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Abstract. Test particle simulations are performed in order
to analyze in detail the dynamics of transmitted electrons
through a supercritical, strictly perpendicular, collisionless
shock. In addition to adiabatic particles, two distinct nona-
diabatic populations are observed surprisingly: (i) first, an
over-adiabatic population characterized by an increase in the
gyrating velocity higher than that expected from the conser-
vation of the magnetic momentµ, and (ii) second, an under-
adiabatic population characterized by a decrease in this ve-
locity. Results show that both nonadiabatic populations have
their pitch angle more aligned along the magnetic field than
the adiabatic one at the time these hit the shock front. The
formation of “under” and “over-adiabatic” particles strongly
depends on their local injection conditions through the large
amplitude cross-shock potential present within the shock
front. A simplified theoretical model validates these results
and points out the important role of the electric field as seen
by the electrons. A classification shows that both nonadia-
batic electrons are issued from the core part of the upstream
distribution function. In contrast, suprathermal and tail elec-
trons only contribute to the adiabatic population; neverthe-
less, the core part of the upstream distribution contributes
at a lower percentage to the adiabatic electrons. Under-
adiabatic electrons are characterized by small injection an-
glesθinj≤90◦, whereas “over-adiabatic” particles have high
injection anglesθinj>90◦ (whereθinj is the angle between
the local gyrating velocity vector and the shock normal).

Keywords. Space plasma physics (Charged particle mo-
tion and acceleration; Numerical simulation studies; Shock
waves)

1 Introduction

The current understanding of the electron heating (for a re-
view, seeScudder(1995) and the references herein) through
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a fast shock has emphasized three main points. First, the
major increase in the electron temperature occurs within the
ramp region (Bame et al., 1979). Second, the dominant
process responsible for the shape of the electron distribu-
tion (and therefore the heating) mainly involves the action
of the macroscopic fields, as demonstrated in detail by ex-
perimental measurements (Scudder et al., 1986a,b,c; Feld-
man et al., 1983) and confirmed in self-consistent numeri-
cal simulations bySavoini and Lemb̀ege(1994). Third, the
main contribution for the perpendicular heating comes from
the “reversible” inflation of the velocity space volume in the
presence of magnetic forces (Feldman, 1985; Krauss-Varban,
1994; Scudder et al., 1986a; Scudder, 1995; Hull et al., 1998,
2001). This last point implies a transverse heating which
preserves the value ofTe⊥/B from upstream to downstream
states.

Nevertheless, it has been observed that the adiabaticity
may break down in supercritical shock waves. A compre-
hensive statistical study of electron heating versus various
shock parameters has shown a moderate but systematic de-
viation from the adiabatic compression ratio (Schwarz et al.,
1988). Scudder et al.(1986c) have also noted that the con-
servation of the fluid quantityT⊥e/B related to the magnetic
momentµ requires conditions which are not obviously sat-
isfied at collisionless shocks. Different mechanisms may be
invoked. The most evident concerns the small-scale turbu-
lence present at the shock front whose scattering could effi-
ciently redistribute the energetic electrons, as shown numeri-
cally (Krauss-Varban, 1994; Krauss-Varban et al., 1995) and
experimentally (Scudder et al., 1986c). Some experimental
(Scudder et al., 1986c) and numerical results (Veltri et al.,
1992) have even evidenced that wave particle interactions
may “cool” the electrons rather than heat them.

Another possibility is the narrow ramp of certain colli-
sionless shock (Newbury and Russell, 1996; Newbury et al.,
1998; Walker et al., 1999), so that electrons do not follow
the magnetic field variations (at least partially) and the mag-
netic moment is not conserved anymore. Even if the spatial
scale of the magnetic and electric field variations inside the
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ramp is not too small, a certain percentage of the transmitted
electrons can be demagnetized. As infered theoretically by
Cole(1976) in the presence of an electric field gradient, the
effective gyration frequencyωeff

ce differs from the magnetic
gyro-frequencyωce by the value (given in the normalized co-
ordinates used in this paper):

(ω̃
eff
ce )2

=ω̃2
ce −

dẼ

dx̃
, (1)

where the electric field gradient along thex-direction dẼ
dx̃

is
assumed to be constant within the transition region. This
means that the scanning of the shock ramp by the electron
gyromotion may drastically change according to the local

strength of thedẼ
dx̃

gradient with respect to the localB field,
where “local” means that terms of Eq.1 correspond to quan-
tities “seen” locally by electrons.

This mechanism has been analyzed in details theoretically
within the shock front (Gedalin et al., 1995a,c; Krasnossel-
skikh et al., 1995; Balikhin et al., 1998; Ball and Galloway,
1998). All these papers investigate the electron superadia-
batic heating through the divergence of electron trajectories
in the velocity space (i.e. using the Lyapounov coefficient
γ ). These authors demonstrate that the cross-shock poten-
tial leads to an exponential expansion of close trajectories.
In particular, a noticeable percentage of demagnetized elec-
trons is always formed within the ramp itself and constitutes
a good candidate for nonadiabatic heating through a shock
front above a certain threshold. More recently, by using self-
consistent, full particle simulations,Lemb̀ege et al.(2003)
have analyzed in detail the mechanisms responsible for the
electron demagnetisation at the shock front, rather than fo-
cussing on their adiabatic/nonadiabatic behavior. They have
confirmed the important role of the electrostatic field gradi-
ent along the shock normal in the demagnetisation processes
but recovered only a partial (qualitative) agreement with the
theoretical arguments proposed byBalikhin et al. (1998).
Despite all these efforts, no detailed analysis has been per-
formed until now on the criteria intrinsic to the transmitted
electrons, in order to predict which part of the upstream elec-
trons can become adiabatic or nonadiabatic.

According to the adiabatic theory (Northrop, 1963), the
gyrating velocity of a particle moving under the influence of
an increasing (decreasing) magnetic field alone will increase
(decrease) in such way that the magnetic momentµ will be
conserved or increased. Nevertheless, such a picture is in-
complete, especially when electrostatic field gradients are
self-consistently included in the shock front. In this case, the
opposite behavior, leading to a decrease in the gyrating ve-
locity, is also possible even for a strictly perpendicular shock,
as shown in present results.

For oblique shocks, the macroscopic electrostatic field
component parallel to the magnetic field accelerates incident
solar wind electrons through the shock, resulting in a peak in
f (v) offset alongB in the downstream direction relative to
the plasma rest frame. Theoretically, it is simple to show that
the parallel electric field strongly accelerates particles along

the magnetic field and brings closer particles in the perpen-
dicular velocity space. For example, suppose two particles
have the velocityv1=vo andv2=vo+δv, respectively. When
including a potential1φ in space along theB field, the con-
servation of the total energy allows us to obtain at the first
order, the relation :

(v2 − v1)
final

=

√
me

2e1ϕ
vo(v2 − v1)

initial . (2)

Then, the electron trajectories in velocity space become
closer depending on the value of the potential drop1ϕ, lead-
ing to a reduction in the volume occupied by the electrons in
the velocity space, i.e. corresponding to an electron cooling.
Such a mechanism is well-known to operate along the mag-
netic field lines where particles are freely accelerated by the
parallel electrostatic potential but in no way can be invoked
in the strictly perpendicular case (E⊥B).

