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I. Introduction

La mesure de l'humidité des sols à l'aide de systèmes radar a fait l'objet de nombreux travaux ces vingt dernières années [1][2][3][4]. Plus particulièrement, la relation existant entre les propriétés diélectriques des sols et leur teneur en eau a conduit à s'interroger sur l'impact du taux d'humidité sur le coefficient de rétrodiffusion radar ! ! ! ! o [5][START_REF] Su | ESA[END_REF]. Si l'effet du taux d'humidité sur la permittivité a été largement étudié et modélisé, il n'en est pas de même pour la salinité. De récents travaux ont souligné l'influence de la présence de sels en solution sur les propriétés diélectriques des sols, spécialement sur la partie imaginaire " " " "'' de la constante diélectrique [START_REF] Aly | EARSeL Proceedings[END_REF][START_REF] Shao | [END_REF]. Si la partie réelle " " " "' de la permittivité, liée à la polarisation du milieu, conditionne la célérité d'une onde dans le matériau et donc sa capacité à conduire l'énergie, "

" " "'' quant à elle est liée à la conductivité du milieu et traduit l'atténuation du signal radar par absorption de l'énergie nécessaire pour atteindre la polarisation. Il apparaît donc indispensable de tenir compte de la présence de roches salines (évaporites) dans les applications de télédétection radar. Pour ce faire, nous nous proposons d'étudier l'influence de la présence de sels sur le coefficient ! ! ! ! o via les propriétés diélectriques des milieux considérés. La méthodologie adoptée repose sur une série de mesures réalisées en laboratoire au moyen d'un analyseur de réseau, pour évaluer le potentiel de lois de mélange diélectrique [9][10][11] reposant sur les formules de Debye. Ces modèles diélectriques permettront de définir les paramètres d'entrée nécessaires à la modélisation du coefficient ! ! ! ! o ,au moyen de modèles analytiques type IEM et SPM [3][4], [12][13]. Les résultats de simulations seront alors confrontés à des mesures terrain (Pyla, Death Valley, Mojave) et exploités pour l'interprétation d'images SAR (AIRSAR, JPL). L'objectif à terme est d'exploiter les propriétés des roches salines dans les applications de détection de résurgences d'eau tant pour les surfaces terrestres que dans le cadre de l'exploration martienne (la présence d'évaporites à la surface de la planète rouge étant aujourd'hui communément admise).

II. Contexte géologique : les roches salines ou évaporitiques

Les évaporites sont des roches sédimentaires résultant quasi-intégralement d'une précipitation chimique de substances dissoutes dans des solutions naturelles (complexes géodynamiques continentaux ou marins) par augmentation de leurs concentrations par apports terrigènes et évaporation [START_REF] Rouchy | Les Evaporites[END_REF]. Le principal facteur de concentration des saumures réside dans le processus d'évaporation bien que la congélation et l'hydrothermalisme conduisent également à des conditions sursaturées nécessaires à la précipitation minérale. La formation et la paragénèse minérale des dépôts salins sont donc étroitement liées aux propriétés physico-chimiques des minéraux en solution (en terme de solubilité) ainsi qu'aux paramètres propres des environnements évaporitiques (température, restriction, salinité, taux d'évaporation, différentiel hydrostatique, pH, activité microbienne).

III. Modèles de mélanges diélectriques

L'influence des dépôts salins dans les applications de télédétection radar réside dans le caractère soluble et les propriétés ioniques des phases minérales les constituant (salinité) qui conditionnent la conductivité de la solution mère. Plus spécifiquement, " " " "'' étant proportionnelle à la conductivité, nous avons cherché à évaluer l'impact de la présence de sels sur les propriétés diélectriques d'un milieu.

Proposant une interprétation multi-phase des mélanges (particules de sol, eau libre, eau liée, air, sels), nous avons initialement considéré les lois de mélanges diélectriques développées par Dobson [9] et Wang [19] pour étudier l'influence de la salinité sur la permittivité complexe de matériaux géologiques. Dans un premier temps, ces modèles ont été appliqués au cas d'un mélange sable/eau salée, pour notre site test de la dune du Pyla. L'eau de mer étant majoritairement constituée de NaCl, nous avons notamment considéré les résultats obtenus sur des solutions de NaCl comme première approximation permettant d'appliquer les équations de Stogryn [3,10] pour la caractérisation électromagnétique de l'eau de mer [START_REF] Hasted | [END_REF].

