (2005)
results may be explained by the dominant optimal ex-
citation for the ENSO eigenmode. Any data assimila-
tion or model initialization procedure that correctly
maps onto this structure will increase the predictive
skill of the ensuing forecast, an idea consistent with the
recent work of Chang et al. (2004a,b) who showed that
the EOFs associated with the dominant SOs are the
most predictable components of the system.

7. Summary and conclusions

We have explored the optimal excitations of the low-
frequency coupled ocean–atmosphere modes that ap-
proximate ENSO in three different coupled models,
and considered the case where each model is subject to
forcing that is either stochastic (SOs) or steady (FSVs)
in time. We also compared these to the optimal forcing
for an impulse function (SVs) calculated by Moore et
al. (2003) for two of the same models.

Several features of the SO spectra and structures are
noted: 1) Using an annual mean S0, the SOs were found
to be relatively insensitive to the time interval and
decorrelation time assumed for the stochastic forcing;
2) using an annual mean S0 and temperature-based
norms, the SO structures are relatively insensitive to
the specific details of the chosen norm; 3) for annual
mean and seasonally varying S0, the SO spectrum is
dominated by a single member; 4) for models with sta-
tistical atmospheres, the SOs are insensitive to the
phase of the seasonal cycle or ENSO cycle; 5) for the
model with a dynamical atmosphere and deep convec-
tion over the warm pool, SO heat flux patterns are
sensitive to the phase of the seasonal cycle and ENSO
cycle, although the same geographic areas are favored
by the SOs for stochastically induced perturbation
growth irrespective of S0. However, the relative sensi-
tivities of these different areas are seasonally depen-
dent.

These findings are consistent with those reported by
Kleeman and Moore (1997) and Moore and Kleeman
(2001) using intermediate coupled models that utilized
the same atmospheric components, and with SV analy-
ses using two of the models considered here (Moore et
al. 2003). The variations in SO and FSV structure be-
tween models can be explained in terms of the nonnor-

FIG. 11. The SST structure of the balanced truncation vector t2

showing how such structures are confined to regions of transient
growth due to local shear in off-equatorial regions.
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mality of the system eigenmodes in much the same
way as discussed in Moore et al. (2003) in relation to
the SVs.

Using the SOs of the annual mean basic state as rep-
resentative of the optimal forcing patterns and optimal
excitations for each model, we also explored whether
similar structures are ever found in atmospheric analy-
ses. This was done by computing the projection of the
dominant SO patterns of each model onto estimates of
the stochastic component of surface wind stress forcing
derived from the NCEP–NCAR reanalyses. Patterns of
variability resembling the dominant SO of each model
are present, although the likelihood of finding the dom-
inant SOs of each model appears to be the same.

It was found that irrespective of how a specific model
is perturbed—namely, by an impulse, a steady forcing,
or a forcing that is stochastic in time—the optimal forc-
ing patterns or excitations for the low-frequency mode
associated with ENSO are qualitatively similar to each
other. This feature of the models was explored in terms
of the effective dimension of each model using the
method of balanced truncation. These calculations sug-
gest that low-frequency variability of SST associated
with ENSO is described by a low-dimensional system
with O(1) degrees of freedom. This is in qualitative
agreement with analyses of observed time series of
ENSO suggesting that the system has a low dimension
(Bauer and Brown 1992; Ghil and Jiang 1998). Further-
more, the dominant balanced truncation eigenvector is
remarkably similar to the dominant SO, suggesting that
the predictability of ENSO may be associated with, or
determined by, this single dominant pattern. Once this
pattern has been identified, the potential exists for im-
proving the efficiency of data assimilation in support of
seasonal prediction (see Farrell and Ioannou 2001b), as
well as improving the predictability of ENSO forecasts.
The latter has been demonstrated by Tang et al. (2005)
using a subset of the same coupled models used here,
and their results are consistent with the idea of O(1)
degrees of freedom.
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