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Abstract

We use the recently introduced advising scheme framework for measuring the difficulty of
locally distributively computing a Minimum Spanning Tree (MST). An (m, t)-advising scheme
for a distributed problem P is a way, for every possible input I of P, to provide an ”advice”
(i.e., a bit string) about I to each node so that: (1) the maximum size of the advices is at most
m bits, and (2) the problem P can be solved distributively in at most t rounds using the advices
as inputs. In case of MST, the output returned by each node of a weighted graph G is the
edge leading to its parent in some rooted MST T of G. Clearly, there is a trivial (⌈log n⌉, 0)-
advising scheme for MST (each node is given the local port number of the edge leading to the
root of some MST T ), and it is known that any (0, t)-advising scheme satisfies t ≥ Ω̃(

√
n). Our

main result is the construction of an (O(1), O(log n))-advising scheme for MST. That is, by only
giving a constant number of bits of advice to each node, one can decrease exponentially the
distributed computation time of MST in arbitrary graph, compared to algorithms dealing with
the problem in absence of any a priori information. We also consider the average size of the
advices. On the one hand, we show that any (m, 0)-advising scheme for MST gives advices of
average size Ω(log n). On the other hand we design an (m, 1)-advising scheme for MST with
advices of constant average size, that is one round is enough to decrease the average size of the
advices from log n to constant.
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1 Introduction

In their seminal paper, Naor and Stockmeyer [16] aimed at determining what can be computed
locally, that is at determining what problem in distributed networks can be solved with each
node exchanging information with only nodes at bounded distance from it. In particular, they
proved that randomization does not help for locally checkable problem (LCL)1: if there is a local
randomized algorithm in O(t) rounds and bounded error probability, then there is a deterministic
one in O(t) rounds as well. Despite the limitations induced by the locality constraint, [16] proved
that non-trivial LCL problems such as weak-coloring (a basis for a solution to a certain resource
allocation problem) can be solved in constant time. This is in contrast with the standard coloring
problem for which Linial [14] showed that, for any fixed c ≥ 1, one cannot c-color properly an
n-node ring in less than Ω(log⋆ n) rounds, i.e., nodes must consider their Ω(log⋆ n)-neighborhood.
More recently, Kuhn et al. [13] exhibited other problems that cannot be computed within a fixed
neighborhood. For instance, minimum vertex cover, and minimum dominating set can basically
not be well approximated locally. In time O(k), the approximation factors are at least Ω(nc/k2

/k),
with c > 1/4 and Ω(∆1/k/k), respectively, where ∆ is the maximum degree of the graph.

Another framework was recently introduced in [9] for investigating tradeoffs between compu-
tation time and local knowledge: distributed computing with advice. In this framework, a priori
knowledge about the instances of the problem is given to the nodes by an oracle. The oracle O
looks at the entire network G and assigns to every node v ∈ V (G) some information, coded as a
string of bits O(G, v). The amount of knowledge given to a network G is measured either as the
sum (or average) of the lengths of all the strings it assigns to nodes, or as the maximum length
of all the strings. Solving a network problem P using oracle O consists in designing an algorithm
that is unaware of the network G but solves the problem P for it, as long as every node v of the
network G is provided with the string of bits O(G, v). In particular, [9] shows that broadcasting
in n-node graphs can be performed with O(n) message complexity by simply giving a constant
average amount of advice to each node, whereas, to be performed with O(n) message complexity,
the wake-up task requires an average of Ω(log n) bits of advice per node. This demonstrates that
the framework of advising scheme enables to measure the amount of knowledge required to solve
a specific task, and to compare tasks that look very similar at a first glance (in absence of advice,
the broadcast and wake-up problems require both Θ(E) messages in E-edge graphs).

An (m, t)-advising scheme for a distributed problem P is a pair (O,A), where O is an oracle, and
A is an algorithm using the advices of O for solving P such that the maximum size of the advices is
at most m bits, and the problem P can be solved distributively in at most t rounds by A using the
advices as inputs. The objective is to establish tradeoffs between the amount of knowledge given
to the nodes, and the time required to solve the problem. In this paper, we investigate the local
computation of a minimum spanning tree (MST) in an edge-weighted network, in the framework
of distributed computing with advice.