Contrairement au modèle de Dobson, le modèle semi-empirique proposé par Wang à 1.4 et 5 GHz permet de distinguer 2 régions distinctes dans les variations de la constante diélectrique en fonction du taux d'humidité m v du mélange. Lorsque m v < W t , W t étant l'humidité de transition, les molécules d'eau sont supposées être étroitement liées aux particules solides de sol. On parle d'eau liée ou adsorbée. Par comparaison aux molécules de glace, les travaux de Wang ont permit d'établir une similitude dans les valeurs d'énergie d'activation. En conséquence, nous considérerons les valeurs diélectriques de la glace comme première approximation de celles de l'eau adsorbée pour m v < W t . A l'opposé, lorsque m v > W t , l'eau est alors considérée comme libre et ses propriétés diélectriques peuvent être décrites au moyen des équations classiques de la théorie de Debye pour un milieu polaire.

Adoptant une description du mélange comme un système à 4 composantes (eau adsorbée, eau libre, air et sol sec), les expressions des constantes diélectriques complexes relativement à chaque région s'écrivent [19]:
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où P est la porosité du mélange. " a , " w , " r , et " i sont les constantes diélectriques respectivement de l'air, de l'eau, des particules solides de sol et de la glace. " x correspond à la permittivité complexe de l'eau adsorbée. Les paramètres W t et $ étant des paramètres dépendant de la texture du sol considéré (pourcentage volumique de sable, sel, argile...), nous avons considéré pour ces paramètres les valeurs déterminées en laboratoire sur des échantillons de la dune du Pyla.

Afin de tenir compte des pertes dues à la conductivité ionique des échantillons résultant de la présence de sels en solution (composante d'eau libre), la constante diélectrique de la solution de NaCl utilisée a été déterminée au moyen du modèle de Debye modifié par Lane et Saxton [START_REF] Lane | Proc. Roy. Soc[END_REF]. En accord avec la formulation de Stogryn, les parties réelles et imaginaires de la solution saline sont données par [3,10]
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où ' sw et ! i représentent respectivement le temps de relaxation et la conductivité ionique de la solution concentrée de NaCl, et dépendent de la salinité et de la température [10].

La permittivité complexe du mélange sable/eau saline a été calculée en fonction de la fréquence (Bandes L et C), du taux d'humidité (0<m v <0.6) et de la salinité (0<S<140‰). La température a été fixée à 20°C, la densité du mélange estimée à 1.74g.cm -3 , et la densité spécifique de la fraction solide fixée à 2.65g.cm -3 . Les autres constantes correspondant à celles trouvées dans la littérature [3,9,10].

Effets de la salinité sur la constante diélectrique :

Les premiers résultats montrent que si les parties réelle et imaginaire augmentent logiquement avec le taux d'humidité, l'impact de la salinité n'est pas le même pour " " " "' et " " " "''. Concernant la partie réelle " " " "', les résultats présentés en Fig. 1a montrent une faible dépendance de " " " "' à la salinité excepté pour des taux d'humidité élevés (m v > 0.2) pour lesquels " " " "' décroît lorsque la salinité augmente. Pour de faibles valeurs de salinité, l'augmentation du taux d'humidité constitue le principal facteur de variation de "

" " "'. Par opposition, les résultats de modélisation indiquent que la partie imaginaire " " " "" est fonction non seulement de la salinité mais également du taux d'humidité du mélange. Plus particulièrement, il apparaît que plus le taux d'humidité est élevé et plus l'effet de la salinité sur " " " "'' est important. "

" " "'' étant proportionnel à la conductivité de la solution de NaCl, cette tendance peut être expliqué par une augmentation de la composante d'eau libre autorisant une plus grande concentration de sels dissous et donc une conductivité plus forte de la solution. Plus précisément, il apparaît que pour de faibles valeurs d'humidité, l'eau contenue dans le mélange se présente principalement sous forme d'eau liée. Il en résulte une faible variation des paramètres diélectriques du mélange dans la mesure où les propriétés diélectriques de l'eau liée sont approximées par celles de la glace. Pour des valeurs croissantes de m v , la composante d'eau libre devient plus importante autorisant une quantité croissante de sels en solution se traduisant par une augmentation de la conductivité.