At this stage, in order to avoid any misunderstanding, it
is important to define precisely the use of the words “adia-
batic” and “nonadiabatic”. Usually, nonadiabatic behavior
means that the electron downstream temperature is higher
than the electron heating expected from the magnetic field
gradient only. If the time/space variations of the magnetic
field are non negligeable within one gyro-period (t1B≥τce),
the electric field speeds up the particle in such a way that
the gyrating velocity exceeds the values obtained in the drift
approximation, leading to nonadiabatic particles. Usually,
there are two different ways to introduce the concept of
adiabaticity which are not totally equivalent. First, as in
Goodrich and Scudder(1984), adiabaticity is associated with
the drift approximation or the conservation of the magnetic
momentµds/µus≈1, whereµus andµds are the upstream
and the downstream magnetic momenta, respectively (indi-
vidual particles approach). Second, adiabaticity is associated
with heating, and conveys the increase in the internal energy
that an assembly of particles should gain, owing to the con-
servation ofT⊥/B (statistical approach).

The two different representations of the first adiabatic in-
variant must be used carefully. As a first step, hereinafter
in this paper, we follow the first approach (individual tra-
jectories) to define adiabatic (µds/µus∼1) and nonadiabatic
(µds/µus 6=1) electrons. Then, the primary goal of this paper
is to investigate the respective role of the macroscopic fields
gradient (magnetic and electric fields) and of the injection
conditions into the shock front, in order to account for the
final state of individual particles.

This paper is structured as follows. Section 2 contains
a brief description of the 2-D full-particle simulations used
to analyse the supercritical collisionless shock. In contrast
with previous works based on an oblique shock (Lemb̀ege
et al., 2003), the present analysis will consider a strictly per-
pendicular shock. Section 3 examines the time behavior of
electron trajectories by using test particle simulations where
fields profiles are issued from the 2-D full particle simulation
results. Surprisingly, two types of nonadiabatic electrons,
over-adiabatic and under-adiabatic, defined byµds/µus>1
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and<1, respectively, are identified in the transmitted popu-
lations. Section 4 presents a simplified theoretical model in
order to account the formation of the two types of nonadi-
abatic populations. A parametric study on the conditions of
test particle simulations is presented in Sect. 5 in order to val-
idate the theoretical model, while discussion and conclusions
are summarized in Sect. 6.

2 Numerical conditions

In order to investigate the electron dynamic, a 2–1/2D, fully
electromagnetic, relativistic particle code, using standard
finite-size particle techniques, is used, whose details have
been given inLemb̀ege and Savoini(1992) andSavoini and
Lemb̀ege(1994). The use of full-particle code is necessary,
in order to obtain self-consistently the magnetic and electric
field components present at the shock front, and in particular,
the cross-shock potential which is expected to play a major
role in the dynamics of transmitted nonadiabatic electrons.

Basic properties of the numerical code are summarized
as follows. Nonperiodic conditions are applied along the
x-direction within the simulation box and periodic condi-
tions are used along they-direction. The plasma simulation
box lengths arẽLx=6144 andL̃y=256, which represents
102 and 4.3 inertial ion lengths (̃c/ω̃pi), respectively. The
strictly perpendicular collisionless shock (2Bn=90◦), con-
sidered herein, will allow us to simplify both the theoretical
model of Sect. 4 and the interpretation of the results (where
2Bn is the angle between the upstream magnetic fieldBo and
the shock normal).

Initial plasma conditions (i.e. upstream region) are sum-
marized as follows (all physical parameters are normalised
to dimensionless quantities “̃ ”): light velocity c̃=3,
upstream magnetic field̃Bo=1.5 (then, we have a ratio
ωpe/ωce≈2), temperature ratio between ion and electron
populationTi/Te=1.58, thermal velocitỹvthe,x,y,z=0.3 for
electrons and̃vthi,x,y,z=0.012 for ions. The ratioβe of the
electron kinetic to the magnetic pressure and the Alfvén ve-
locity areβe=0.24 and̃vA=0.075, respectively. The shock
propagates in a supercritical regime (MA=5.14). A detailed
study of the electrons dynamics and trajectories required one
to use a high mass ratio. Nevertheless, at that time, a realistic
mass ratio,mi/me=1840, is still out of reach of 2-D, self-
consistent, full-particle simulations. Only 1-D shock simula-
tions manage to include such a realistic mass ratio (Liewer
et al., 1991; Scholer et al., 2003). As a compromise, a
high mass ratio is used hereafter in this paper (mi/me=400).
This value is high enough to separate the dynamics of elec-
trons and ions, and to obtain more realistic space-charge ef-
fects and electric field gradients at the ramp than for a lower
mass ratio. In terms of this lower mass ratio, we recover
the main characteristics of a supercritical shock. Figure 1
shows cyclic self-reformation of the shock front, mainly due
to the reflected ion population which accumulated over dis-
tance from the ramp until their density was high enough
to form a new shock front (Lemb̀ege and Dawson, 1987;
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Fig. 1. Time evolution of the magnetic moment ratioµ/µus for the
same selected particles of Fig. 3 (panels g, h, i) in absence of the
electrostatic field component (̃Elx=0). In order to emphasize the
differences with Fig. 3, the same color code for the curves (black,
red and blue) is used.
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Fig. 2. Enlarged view of the main magnetic field component
B̂tz(x, y) around the shock front at the time (t̂≈6.3ω̂−1

ci
) chosen

for the test particles simulations.

Lemb̀ege and Savoini, 1992; Scholer et al., 2003; Lee et al.,
2004). Simultaneously, a shock front rippling, evidenced in
Fig. 2, moving along the shock front, is the source of an ad-
ditional nonstationarity. For the perpendicular case, the rip-
pling has been identified as instabilities lying in the lower
hybrid range and triggered by cross-field currents supporting
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the large field gradients at the front (Lemb̀ege and Savoini,
1992). These kind of instabilities are well-known to be of
secondary importance on the global transmitted electron dy-
namic (for the formation of local, flat-topped distributions),
both experimentally (Scudder et al., 1986a,b,c) and numeri-
cally (Lemb̀ege and Savoini, 1992) and will be excluded for
simplicity in the present analysis.