Our model is the same as the standard one in [13, 14], plus a predefined port labeling. We
consider networks modeled as n-node edge-weighted connected simple graphs with no self-loops.
Nodes of a network G = (V,E) have (non-necessarily distinct) IDs. The deg(u) edges incident to
node u ∈ V (G) are locally labeled by deg(u) distinct labels, called port numbers. The port number

1LCL problems are problems on graphs of bounded degree whose solutions can be checked by each node via

investigations within a fixed radius around it.

1



at u of the incident edge e is denoted by portu(e). Each node u ∈ V (G) knows its ID, and the
weight w(e) of each of its deg(u) incident edges e, identified by its port number. As in most previous
works aiming at investigating local computation, we assume synchronous distributed computations
proceeding in successive rounds in which the local computations times are negligible in front of the
communication times, i.e., the complexity of a problem is computed in terms of number of rounds.
At each round, every node u acts as follows: (1) it sends through each of its incident edge e = {u, v}
a message Me, (2) it receives the message M ′

e sent by the other extremity v of edge e, and (3) it
performs local computations based on all data collected since the beginning of the execution of the
algorithm. There is no limit on the volume of information that can be transmitted along an edge
at each round, i.e., we assume the LOCAL model defined in [17]. However, all our algorithms send
at most O(log n) bits through each edge at each round, and therefore all our upper bounds apply
to the CONGEST model [17] as well.

In the model above, the MST problem requires to compute an upward tree representation of
a minimum spanning tree T of the network, i.e. each node u ∈ V (G) of the network G = (V,E)
must output the port number of the edge of T leading to its parent, excepted the root r itself that
should simply output that it is the root. In addition to its own ID, and the weights of its incident
edges, each node u ∈ V (G) is given a bit-string O(G, u) corresponding to the advice given by the
oracle O to node u about the network.

In this model, there is a straightforward (⌈log n⌉, 0)-advising scheme (O,A) for MST in which
each node is given by O the rank of the edge leading to the root of some MST T . Precisely, for
an edge e incident to u ∈ V (G), we define indexu(e) = (xu(e), yu(e)) where xu(e) is the rank of
the weight w(e) of e among all the weights of the edges incident to u, and yu(e) is the rank of
the port number of edge e among all the edges of weight w(e) incident to u. The straightforward
(⌈log n⌉, 0)-advising scheme (O,A) selects any MST T , and selects one node r as the root of T .
O gives to every node u ∈ V (G), u 6= r, the bit-string corresponding to the binary representation
of the rank ru(e) ∈ {1, . . . ,deg(u)} of indexu(e), among all the indexes of the edges incident to u,
where e is the edge incident to u that leads to the parent of u in T . Then A computes at each node
u the port number or the edge having rank ru(e).

On the other hand, it is proved that, in the CONGEST model, (0, t)-advising scheme satisfies
t ≥ Ω̃(

√
n) [18]. In the LOCAL model, of course there is a (0, D+1)-advising scheme for all graphs

of diameter D, and having distinct node IDs2.

1.1 Our results

Our main result is the construction of an (O(1), O(log n))-advising scheme for MST in the
CONGEST model. That is, by only giving a constant number of bits of advice to each node,
one can decrease exponentially the distributed computation time of MST in arbitrary graph, com-
pared to algorithms dealing with the problem in absence of any a priori information.

We also consider the average size of the advices. On one hand, we show that, for any m ≥ 0,
any (m, 0)-advising scheme for MST gives advices of average size Ω(log n). On the other hand we
design an (O(log2 n), 1)-advising scheme for MST with advices of constant average size, that is one

2The node IDs are used to break symmetry; In the anonymous ring with all edge-weights the same, there is no

way to break symmetry.
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round is enough to decrease the average size of the advices to constant.