La Fig. 1a montre également une diminution de la partie imaginaire lorsque la salinité augmente (S > 100‰) ce qui peut être corrélé à la précipitation des sels en solution contribuant à une diminution de la conductivité de la composante d'eau libre. Cette tendance confirme celle rapportée dans les travaux récents de Mironov [11] sur de la bentonite , Shao [START_REF] Shao | [END_REF] sur des solutions de NaCl, et Aly [START_REF] Aly | EARSeL Proceedings[END_REF] sur des échantillons de sols argileux.

Effets de la fréquence sur la constante diélectrique :

La conductivité dépendant de la fréquence [20 -22], nous avons cherché à évaluer l'impact de la fréquence sur les propriétés diélectriques du mélange au moyen du modèle de Wang. Si les résultats relatifs à la partie réelle (Fig. 1b) montrent que " " " "' décroît faiblement lorsque la fréquence augmente (indépendamment de la salinité, Fig. 2a), les résultats les plus pertinents concernent la partie imaginaire liée à la conductivité ionique de la solution saline. Comme le montre la Fig. 2b," " " "" décroît fortement dans la bande [1][2][3][4]. Cette tendance, également observée par d'autres auteurs sur des solutions de NaCl, de kaolinite, ou montmorillonite [START_REF] Shao | [END_REF][START_REF] Komarov | IGARSS'99[END_REF], peut être attribuée au temps de relaxation de la solution saturée. En accord avec la théorie de Debye-Falkenhagen [22], la relation entre "

" " "" et la fréquence peut être reliée aux variations fréquentielles de la conductivité ionique qui décrit le mouvement des ions dans la solution électrolyte. Plus spécifiquement, ces auteurs invoquent l'effet dynamique de la relaxation d'une atmosphère ionique (nuage de charges de signe opposé entourant un ion central) sur le déplacement d'un ion central. Sous l'effet d'un champ électrique, le déplacement de l'ion induit une force électrique de relaxation exercée par l'atmosphère ionique (devenue asymétrique) et s'opposant au déplacement de l'ion. Sous l'action d'un champ électrique oscillant, l'ion central oscille et l'atmosphère ionique atteint plus rapidement la relaxation. Il en résulte une diminution de l'intensité de la force de relaxation autorisant une plus grande mobilité de l'ion et donc une augmentation de la conductivité. Les basses fréquences favorisant le phénomène de relaxation (la période d'oscillation du champ électrique est grande devant le temps de relaxation), on observe logiquement une augmentation de la conductivité (et donc de "

" " "") à basse fréquence. Lorsque la fréquence augmente, l'amplitude d'oscillation de l'ion central est plus faible qu'à basse fréquence. L'ion central, de même que l'atmosphère ionique, peut alors être considéré comme statique conduisant à une diminution de la conductivité (par réduction de la mobilité ionique) et incidemment de la partie imaginaire de la permittivité complexe comme l'illustre la Fig. 2b. 