A numerical test particle approach has been used based
on all field components along the shock normal only and is
summarized as follows. All secondary shock features which
complicate the analysis have been eliminated byy-averaging
all field components issued from 2-D, full-particle simula-
tions (suppression of the shock front rippling) and by con-
sidering a given time only (suppression of the front self-
reformation). In contrast with the self-consistent simulations
where both particle and electromagnetic field dynamics are
coupled, test particle simulations follow individual particles
within pre-computed electromagnetic fields. Then, we only
solve a particle pusher, following this set of first-order cou-
pled differential equations:

dr

dt
= v (3)

dv

dt
= q[E + v × B] , (4)

where E=E(̃x, ỹ) and B=B (̃x, ỹ). Presently, onlyx-
profiles along the shock normal are concerned, as explained
above. At late time (̃t=6.28̃ω−1

ci ), a shock profile has been
chosen from the 2-D, full particle simulation at the end of
a self-reformation cycle, where the foot is almost absent, to
avoid any interaction of the incoming electrons with the foot
pattern. As a consequence, only the macroscopic fields at the
ramp will control the time evolution of the particles through
the shock front. Such a test particle method is quite appro-
priate to montain control of the initial particle locations both
in the real and velocity space (phase space dependance anal-
ysis). We will see that these initial conditions have a strong
impact on the electron dynamics.

3 Numerical results: a single test particle approach

At initial time, the (stationary) shock front is moving with
a velocity Ṽsh=0.38 along thex-axis (corresponding to
MA=5.14 in the 2-D full particle simulations). Electron test
particles are at rest in the solar wind frame at some dis-
tance upstream from the shock front (X̃=200̃4). It is im-
portant to point out that all test particles are at the samex-
location. Electrons are distributed over a velocity sphere of
radiusṽshell=0.26, so that only the phase angles differ from
one particle to the other. As a reference, the valueṽshell=0.52
corresponds to the thermal velocity defined in the upstream
electron distribution used in the full particle PIC simulation.
As a consequence, all electrons see exactly the same shock
profile, but their velocity components relative to the shock
profiles and associated pitch angles will differ (phase angles
effects).

Three distinct classes of transmitted electrons are identi-
fied (adiabatic, “over-adiabatic” and “under-adiabatic” parti-
cles namely, whose main features are summarized in Fig. 3.
Panel (a), used as reference, shows the time evolution of
thex position of the particles (thin line) crossing the shock
front (thick line). Panels (b) and (c) evidence the local
magnetic and electrostatic fields seen by the particle versus
time. Panels (d, e, f) represent the corresponding time varia-
tion of the perpendicular velocity component. The change
in V⊥ can be evidenced by the amplitude of the oscilla-
tions, which shows that all electrons gain (or lose) perpen-
dicular energy only during their crossing of the shock ramp
(5650̃ω−1

pe 6̃t65800̃ω−1
pe ). During this time period, particles

also undergo the effect of the electrostatic field present in
the shock front. One striking feature is that no electron can
be considered as demagnetized, as defined byCole (1976),
Balikhin et al. (1998) and Lemb̀ege et al.(2003), and so,
even if the spatial widths of both theE and B fields at
the shock ramp are comparable,LEr≈LBr . Indeed, an en-
larged view of the velocity space (not shown here) evidences
that all particles regardless of whether they are “adiabatic”,
“under-” or “over-adiabatic” roughly suffer the same number
of gyrations (≈21) when crossing the ramp. The three se-
lected electrons differ from each other by their magnetic mo-
ment variation between upstream and downstream regions,
i.e. their ratioµds/µus , shown in panels (g, h and i). The
time range spent by the electron during the ramp crossing
(defined in panel b) has been reported in all panels (colored
orange area). The foot region is almost absent (the simula-
tion time t̃=6.28̃ω−1

pi has been chosen for such a reason) and
only leads to an increase in thev⊥ fluctuations ofµ, but with-
out modifing the mean value of this parameter. The impact
of this shock precursor will be not discussed in this paper.

The main differences between these particles can be de-
scribed as follows:

(i) “Adiabatic electron (panel (g) of Fig. 3). As the par-
ticle goes into the shock front (t̃≈5650̃ω−1

pe ), the fluctua-
tions of the ratioµ/µus increases but the main value remains
around 1. At the time the electron goes further into the down-
stream region (̃t>5900̃ω−1

pe ), it reaches a time-averaged value
of ≈1.2 until the end of the simulation.

(ii) “Over-adiabatic” electron (panel (h) of Fig. 3).
This process does not seem efficient for the period
5650̃ω−1

pe 6̃t65690̃ω−1
pe , which corresponds to the first part

of the ramp. It is in this particular region (where∇E>0) that
Lemb̀ege et al.(2003, 2004) have observed the demagnetiza-
tion process of the incoming electrons for an oblique shock.
We will see in Sect. 5 that such a process does not seem to
be a good candidate to explain the present “over-adiabatic”
electrons in a strictly perpendicular shock. Then, the mag-
netic moment ratioµ/µus continues to rise up almost to 4
in the second part of the ramp (where∇E<0) and reaches
its maximum value (µ/µus≈9) when the particle leaves the
overshoot and stabilizes around 7, further downstream.

(iii) “Under-adiabatic” behavior (panel (i) of Fig. 3). We
observe that the ratioµ/µus remains around 1, during the
first part of the shock ramp. As the electron penetrates into
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Fig. 3. Main characteristics versus time of selected electrons illustrating the three different types of transmitted electron populations (test
particles simulation). All particles see the same macroscopic fields and have roughly the same trajectory.(a) x-coordinate of the particles
(thin black line) and meanx-position of the shock front (thick pink line);(b) and(c) time history of thẽBtz andẼlx fields seen by the different
electrons.(d) to (f) and(g) to (i) show the time history of the perpendicular velocity and of the momentum ratioµ/µus respectively, where
µ=mv2

⊥
/2B andB is thelocal magnetic field seen by the particle. Black (panels d, g), red (panels e, h) and blue (panels f, i) colored plots are

used in order to identify the so-called adiabatic, over-adiabatic and under-adiabatic electrons respectively defined byµds/µus≈1, >1, <1
(µus andµds are, respectively, the upstream and the downstream value of the magnetic momentum).

the shock ramp at̃t≈5650̃ω−1
pe , the magnetic momenta ra-

tio suffers a drastical drop toµ/µus≈0.15 which takes place
during a short time range of several electron cyclotron pe-
riods (4̃t≈10̃ω−1

ce , whereω̃−1
ce is the local electron gyrofre-

quency, i.e. within the first half of the ramp too). A close
look of the perpendicular velocity (panel f) evidences that
this drop is essentially driven by a decrease in theV⊥ am-
plitude and not by a poor magnetic compression of a demag-
netized electron. This indicates that the “under-adiabatic”
process does not involve the magnetic field components, but
rather the action of the space-charge electric fieldElx . Fi-
nally, as the particle goes further into the downstream region,
the ratioµ/µus remains roughly constant. This particle is a
good example of “under-adiabatic” behavior, although some
similar particles exhibit the slight increase in their magnetic
moment ratioµ/µus in the downstream region. For them,
other downstream mechanisms have to be invoked which are
out of the scope of this paper.