1.2 Related works

One can rephrase many recent results of the literature in the framework of advising schemes. For
instance, a (⌈log n⌉, 0)-advising scheme, with average advice length O(log log n) bits, is described
in [3] for computing a spanning tree. It is also easy to extract a (2, 1)-advising scheme for spanning
tree (with average advice length 4

3) from the proof of the main result in [4]. [10] considers the
competitive ratio of the exploration time of a robot unaware of the topology compared to a robot
knowing the map of the graph. A (k, α)-advising scheme for exploration uses a robot that is given k
bits of advice, and performs exploration in a number of moves at most α times the optimal number
of moves. [10] describes a (O(log log D), α)-advising scheme for exploration of diameter-D trees,
with α < 2, and prove that, for any ǫ > 0, any (k, 2 − ǫ)-advising scheme for exploration satisfies
k ≥ Ω(log log D).

Regarding the MST problem, the classical algorithm by Gallager, Humblet, and Spira [12] pro-
ceeds in O(n log n) rounds with constant size messages. [5] improves this result with an algorithm
proceeding in O(n log log n) rounds. Yet another improvement was achieved in [11], with an algo-
rithm in O(n log⋆ n) rounds. [7] gives an algorithm in O(µ(G) log3 n + log n ·

√

n log⋆ n/B) rounds
in the CONGEST (B) model, where µ(G) is the MST-radius of G. [8] considers approximation of
MST. It is shown that approximating MST within a factor k takes at least Ω(

√

n
kB ) rounds, and

at most O(D + Wmax

k−1 · log⋆ n) rounds, where D is the diameter and Wmax is the maximum weight.

[18] presents several lower bounds. In particular, Ω(
√

n
B ) rounds are required for computing MST in

graphs of unweighted diameter O(nδ), 0 < δ < 1/2, and at least Ω(
√

n
B log n) rounds are required for

graphs of unweighted diameter O(log n). These results were improved in [15] where it is shown that
at least Ω(n1/3/B) rounds are required for graphs of diameter at most 4, and at least Ω(n1/4/B)
rounds for graphs of diameter at most 3.

2 Advising schemes with small average size

In this section, we first prove that the aforementioned straightforward (⌈log n⌉, 0)-advising scheme
(O,A) for MST is actually optimal even if one considers not the maximum size of the advices
maxv∈V (G) |O(G, v)|, but instead the average size of the advices 1

n

∑

v∈V (G) |O(G, v)|. On the other

hand, we present an (O(log2 n), 1)-advising scheme for MST with advices of constant average size.

2.1 Lower Bound on the Average Size

Theorem 1 For any n-node graph G, and any m ≥ 0, any (m, 0)-advising scheme for computing
an MST of G gives advices of average size Ω(log n). This result holds even if all edge-weights are
pairwise distinct.

Proof. Let Gn be the network with 2n nodes u1, . . . , un, v1, . . . , vn , n ≥ 1, defined as follows. Let
Kn be the complete graph of n nodes. Let (x1, . . . , xn) be an hamiltonian path of Kn. This path is
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Figure 1: The graph Gn in the proof of Theorem 1.

called the spine of Kn. Let An and Bn be two copies of Kn, with respective spines u1, . . . , un and
v1, . . . , vn. Gn consists of the graphs An and Bn connected by the edge {u1, v1}, see Figure 2.1.

The edge-weights in Gn are assigned as follows. We set w({u1, v1}) = 0. Let ω be any positive
integer. For every i, 1 ≤ i ≤ n, let ai = ω2 − (i + 1)ω + 1 and bi = ω2 − iω. For all 1 < i ≤ n,
w({ui, ui−1}) and w({vi, vi−1}) can be any integer in [ai, bi]. Similarly, for all 1 ≤ i ≤ n − 2, and
for all j ∈ {i + 2, . . . n}, the weights w({ui, uj}) and w({vi, vj}) can be any integer in [ai, bi]. Note
that these weights are assigned arbitrarily from the ω values in the range ai, . . . , bi. In particular, a
node can have incident edges with equal weights. Conversely, if ω ≥ n, then all the incident edges
can be assigned different weights.