IV. Protocole expérimental

Afin de déterminer la validité du modèle de mélange diélectrique précédent, nous avons réalisé une série de mesures de permittivité sur le mélange sable/eau saline pour les mêmes bandes de fréquence, et les mêmes valeurs d'humidité et de salinité. Les mesures ont été réalisées au moyen d'un analyseur de réseau vectoriel Anritsu37325A couplé à une sonde à effet de bout (de type SMA) fournissant le coefficient de réflexion S11 (en module et phase) de l'onde électromagnétique à la surface des échantillons [16] et dont sont extraits les paramètres de la sonde. La connaissance de ces paramètres permet alors de remonter aux parties réelle et imaginaire de la permittivité du matériau mesuré au moyen d'un modèle capacitif d'inversion (Fig. 3a et 3b). Si les résultats expérimentaux confirment la tendance théorique précédente sur le comportement des parties réelle et imaginaire, ils soulignent néanmoins les limitations du modèle de Wang pour la caractérisation de " " " "' à basse fréquence ([1-2 GHz]). Comparativement aux Figs. 1b et 4, les résultats de mesures indiquent que le modèle de Wang tend à sous-estimer les valeurs des parties réelle et imaginaire. Il conviendra donc d'apporter des modifications aux lois de mélange diélectrique par calibration au moyen de séries de mesures en laboratoire. Néanmoins, les mesures réalisées en laboratoire faisant apparaître une valeur d'humidité de transition (W t ~29%, cf. Fig. 3), elles confortent l'approche bimodale du modèle de Wang.

V. Simulations numériques du coefficient de rétrodiffusion radar

Afin d'estimer l'impact de la salinité sur les performances de systèmes SAR aéroportés ou orbitaux, nous avons modélisé les coefficients de rétrodiffusion en fonction des valeurs de permittivité complexes mesurées précédemment. Considérant des surfaces lisses (écart type des hauteurs de 0.3 cm, longueur de corrélation de 2.7 cm), nous avons utilisé les modèles de rétrodiffusion IEM et SPM. Supposant initialement le terme surfacique, le coefficient de rétrodiffusion radar par réflexion simple s'écrit: pour le modèle SPM. pp indique l'état de polarisation de l'onde en émission/réception (HH ou VV), ) est l'angle d'incidence, k le nombre d'onde, W n la transformée de Fourier de la puissance n ième de la fonction d'autocorrélation et * pp les coefficients de réflexion de Fresnel [3,4].

Les résultats présentés en Fig. 5 indiquent que la sensibilité du coefficient de rétrodiffusion radar à la salinité dépend du taux d'humidité. Cette sensibilité est plus marquée en polarisation verticale (VV). Bien que cette sensibilité affecte plus faiblement la polarisation horizontale (HH) notamment pour de forts taux d'humidité, la forte dépendance du coefficient de rétrodiffusion à la salinité pour de faibles valeurs d'humidité constitue un résultat d'importance pour les applications de détection de faibles résurgences d'eau. En supposant une dynamique de détection à -30dB pour un système radar orbital, ce résultat est particulièrement favorable à l'exploration martienne où la présence d'évaporites est communément admise [17] et où les variations d'humidité envisagées n'excèdent pas quelques pourcents. 

VI. Travaux futurs

Nous avons considéré ici l'influence de la salinité sur le coefficient de rétrodiffusion. La différence de phase copolaire pouvant être utilisée dans la détection d'humidité des sous-sols [1,18], nous allons également étudier l'impact de la salinité sur les variations de la phase radar. Nous travaillons aussi au développement d'une méthode d'inversion des paramètres diélectriques au moyen du code numérique HFSS (High Frequency Structure Simulator).

Fig.

  Fig. 1a (à gauche) : Permittivité complexe dérivée du modèle de Wang à 1.5 GHz pour un mélange sable/eau salée. Fig. 1b (à droite) :Modélisation de la variation fréquentielle de la partie réelle de la constante diélectrique pour une salinité de S = 100‰.

Fig. 3 :

 3 Fig. 3 : Mesures de la constante diélectrique (partie réelle : Fig. 3a à gauche et partie imaginaire : Fig. 3b à droite) réalisées sur un mélange sable/eau salée en fonction de la fréquence et du taux d'humidité. La salinité de la solution saturée est de S = 100‰.

Fig. 4 (

 4 Fig. 4 (à gauche) : Modélisation de la variation fréquentielle de la partie imaginaire de la constante diélectrique pour une salinité de S = 100‰ et différentes valeurs d'humidité. Fig. 5 (à droite) : Modélisation IEM de coefficient de rétrodiffusion en bande L (1.3 GHz) et 40° d'incidence.