The comparison of “under-” and “over-adiabatic” elec-
trons allows us to point out that the underlying processes
are not spatially correlated. Under-adiabatic behavior takes
place systematically within a very short time, within a

fraction of the first part of the ramp, and then, can be re-
lated to the impact of the shock on the particle dynamic.
On the other hand, the “over-adiabatic” behavior is a much
slower process, occurring within both the ramp itself and a
part of the downstream region. Obviously, the slow per-
pendicular energy changes involve other mechanisms. One
possibility concerns the wave-particle interactions. It is out
of the scope of this paper to investigate such wave activi-
ties. Nevertheless, it is important to bear in mind that in
self-consistent 2-D, full particle simulations (even integrated
along they-direction), electric and magnetic fluctuations are
present (along thex-direction). Such a fluctuation can effi-
ciency scatter particles, as demonstrated byKarimabadi et al.
(1992) and Krauss-Varban(1994) with the use of Monte-
Carlo simulations.

The “under-adiabatic” population is the most surprising
feature of a strictly perpendicular collisionless shock. In or-
der to investigate the role of the macroscopic electric field,
another test particle run has been performed, in which the
same electrons have been followed in absence of the longi-
tudinal electric field (̃Elx). Figure 4 shows, respectively, the
time evolution of the magnetic momenta ratioµ/µus for the
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m/mus

time

Figure 4

Fig. 4. Time evolution of the magnetic moment ratioµ/µus for the
same selected particles of Fig. 3 (panels g, h, i) in absence of the
electrostatic field component (̃Elx=0). In order to emphasize the
differences with Fig. 3, the same color code for the curves (black,
red and blue) is used.

same “under-adiabatic” (blue line), “adiabatic” (black line)
and “over-adiabatic” (red line) particles defined in Fig. 3. Of
course, this simplified simulation neglects many features of
a real collisionless shock. Nevertheless, some information
can be deduced: First, the adiabatic particle exhibits no no-
ticeable change in the ratioµ/µus in the two cases (̃Elx in-
cluded/excluded). Even if the individual trajectory is not the
same, the magnetic momentµ does not depend on the elec-
tric field component, in agreement with the adiabatic theory.
Second, the “over-adiabatic” (red) particle appears to have
an adiabatic behavior. This confirms that (i) thẽElx field
can extract some electrons from the adiabatic “soup” to force
these electrons to reach an overadiabatic level, and (ii) that
any turbulence at the shock front is not necessary in order to
obtain some overadiabatic electrons. Third, the most striking
feature is that the under-adiabatic electron behavior totally
disappears, which clearly evidences the key role of the elec-
trostatic field component.

Since all electrons see the same shock profile, one has to
determine how the electrostatic field contributes to the for-
mation of these different electron populations, and to identify
the main parameter connecting this field to theµ variation
and to the velocity phase angle in the velocity space. For this
purpose, a simple theoretical model is discussed in the next
section.

4 Theoretical model

In a first approach, we followCole (1976), where the mag-
netic field is supposed to be constant. This restrictive ap-
proximation has the avantage of simplicity and allows some
analytical solutions. This approach is valid as long as one
considers only transmitted particles which suffer nonadia-
batic processes on a time scale smaller than the magnetic
field changes at the shock front. However, in contrast with
Cole’s model, the electric field gradient∇E is not supposed
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locity. The upstream magnetostatic fieldBo is outside the simu-
lation plane.(b) Enlarged view of time history of the electrostatic
field component seen by the injected particles (thin line), within the
ramp. A best fit is performed with a 4th order polynom to get thean

coefficients used in our theoretical model and is represented by the
squares.(c) plot of the quantity= (Eq. 5) versus the injection angle
θinj andv⊥ (gyrating velocity). The adiabatic line (thick line) sep-
ares the two nonadiabatic populations: (i) the “under-” (blue dashed
lines) and the (ii) “over-adiabatic” electrons (red thin lines).
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to be constant at the ramp. Instead, the self-consistent time
varying electric field seen by the particles (fromPIC simu-
lations) is injected into the analytical equations.

Consider the motion of a charged particle of massm and
chargeq in an homogeneous magnetic field (B=Boez) and in
an electric field gradient (E=Elex). The equation of motion
is

m
dv

dt
=q[

n=N∑
n=0

ant
nex + v × Bo] ,

where the electric field is defined by the relation

Elx(t)=

n=N∑
n=0

ant
n .

WhenElx(t) is known and the magnetic field is assumed to
be constant, this equation can be easily solved and allows
us to determine all velocity components (vx , vy andvz). As
described in the Appendix, perpendicular velocitiesvx and
vy are a function of two independent parameters: (i) their
gyrating velocityV⊥ (in the particle’s frame) and (ii)θinj

defined in Fig. 5a which is the “injection” angle defined be-
tween the perpendicular velocityv⊥ and the normaln to the
shock front at the time the particle hits the leading edge of
the front. This angle is an important feature in the interac-
tion of the electrons with fields at the shock front. Then,
it is useful to compute the quantity= (in the moving refer-
ence frame of the shock) which is the difference between the
gyration velocity before and after the particles hit the shock
front. Assuming that the magnetic field is constant,= is sim-
ply the difference between the downstream and the upstream
magnetic momentµ when transmitted particles undergo the
effect of the electric fieldElx only.

For the electron population, we have the relation

=(v⊥, θinj )=v2
⊥

− v2
o⊥

=(v2
ex + v2

ey)gyrational− v2
o⊥

. (5)

Figure 5b shows the electric field (thick line) seen by
the particles as these cross the shock. This corresponds to
a fraction of the first part of the ramp (Fig. 1), just after
hitting the shock front, where electrons suffer a drastic
change in their magnetic moment. The time evolution of the
electric field of Fig. 5b is fitted by a 4th order polynom with
chi-square goodness of fit equal to 1.5×10−6. Using these
values in Eq. (5), the dependence of= versusθinj andv⊥ has
been plotted in Fig. 5c. The values=<0 (dotted lines) and
=>0 (thin lines) determine the region where “under-” and
“over-adiabatic” electrons can be, respectively, identified.
In this model, “adiabatic” particles are characterized by the
thick line (==0) separating the two nonadiabatic popula-
tions. This figure allows one to stress three main points.

(i) First, the =<0 region spreads fromθinj≈0◦ to
θinj≈90◦. No “under-adiabatic” electrons exist forθinj>90◦

for any perpendicular velocity value. In contrast, the “over-
adiabatic” population is clearly separated from the “under-
adiabatic” one and is observed for higher injection angles
(θinj>90◦).

(ii) The quantity =(v⊥, θinj ) is almost independent of
the v⊥ parameter, except for the very small values. When
v⊥<0.01, all transmitted particles lie in the domain=>0, i.e.
their perpendicular gyrating velocity increases. This can be
understood if one keeps in mind that the quantity= strongly
depends on the particle gyromotion via the velocitiesvx and
vy , as described in the Appendix. Whenv⊥ becomes very
small, the gyromotion term in Eqs. (A2, A3) exhibits only
the contribution of the electric field, and then are always pos-
itive.

(iii) Finally, it is worthwhile to note that adiabatic elec-
trons are almost independent of the upstream perpendicular
velocity forv⊥≥0.3, and are defined only for injection angles
around 90◦. Nevertheless, the lack of magnetic field gradient
in the model does not allow one to deduce relevant informa-
tion on this particular population.