Clearly, the edge {u1, v1} has to belong to any spanning tree of Gn because it is a cut-edge. In
fact, any MST for Gn contains all the edges {ui, ui−1}, and {vi, vi−1} for i ∈ {2, . . . n}. Indeed,
ak > bi for k ≤ i − 1, and therefore w({ui, ui−1}) < w({uj , uk}), and w({vi, vi−1}) < w({vj , vk})
for any j ≥ i and any k ≤ i − 1 such that (j, k) 6= (i, i − 1). Therefore, a simple induction on
i = 2, . . . , n enables to prove that all the edges {ui, ui−1}, and {vi, vi−1} belong to any MST for
Gn. In other words, Gn has a unique MST that is the path P = (un, . . . , u1, v1, . . . , vn).

Consider an (m, 0)-advising scheme (O,A), and assume, w.l.o.g., that the root of P chosen by
the scheme is in {v1, . . . , vn}. Hence A has to return {ui, ui−1} at node ui. Suppose that the average
size of the advices is less than 1

2n

∑n−1
i=2 log(n − i) bits. Therefore, there exists i ∈ {2, . . . , n − 1}

such that |O(Gn, ui)| < log(n − i). Let w0, w1, . . . , wn−i−1 be n − i integers in [ai, bi], and let
e0, e1, . . . , en−i−1 be the n− i edges incident to ui with weights in [ai, bi]. We consider n− i possible
settings S1, . . . , Sn−i of the weights for the ejs. For k = 1, . . . , n − i, let πk ∈ Σn−i be such that
πk(j) = j + k (mod n− i). In Sk, we have w(ej) = wπk(j) for j = 0, . . . , n− i + 1. Since ui is given
less than log(n− i) bits of advice by O, there are two different configurations Sk and Sk′ for which
A will return the same port number, and thus A will not return {ui, ui−1} at ui for at least one of
these two configurations. Therefore, the average size of the advices is at least 1

2n

∑n−1
i=2 log(n − i)

bits, i.e., at least Ω(log |V (Gn)|) bits. �

2.2 Upper Bound on the Average Size

In this section, we present an advising scheme for MST, performing in one round with advices
of constant average size. Hence, compared to Theorem 1, this demonstrates that only one round
of computation enables to drastically decrease the average advice size. Our scheme is based on
Boruvka’s algorithm, which provides a decomposition of the MST construction into exponentially
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growing sets. It is basically a variant of Kruskal’s algorithm (cf. [6]). Precisely, our MST construc-
tion proceeds in at most ⌈log n⌉ phases, as follows.

MST Construction. Before phase 1, each node is a fragment reduced to a single node. At
each phase, fragments are merged to produce larger fragments. Eventually, there remains only
one fragment. To perform phase i ≥ 1, one considers only fragment F satisfying |F | < 2i. These
fragments are said active at phase i, and the others are said passive. Every fragment F that is
active at phase i selects an incident edge e leading out of F , and of minimum weight. Ties are
broken using the port numbers. If ties remain, then they are broken arbitrarilly. The edge e is
called the selected edge of F at phase i. The node of F that is incident to e is called the choosing
node of F at phase i. All fragments connected together by selected edges at phase i become one
new fragment for phase i + 1.

We state the following straightforward lemma for further references.

Lemma 1 After phase i, the size of every fragments is at least 2i. Thus a fragment F that is
active at phase i satisfies 2i−1 ≤ |F | < 2i. Hence there are at most n/2i−1 active fragments at
phase i.

Since the graph has no self-loop and no double edge, a node u of a fragment F cannot have
more than |F | − 1 incident edges whose other extremities are in F . Moreover, since the edges are
consumed in order of increasing weights and port numbers, we get the following result:

Lemma 2 If e has been selected by fragment F and u ∈ F is the choosing node of e, then
indexu(e) = (xu(e), yu(e)) satisfies xu(e) + yu(e) ≤ |F |.

In the following, we choose an arbitrary node r of the MST T returned by Boruvska’s algorithm
to be the root of T . The choice for the root induces an orientation on the edges. We say that a
T -edge incident to a node v is up at v if it is the first edge on the shortest path from v to r in T , and
down at v otherwise. Figure 2.2 illustrates one phase of Boruvska’s algorithm. In this figure, there
are three fragments F1, F2, F3. Dashed lines represents edges that are not selected, and the black
nodes are the choosing nodes. Labels up and down give the orientation of the selected edges from
the point of view of their choosing node. Note that an edge can be up for one of its extremities,
and down for the other.