It is clear that such a simple model cannot describe in
detail the electron dynamics at the shock front. Our model
overestimates the “under-adiabatic” population as compared
to the others, mainly because no magnetic compression is in-
cluded (Bo=cte). Nevertheless, in this paper, we appeal to
the global behavior of the transmitted electrons rather than
the exact amount of perpendicular gyrational kinetic energy
gain (loss) at the shock front. At that point, the model can
help us to emphasize the role of two parameters, namely the
initial perpendicular velocityv⊥ and the local injection angle
θinj . This last quantity plays a key role in understanding the
formation of “under-” and “over-adiabatic” electrons.

From this simple theoretical model, the two different pop-
ulations strongly depend on the electron position of the Lar-
mor gyro-radius circle at the time it hits the leading edge
of the shock front (i.e. injection angleθinj ), as reported
in Fig. 5. To obtain a first insight, we have reported in
Fig. 6 (bottom), the gyrating velocity (in the particle ref-
erence frame moving at the guiding center velocity) of the
particles in Fig. 3 at the injection time. Thev⊥ velocity gy-
roradius decreases (“under-adiabatic” electron) or increases
(“over-adiabatic” electron) during the first gyration within
the ramp. As the particles go deeper into the ramp, they see a
time increasing electric field. Consider an electron at rest in
the upstream region whose trajectory is represented in Fig. 6.
Then, in the dashed area (no dashed area) of the top panel,
the electron moves in the direction (opposite direction) of the
electrostatic field and then loses (gain) perpendicular kinetic
energy. This process essentially occurs within the first gyra-
tion as the electron penetrates the shock ramp and is injected
into anotherv⊥ velocity gyroradius. Slightly later, the elec-
tron will see roughly the same field profiles and will gain/lose
the same amount of energy through the magnetic and electric
field gradients, and the resulting motion (increase or decrease
of v⊥) will be amplified.

5 Multiple test particle approach

Since the injection angleθinj is an important parameter to
account for the existence of an “under-adiabatic” particle,
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Fig. 6. Sketch of the electron trajectory (in the reference frame mov-
ing with the particle) when the particles hit the shock front (injec-
tion time) for the nonadiabatic behavior. All nonadiabatic particles
with a perpendicular gyrating velocity (velocityv1 andv2) in the
left part of the plot (blue frame) will suffer a “under-adiabatic” be-
havior from the electrostatic field present in the ramp. Conversely,
the particles (velocityv3 andv4) in the right part of the plot (red
frame) will be “over-adiabatic” under the action of the shock ramp
electrostatic field. The green arrow represents the direction of the
supercritical shock propagation. At the bottom, an enlarged view
of the velocity space (several electron gyroperiodsτce) is plotted
before and after the particle hits the shock ramp. The gyromotion
around the injection time (i.e. in the upstream region just before
the electron enters the ramp) and the first full gyration performed
within the ramp are indicated, respectively, by a thick orange line
and a thick dotted blue line.

we have performed similar test particle simulations and ana-
lyzed a spherical shell (in the velocity space) of 580 individ-
ual electrons (Fig. 7a) instead of one test particle. A caveat
is the fact that herein, the electrons do not fill the whole
maxwellian upstream distribution, but instead only one par-
ticular part or shell (they have the sameṽshell). The depen-
dence on the shell radiusvshell will be analyzed by launching
a run with different shell radii as discussed later.

Our approach enables us to cover all different gyrating ve-
locities fromṽ⊥o=0 to ṽshell, i.e. to analyze the impact of the
phase angles in the velocity space. Indeed, in a strictly per-
pendicular shock, all particles which belong to the same ring
in the velocity space will have the sameṽ⊥ when they hit the
shock front. Simultaneously, since a ring covers different in-
jection angles fromθinj=0◦ to 180◦, a comparison between
the theoretical model (Fig. 5c) and the present simulation re-
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Fig. 7. (a) A spherical shell of 580 electrons (test particles) is
located at̂x=2004, upstream from the front of the moving su-
percritical collisionless shock. The shell is aligned along the up-
stream magnetic field (Bo), (b) reference frame used for the spher-
ical shell (radiusvshell), (c) initial upstream location (θv , φv) of
electrons versus their final state in the downstream region. This
downstream state is indicated by the color code identifying the adi-
abatic (black), “under-” (blue) and “over-adiabatic” (red) electrons,
as used in Fig. 1. We compute the mean value ofµ in the down-
stream region over lots of gyrations, from the overshoot to the end
of the simulation.

sults is directly possible. In order to simplify the representa-
tion of the particles in the velocity space, we have projected
the spherical shell on the planeθv, φv, where the phase angles
θv andφv are, respectively, defined by the angle between the
vectorv and the plane perpendicular toB, and by the angle
between the projection ofv in the perpendicular plane and
the direction of the shock normaln (see Fig. 7b).

A spherical shell of radius̃vshell=0.26 is used at the same
position as the previous test particles of Sect. 3 (X̃=200̃4).
For MA≈5.14, the number of nonadiabatic electrons rep-
resents about 44% of the total transmitted electrons (for
θBn=90◦, no incoming electrons are reflected), with 26%
“over-adiabatic” and 18% “under-adiabatic”.

Figure 7c represents locations of components of the up-
stream electrons (each dot stands for an individual particle).
In this configuration, only 2 electrons have a velocity exactly
aligned along the magnetic fieldB for exactlyθv=±90◦ and
φv=0◦ (̃v//=ṽshell). Note that the colors used are similar to
those in previous figures. Figure 7c allows one to emphasize
three important points.
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(i) Even for a high Mach numberMA≈5.14, adiabatic
electrons form almost half of the total transmitted electrons
(about 56%). These electrons are initially localized within
the range−50◦

≤θv≤50◦ for all values of the angleφv. This
means that an adiabatic electron is defined by a high perpen-
dicular velocity component, or, in other words, by an ini-
tial pitch angleθB̂v=(B̂, v) (defined by the angle between
the magnetic field and the velocity vector) within the range
40◦

≤θBv≤130◦ (θB̂v=90◦
−θv). It is important to emphasize

that since the adiabatic population is not dependent on the
angleφv, it is also nondependent on the injection angleθinj

(linked toφv). Then the initial pitch angle determines which
particle will have an adiabatic or a nonadiabatic behavior but
is not a relevant parameter to distinguish between the “under-
” and “over-adiabatic” populations.

(ii) The “over-adiabatic” electrons represent a smaller
population. They are localized at highθv (|θv|≥50◦ and
−80◦

≤φv≤80◦), i.e. have a small, initial Larmor gyroradius
(their velocity is mainly aligned along the magnetic field).

(iii) About 18% of all transmitted electrons exhibit an
“under-adiabatic” behavior. The initial repartition of these
electrons covers roughly the same broad rangeθv angles as
the “over-adiabatic” population (θv>50◦). It is interesting to
note that when a spherical shell is launched at 34̃, before
the present shell (not shown here), the repartition of the “un-
der” and “over-adiabatic” populations in the velocity space
(θv, φv) is roughly reversed. This spatial range (34̃) cor-
responds to the distance covered by the shock front during
half an electron gyro-period (1/2τce). During this time, the
spherical shell rotates by 180◦, which changes the locations
of the nonadiabatic electrons within the velocity space when
these hit the shock front (i.e. they are coming from the op-
posite side of the shell). This feature emphasizes the strong
dependance of the nonadiabatic electrons versus the injection
angle.