While from Theorem 1 it is not possible to improve the naive advising scheme when no step
of computation is allowed, interestingly enough the next theorem shows that a single round of
computation enables to lower the average advice length down to a constant.

Theorem 2 For any n-node graph G, there exists an (O(log2 n), 1)-advising scheme for computing

an MST of G, that gives advices of average size c =
∑⌈log n⌉

i=1
i+1
2i−2 = O(1).

Proof. The scheme picks an arbitrary node of the MST returned by Boruvska’s algorithm to be
the root. This induces a direction (up or down) on every selected edge from the point of view of the
choosing node. The construction of the advices follows from the phases of Boruvska’s algorithm.
For each phase 1 ≤ i ≤ ⌈log n⌉, each choosing node u at phase i stores two items of advice:
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Figure 2: One phase of Boruvska’s algorithm

• indexu(e) where e is the selected edge at phase i corresponding to u; and

• a boolean b stating whether e is up.

The size of this advice is at most i + 1 bits. Indeed, active fragments at phase i have size less
than 2i, and thus from Lemma 2, indexu(e) < 2i. Since there is exactly one choosing node per
fragment, and at most n/2i−1 active fragments at phase i (cf. Lemma 1), this consumes a total
of at most (i + 1) · n/2i−1 bits of advice per phase. The advices possibly received at different
phases are concatenated. Every node that was choosing at some phase stores a bit-map indicating
the separation between the advices corresponding to different phases. This doubles the size of the

advices. Thus, the scheme uses at most 2
∑⌈log n⌉

i=1 (i + 1) · n/2i−1 = O(n) bits in total, that is a
constant number of bits per node on average.

Given these advices, the rooted MST can be computed as follows: every choosing node u sends
a message on each incident edge e for which the corresponding index belongs to its advice. If the
bit b associated to the index of e is 1, then u directly learns the index of the port number of its
parent, and if b = 0 then u informs the other extremity of e that it is its parent. This algorithm
thus runs in at most one round.

Since a node can be a choosing node in all ⌈log n⌉ phases, the maximum length of an advice

can be up to
∑⌈log n⌉

i=1 (i + 1) = O(log2 n) bits. �

3 An (O(1), O(log n))-Advising Scheme for MST

This section presents our main result, that is, by assigning just a constant amount of advices to
each node, it is possible to compute an MST in any n-node graph in at most O(log n) rounds.
Precisely, we prove the following.

Theorem 3 There exists a (m, t)-advising scheme to compute an MST in any n-node graph, with
m = 12, and t ≤ 9 ⌈log n⌉.

Proof. Let G = (V,E) be an n-node graph, and let T be the MST of G returned by the variant of
Boruvska’s algorithm described in Section 2.2, simply called Boruvska’s algorithm in the following.
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The scheme picks an arbitrary node r to be the root of T . The setting of the advices is done by
induction, in ⌈log log n⌉ + 1 phases of Boruvska’s algorithm. For the purpose of the scheme, we
define the level of a fragment, for each phase, as a value in {0, 1}, as follows. Before any given
phase i ≥ 1, each fragment F induces a subtree TF of T . These subtrees are connected by edges
of T between fragments. Contracting each subtree TF into a singe node xF , and connecting two
nodes xF and xF ′ by an edge if and only if there is an edge of T between the two fragments F
and F ′, results in a ”tree of fragments” Ti. The node xF corresponding to the fragment F which
contains the root r of T becomes the root of Ti, and F is given level 0. More generally, a fragment
F at phase i is given level 0 if xF occupies an even level in the rooted tree Ti, and level 1 if xF

occupies an odd level.

The construction of the advices at each node follows the phases of Boruvska’s algorithm up to
phase ⌈log log n⌉ + 1. For any given phase i, 1 ≤ i ≤ ⌈log log n⌉, our scheme encodes three items
of advice inside each active fragment F of phase i: the choosing node of F , the orientation (up
or down) of the edge selected by F , and the level of F at phase i. At phase ⌈log log n⌉ + 1, the
scheme encodes inside each fragment F the index of the edge of T leading from xF to its parent in
Ti. We will show how to distribute these bits of advice inside the fragments so that no node has
to store more than 12 bits, and so that these bits can be easily extracted by the choosing node of
each fragment at each phase.