The understanding of the final downstream state requires
one to investigate the local conditions, in terms of particle
velocity and magnetic/electric field profiles seen by the par-
ticles at the injection time. These conditions are summa-
rized in the Fig. 8 which shows characteristic parameters:
(i) those defining the electron itself (i.e. the perpendicular
velocity and associated quantities) and (ii) those describing
the interaction between electrons and the electromagnetic
fields (i.e.µ). Panel (a) shows the locations that the different
electron populations (color refers to their downstream adia-
batic/nonadiabatic state) occupy within the perpendicular ve-
locity plane (̃v⊥1, ṽ⊥2) at the injection time. Let us keep in
mind that all particles have the same velocity (ṽshell=0.26)
and see exactly the same shock profiles (all magnetic and
electric field components), whereas only the gyrating veloc-
ity around the magnetic field (thẽv⊥ component) varies from
one particle to another (i.e. from one circle to another). The
following considerations can be made:

– “Under-adiabatic” electrons (blue dots) are mainly lo-
calized in thẽv⊥1>0 direction and are approximately
distributed along thẽv⊥2 direction. However, these

do not exhibit any strong dependency versusṽ⊥2 val-
ues (note that the shock velocity corresponds to about
ṽ⊥2≈0.38). In summary, the “under-adiabatic” pop-
ulation has an initial perpendicular velocity spreading
within a largẽv⊥ range (0.056ṽ⊥60.26). This means
that ṽ⊥ is definitively not relevant for identifying the
“under-adiabatic” population.

– On the other hand, a large part of the “over-adiabatic”
electrons (red dots) are localized around the origin of
the perpendicular velocity space (small initial pitch
angle) and form almost the first circle of our shell
(̃v⊥≈0.05).

– Finally, the adiabatic population (black dots) fills the
whole velocity space and no clear separation can be
made between adiabatic and nonadiabatic particles from
this diagnostic.

The important role of the upstream pitch angleθB̂,v in sep-
arating adiabatic and nonadiabatic particle is illustrated from
Fig. 7c. Nonadiabatic populations are essentially localized
in the rangesθv>30◦ andθv<−30◦, whereas the adiabatic
population lies more or less in the range−30◦

≤θv≤30◦.
Then the nonadiabatic (adiabatic) populations are character-
ized by a parallel component of the velocityv// higher than
the perpendicular componentv⊥ (v⊥>v//). However, the
pitch angleθB̂,v is irrelevant to separate “under-” and “over-
adiabatic” populations.

In order to obtain a more quantitative insight into the
nonadiabatic electrons, one must separate both populations
(“under-” and “over-adiabatic” populations) at the injection
time and not versus upstream parameters only. Figure 8b
plots theµds/µus ratio versus the injection angleθinj . The
most prominent effect concerns the “under-adiabatic” parti-
cles whoseθinj is clearly limited to the range 0◦≤θinj≤90◦,
whereas the “over-adiabatic” population is essentially within
the range 60◦6θinj6180◦. At this stage, we have to point
out that “over-adiabatic” particles exhibit a continuous in-
crease in their magnetic moment through the shock after the
drop ofµ/µus within the first half of the ramp (see Fig. 3h).
Then the resulting downstream valueµds (and associated ra-
tio µds/µus) cannot be used as a precise criterium since it
does not maintain a history of the local injection conditions
at the ramp (angleθinj ). This may explain the presence of
some “overadiabatic” electrons with an injection angle be-
low 90◦. More precisely, these electrons spread out over a
wide angular range (50◦<θinj<180◦), but their density de-
creases when approaching extrema angular values (50◦ and
180◦), as shown in Fig. 8b.

On the other hand, adiabatic particles are observed for all
possible angles fromθinj=0◦ to 180◦. Obviously, this pop-
ulation is totally independent of the angleθinj , which is co-
herent with the adiabatic scenario where the gyration energy
is only proportional to the total magnetic field.
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6 Summary and discussion

It is the first time, to our knowledge that, “under-adiabatic”
particles are identified in strictly perpendicular shock condi-
tions. Such a population cannot be explained theoretically
by the energy conservation because we need an electric com-
ponent parallel to the magnetic field to accelerate particles
alongB (Sect. 1) and another source mechanism needs to be
invoked. As shown in this paper, the relevant parameter is the
injection angleθinj , the angle between the gyrating velocity
and the normal of the shock when the particle hits the ramp.

Lemb̀ege et al.(2003) have recently shown the impor-
tance of the electric field gradient amplitude within the shock
ramp for the “demagnetization” of the incoming electrons.
These authors observe that some transmitted electrons suf-
fer a slowing down of their effective gyro-frequency within
the first part of the ramp. Such demagnetized electrons have
been invoked as potential candidates for the nonadiabatic
population. However, these results are not recovered in this
study, which shows that the electric field seen by the elec-
trons varies over a much longer time scale (covering≈21̃τce)
than the local electron gyration period. Then the existence
of the present nonadiabatic electrons cannot be explained by
the “demagnetization” process involved in the positive elec-
tric field gradient present in the first part of the ramp. This
discrepancy may be explained as follows. The analysis of
Lemb̀ege et al.(2003) has been made for an oblique shock

and for a lower mass ratio (mi/me=42), and the magnetic
momenta ratio diagnostic has not been used at that time. This
is in contrast with the present analysis based on a strictly
perpendicular shock and the use of a much higher mass ra-
tio (mi/me=400). First, for an oblique shock, demagnetized
electrons suffer a strong acceleration along the magneticB

field. Such an acceleration cannot occur in a strictly perpen-
dicular shock, and the particle dynamic is totally different
whenθBn changes from 90◦ to the oblique case (θBn<90◦).
Second, the dynamics of the two populations (ions and elec-
trons) are more clearly separated for a higher mass ratio. For
clarifying the situation, we have performed an additional 2-
D PIC simulation of a strictly perpendicular shock, using
now a lower mass ratio (mi/me=42) identical to that used
by Lemb̀ege et al.(2003). Comparison between both simula-
tions (mi/me=400 and 42) shows that the maximum ampli-
tude of the electric field gradient measured in the first part of
the ramp (not shown here) is roughly the same (∇E≈0.1).
However, the time which during electrons see the electric
field is higher formi/me=400 (4t≈15̃τce, whereτ̃ce is the
local gyro-period computed inside the first part of the ramp)
than for the low mass ratio (4t≈6̃τce for mi/me=42). As
a consequence, the low mass ratio overestimates the demag-
netization process in the final downstream state of the parti-
cles. Nevertheless, it is important to emphasize that all re-
sults, including the identification of adiabatic, over-adiabatic
and under-adiabatic electrons, are fully recovered for the low
mass ratio. Both kinds of simulations are qualitatively in
good agreement and exhibit the same sensitivity to the in-
jection angleθinj . However, a third question on “how injec-
tion criteria vary for an oblique shock”, in order to evidence
the two nonadiabatic populations, is still unanswered and is
under active investigation at the present time.

6.1 Impact of the velocity phase (for a given shell radius)

In the test particle reference frame, all particles belonging to
the same ring within the velocity space (ṽ⊥1, ṽ⊥2) have the
samẽv⊥o at the time they hit the shock ramp. Moreover,
since a ring covers different injection angles fromθinj=0◦ to
180◦, a comparison between the theoretical model (Fig. 5c)
and the numerical results (Fig. 8b) is directly possible. The
following conclusions can be made.

First, some systematic discrepancy appears concerning the
adiabatic population even for a strictly perpendicular shock.
In numerical results, the adiabatic population spreads out
within the range 0◦≤θinj≤180◦, whereas theory predicts its
existence mainly aroundθinj≈90◦ for all thermal velocity.
As already pointed out in Sect. 5, our model is not appropri-
ate to analyze this particular population.

Second, a relatively good agreement is obtained con-
cerning the nonadiabatic electrons. From Fig. 8b, “under-
adiabatic” electrons are observed belowθinj≈100◦ while
“over-adiabatic” electrons are localized within a larger range
(50◦

≤θinj≤180◦ ). From Fig. 5c, “under-adiabatic” (“over-
adiabatic”) electrons are defined forθinj≤90◦(>90◦). At this
point, it is important to emphasize the poor sensitivity of the
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critical valueθcrit
inj ≈90◦ to the order of the polynom expan-

sion of the electric field (Elx(t)=
∑n=N

n=0 ant
n). A plot of the

quantity=(vthe, θinj ) (not shown here) for different values of
n (n>1) leads to the conclusion that the two opposite behav-
iors (=<0 and=>0, respectively) are always present for any
value ofn. Only the value of the cutoff (==0), separating
the two populations, has to be refined to fit the numerical re-
sults. As evidenced, both “under-” and “over-adiabatic” pop-
ulations may be considered as a common feature of particles
injected into an electric field gradient.

Third, the function=(v⊥, θinj ) (Fig. 5c) is nearly insen-
sitive to the perpendicular velocity for an injection angle in
the range 0◦≤θinj≤60◦. Since many particles of the spheri-
cal shell are lying in this injection angle range, the number
of “under-adiabatic” electrons is high, as evidenced by the
number of blue dots present forθinj≤60◦ in the Fig. 8b. Con-
versely, for 60◦≤θinj≤90◦, less particles are able to check
simultaneouslyθinj andṽ⊥ conditions, and an important re-
duction of blue dots is observed in Fig. 8b.

We therefore conclude that the most important parameter
which identifies the“under-adiabatic” electrons is the local
injection angle at the time they hit the shock ramp. Even if
the physical picture inferred from our oversimplified model
cannot directly apply to a real collisionless shock wave, the
deduced arguments provide useful insight into the physics
and clarify the role of the injection angleθinj to separate the
two nonadiabatic populations.

6.2 Impact of the thermal velocity (variation of the sphere
radius)

A given spherical shell (fixed radius) allows us to investi-
gate all possible injection angles, but is intrinsically lim-
ited in identifying which part of the upstream distribution
function is responsible for the different transmitted electron
populations. Then, in order to cover the whole upstream
electron distribution function, we have simulated a series of
shells with different radii from 0.01 to 1.3. Figure 9 sum-
marizes the results and plots the percentage of adiabatic and
nonadiabatic populations versus the radius of the shellṽshell.
The vertical dashed line represents the value of the ther-
mal velocity of the upstream electron distribution function
(̃vthe,us≈0.52). Clearly, two different velocity domains can
be defined: (i)̃vshell<ṽthe,us, where most transmitted elec-
trons exhibit a nonadiabatic behavior and (ii)ṽshell>ṽthe,us
where almost all particles have approximately an adiabatic
behavior (we reach an asymptotic slope to≈100%). This
indicates that the influence of the electrostatic field poten-
tial on transmitted electrons decreases as the shell velocity
increases. In other words, the breakdown of adiabaticity
is mainly controlled by all electrons (independently of the
phase or injection angle) located in the body of the distri-
bution, in agreement with previous theoretical works (Cole,
1976; Gedalin et al., 1995b; Balikhin et al., 1998). Then
suprathermal electrons (ṽshell>ṽthe,us) and electrons in the
distribution tail do not contribute to the adiabaticity break-
down.
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Fig. 9. Percentage of adiabatic, “under-” and “over-adiabatic” elec-
trons versus the shell radiusvshell. The same color code (black,
red, blue) defined in Fig. 3 is applied for the three electron popula-
tions. The middle panel illustrates the upstream electron distribu-
tion function and the different values ofvshell used for scanning the
distribution. The vertical green dashed line stands for the thermal
velocity of the upstream electron distribution function (ṽthe). Three
different domains can be evidenced: (i) at low velocity, the electro-
static field dominates and no under-adiabatic electrons are observed,
(ii) at intermediate values, both electric and magnetic field influ-
ence the electron dynamic and the three populations are identified,
and finally, (iii) for the larger velocity, the impact of the electric
field becomes insignificant, where all transmittted electrons suffer
an adiabatic compression.

Finally, a closer inspection of Fig. 8 shows that the per-
centage of “under-adiabatic” (“over-adiabatic”) electrons de-
creases (increases) drastically asṽshell approaches to 0. This
feature can be explained with the simple theoretical model of
Sect. 3, which evidences that electrons cannot lose gyration
energy for very small upstream gyrating velocities. In other
words, the impact of the electric field becomes dominant for
very smallṽ⊥ (through the termsCo andC1, see Eq. (A2)
and (A3) in the Appendix), and the resulting energization is
always equal or higher than the adiabatic level. According
to this result, the deep core of the electron distribution func-
tion (i.e. ṽ⊥60.01) is not able to produce “under-adiabatic”
particles, as evidenced by the decrease of this population in
Fig. 9.

We have clarified the origin of nonadiabatic behavior of
transmitted electrons by the cross-shock potential at a per-
pendicular shock. This effect is a direct result of the injection
conditions of the electrons in the strong electric field within
the shock ramp. It is important to keep in mind that the pro-
cesses responsible for the adiabaticity breakdown have been
presently analyzed for a strictly perpendicular shock, and
for stationary field profiles, taking into acccount the spatial
variations of the field components along the shock normal
direction only. Other intrinsic features, such as the large-
scale nonstationarity of the shock front (self-reformation
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ted nonadiabatic electrons, injection angleθinj clearly separates
the “under-” and the “over-adiabatic” behavior which appears un-
der and over 90◦, respectively.

alongx) and the small-scale nonstationarity/nonuniformity
of the shock front (rippling alongy) observed in full parti-
cle simulations (see Figs. 1 and 2), have been removed on
purpose in our test particle simulations. This means that tur-
bulence within the shock front (induced by local microinsta-
bilities, as observed byScholer et al.(2003)) is not a neces-
sary ingredient for the breakdown of adiabaticity. Thus, the
higher-order irreversible dissipation provided by wave parti-
cle interactions has been removed; in particular, wave parti-
cle effects, which cool the electron distribution function (by
filling the void of inaccessibility) (Scudder et al., 1986b,a,c)
has been excluded.