For every phase i of Boruvska’s algorithm, 1 ≤ i ≤ ⌈log log n⌉, and for every active fragment F
at phase i, we construct a bit-string A(F ) as follows. Let v1, . . . vℓ be the BFS ordering of the ℓ
vertices of F , 2i−1 ≤ ℓ < 2i, in the subtree TF , starting from the root rF of TF , i.e. the node of F
that is the closest in T to the root r of the tree T . Precisely, the BFS is guided by the indexes of the
edges in TF according to the rule: lower index first. Let vj be the choosing node of F , 1 ≤ j ≤ ℓ.
Let bin(j) be the binary encoding of j on i bits, let bup be the boolean indicating whether the edge
selected by vj in F is up or down, and let blevel be a boolean indicating whether the level of F
is odd or even. We define A(F ) = bup|blevel|bin(j) where ”|” denote the concatenation of strings.
Hence A(F ) ∈ {0, 1}i+2. The advice given to the fragment F at phase i is A(F ).

More precisely, the advising scheme assigns bits of A(F ) to nodes of F as follows. Each of the
ℓ nodes v1, . . . vℓ of F is given at most c bits of A(F ), where c = 11. The oracle assigns a c-bit
string advice(u) to each node u of G as follows. In order to bound the number of bits per node, we
use a variable used(u, i) that indicates the number of bits that node u had to store in its advice(u)
until phase i (included). We set used(u, 0) = 0 for every u ∈ V (G), and assign the bits of A(F ) as
follows:

While there remains k > 0 bits of A(F ) unassigned do

Let j be the minimum index in {1, . . . , ℓ} such that c − used(vj , i − 1) > 0;
Concatenate the min{k, c − used(vj , i − 1)} next unassigned bits of A(F ) to advice(vj);
Update the value of used(vj , i) according to the number of bits added to advice(vj).

End

The following claim guarantees that each string A(F ) can actually be assigned to F during
this process. In other words, we prove that it is possible to pack all strings A(F ) for all phases i,
1 ≤ i ≤ ⌈log log n⌉, using at most c bits at each node. Recall that A(F ) ∈ {0, 1}i+2.

Claim 1 For any i, 1 ≤ i ≤ ⌈log log n⌉, for any active fragment F at phase i, we have c · |F | −

7



∑

v∈F used(v, i − 1) ≥ i + 2.

To establish the claim, we note first that the result is clear for i = 1, because |F | = 1,
used(v, 0) = 0, and indeed, c ≥ 3. Consider an active fragment F at phase i > 1. F is com-
posed of at most |F |/2j−1 fragments of phase j for any 1 ≤ j ≤ i − 1. By construction, an active
fragment F ′ of phase j satisfies |F ′| < 2j , and thus consumes at most j + 2 bits. Therefore, the
total number of bits that have been consumed in F until phase i − 1 is the sum of the j + 2 bits
consumed by the active fragments F ′ at phase j, for all F ′ ⊆ F and j < i. Thus:

∑

v∈F

used(v, i − 1) ≤
i−1
∑

j=1

|F |
2j−1

· (j + 2) ≤ |F |
∞

∑

j=1

j + 2

2j−1
= 8|F |.

Therefore,

c · |F | −
∑

v∈F

used(v, i − 1) ≥ 3|F | ≥ 3 · 2i−1 ≥ i + 2

because i ≥ 1 and c ≥ 3 +
∑∞

j=1(j + 2)/2j−1. This complete the proof of Claim 1.

At phase ⌈log log n⌉ + 1 of the advices construction, we consider all fragments, not only the
active ones. The bit string A(F ) of fragment F consists of the binary representation of the index
of the edge of T leading from the node rF to its parent in T , where we recall that rF is the node
of F that is the closest in T to the root r of the tree T . Since this index is at most n − 1, A(F ) is
a string of at most ⌈log n⌉ bits. Since F is a fragment of phase ⌈log log n⌉ + 1, we get

|F | ≥ 2⌈log log n⌉ ≥ ⌈log n⌉

and therefore A(F ) can be distributed in F , one bit per node. Precisely, we can distribute the bits
of A(F ) using again the BFS ordering v1, . . . vℓ of the vertices in F : vi stores the ith bit of A(F ).