Analysing in detail not only the time evolution of the field
components seen by the electrons but also the quantities char-
acterizing these particles, has led us to the following conclu-
sions. First, a positive magnetic field gradient can only lead
to the formation of adiabatic and/or “over-adiabatic” elec-
trons. Only the electric field gradient in the ramp can be
responsible for the formation of “under-adiabatic” electrons.
Second, three different classes of nonadiabatic/adiabatic par-
ticles can be defined for directly transmitted electrons, de-
pending of three key parameters as sketched in Fig. 10. The
first key parameter which allows one to distinguish these
classes is the relative electron velocity amplitude with re-
spect to the thermal velocity of the upstream distribution.
Only the core of the upstream electron distribution func-
tion (v≤vthe) can have a nonadiabatic behavior, and even
in this case, adiabatic particles are always observed with
a velocity not aligned to theB field (i.e. a pitch angle in
the range 40◦≤θB̂v≤130◦). Suprathermal and tail electrons
(v>vthe) have an adiabatic behavior. The second key param-
eter for separating adiabatic/nonadiabatic electrons is the up-
stream pitch angle of the particle for a given shell radius.
Electrons with a parallel velocity component higher (lower)
than the perpendicular component will be nonadiabatic (adi-

abatic). In summary, an appropriate combination of these
parameters, relative particle velocity versus the thermal ve-
locity of the upstream distribution function and the upstream
pitch angle, may provide an indication as to which part of
the upstream distribution function will contribute to the adi-
abatic/nonadiabatic electron populations. However, no up-
stream parameter will allow one to separate under- and over-
adiabatic electrons. Therefore, a third key parameter is nec-
essary: the injection angleθinj of the electron velocity pre-
cisely defined at the time the electron hits the shock ramp (in-
jection time). We observe that particles with a small injection
angle,θinj≤90◦, have mainly a “under-adiabatic” behavior,
whereas those with high injection angles,θinj>90◦, have an
“over-adiabatic” behavior.

We have focussed the present analysis on the individual
electron dynamics (trajectory and velocity features) and not
on their statistical variation in the velocity space (distribution
function). Therefore, the analysis of adiabaticity breakdown
through the notion of temperature (statistical approach) is un-
der active investigation and will be presented in a forthcom-
ing paper.

Appendix A Equation of motion in the theoritical model

In our model, we consider a constant magnetic field along
thez axis (B=Boez), and an electric field aligned along thex

axis (E=Elex). The electric field gradient is also along this
direction, which is the direction of the shock front normal.
In order to compare further with our numerical simulations,
we use a time power series of Nth order to fit the electric
field (obtained in our 2-D full particle simulation) seen by
the electrons through the ramp.

The equation of motion of a charged particle of massm

and chargeq in this electromagnetic field configuration is:

m
dv

dt
=q

[
n=N∑
n=0

ant
nex + v × B0

]
,

where the electric field is given by:

Elx(t)=

n=N∑
n=0

ant
n .

Since the magnetic field is assumed to be constant, this
equation can be easily solved and allows us to determine
the velocity components (vx , vy and vz) versus the initial
parameters. In a perpendicular configuration, no acceleration
is possible along thez direction and we havevz=cte=voz.
Along the other directions, the equation of motion yields to
the system{

dvx

dt
=

q
m

∑n=N
n=0 ant

n
+

q
m

B0vy
dvy

dt
= −

q
m

B0vx

.
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Since we are interested herein only in electrons (q=−e

and m=me), vy becomes the solution of the second order
differential equation:

d2vy

dt2
+ ω2

cvy = +
e

me

ωc

n=N∑
n=0

ant
n , (A1)

where ωce=eBo/me is the electron cyclotron frequency.
Then, the perpendicular velocity components are defined by:

vex= − [vo⊥ cosθo − Co] sin(ωct)

−
1
ωc

[
C1 + ρcω

2
c sinθo

]
cos(ωct)

−
e
m

∑n=6
n=0 (BoCn + an)

tn+1

n+1
+vo⊥ sinθo +

1
ωc

[
C1 + ρcω

2
c sinθo

] (A2)

and

vey= [vo⊥ cosθo − Co] cos(ωct)

−
1
ωc

[
C1 + ρcω

2
c sinθo

]
sin(ωct)

+
∑n=N

n=0 Cnt
n ,

(A3)

with the coefficientsCn solution of Eq. (A1). These coeffi-
cients can be easily computed, assuming that electrons have
a cyclotronic gyroradiusρce=v⊥/ωce in the upstream region,
so that:

vex(t = 0)= v⊥ sinθinj

vey(t = 0)= v⊥ cosθinj
dvey

dt

∣∣∣
t=0

= −ρcω
2
ce sinθinj

.

In this equation set,θinj is the so-called injection angle, the
angle between the perpendicular velocity and thex-axis at
the time the particle hits the shock front (injection time). Af-
ter some algebra, we can express theCn parameters versus
the electric field coefficientsan seen by the injected electrons
as a series

Cn= −
1
ωc

an −
1
ω2

c
(n + 2)(n + 1)Cn+2

n ≤ N − 2
Cn= −

1
ωc

an

n>N − 2 ,

whereN is the power of the time series defining the elec-
tric field andn an integer varying from 1 toN .

Equations (A2) and (A3) point out the following results.
Three parts contribute to the perpendicular velocity com-
ponents: (i) a modified oscillating periodic motion, (ii) an
acceleration or deceleration, depending on the coefficients
Cn along thex-axis and (iii) an accelerated/decelerated drift
along they-axis. It is out of the scope of this paper to investi-
gate the particle acceleration within a temporal electric field
gradient, so we focus only on the oscillating part. We also
note that when allan coefficients are zero, then theCn coef-
ficients vanish, and Eqs. (A2) and (A3) reduce to the well-
known uniform gyro-motion with the frequencyωce (i.e. no
electric field∇El=0).

These equations evidence some perturbations of the parti-
cle gyrating velocity (i.e.v⊥) as the particle enters the elec-
tric field gradient region. Indeed, in the particle reference

frame moving with the drift velocity, particles perform gyra-
tions with a velocity varying according to the values of the
coefficientsC0 andC1. Consequently, the first adiabatic in-
variantµ is modified. The coefficientsC0 andC1 are ob-
tained by looking for the best fit of the electric field seen
by injected electrons, as shown in Sect. 4. As far as the
theoretical model is concerned (first part of the ramp) only,
the increase in the electric field also leads to two important
features: (i) an acceleration along thex-axis due to the dif-
ference between the foreward (opposite direction ofE) and
downward (direction ofE) particle gyromotion, and (ii) an
acceleration in theE×B direction due to the Lorentz force,
as described by Eqs. (A2) and (A3).
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