To sum up, the oracle O assigns the bit-string O(G, v) = advice(v)|b(v) to node v where
advice(v) are advices given in phases 1 to ⌈log log n⌉, and b(v) is the 1-bit advice given at phase
⌈log log n⌉ + 1. Since Claim 1 guarantees that c bits per node suffices to construct the advices up
to phase ⌈log log n⌉ and one bit per node is enough to store the advices of phase ⌈log log n⌉+ 1, we
conclude that all advices are of length at most c + 1 at the end of the setting of the advices. Since
m = c + 1, our scheme does use advices of maximum size m.

The decoding of the advices follows Boruvska’s algorithm up to phase ⌈log log n⌉ + 1 for re-
constructing the MST T returned by the algorithm. We will insure that, during all phases
i = 1, . . . , ⌈log log n⌉ of the decoding process, every node u is permanently aware of the num-
ber of bits of advice that has already been consumed. This can be done using a pointer cons(u, i)
that specifies how many bits of advice(u) have been decoded until phase i (included).

Initially, cons(u, 0) = 0 for all nodes u. At phase i, every node u sends to the root rF of its
fragment F all its unconsumed bits, i.e. those from cons(u, i− 1) + 1 to c. In return, u will receive
from rF the largest BFS index k such that vk stores some bits of A(F ). Moreover, rF sends the
number of bits of advice(vk) it has consumed. These two informations are stored in a pair of integers
denoted by end(F ). Every node u of F receiving end(F ) is able to update its variable cons(u, i).

The decoding process A is precisely described below.
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Decoding process A
Input: The distributed network G, with each node v provided with O(G, v) = advice(v)|b(v);
Output: Each node v computes the port number of the edge leading to its parent in the MST T .
Begin

For i = 1 to ⌈log log n⌉ do

/* The objective is to determine each node’s parent inside active fragments after phase i */
For all active fragments F at phase i do (in parallel)

(1) Every node u ∈ F , u 6= rF , sends all the bits of advice(u) between position cons(u, i− 1) + 1
and position c, to its parent in TF ;

(2) Messages are forwarded up to the root rF of TF in BFS order;
/* At that point, nodes of F know their children in TF */

(3) rF collects and concatenates the several parts of the i + 2 bits of A(F ),
and rF broadcast (end(F ), A(F )), where A(F ) = bup|blevel|bin(j) in TF ;

(4) Each node u updates cons(u, i) according to end(F );
(5) The choosing node vj of F selects its incident edge e of minimum weight among all

its incident edges having its other extremity at level blevel.
If bup is true

(6) then vj is now aware of the port number of e, leading to its parent;
(7) else vj sends a message across e to inform the other extremity of e that vj is its parent.

Endfor

Endfor

i := ⌈log log n⌉ + 1;
Do (in parallel)

(8) The root rF of each fragment F at phase i collects the bits of A(F ) in BFS order in TF ;
(9) A(F ) = indexrF

(e) allows rF to compute the port number of edge e leading to its parent in T .
End

Before proving that Algorithm A is correct, we first prove the following.

Claim 2 The edge e selected by the node vj of F in Algorithm A is the edge selected by Boruvska’s
algorithm for the fragment F .

To establish the claim, we first note that, from the encoding of the advices, node vj is the
choosing node of fragment F in Boruvska’s algorithm. Its incident edge of minimum weight going
out of F is the edge selected by Boruvska’s algorithm. By definition of the levels, the selected
edge has its extremity in a fragment at level blevel. Therefore, selecting the edge incident to vj of
minimum weight among all incident edge leading to a fragment at level blevel enables to discard
edges going inside F while preventing from missing the selected edge.

The following claim proves the correctness of the decoding algorithm A.

Claim 3 After phase i, 1 ≤ i ≤ ⌈log log n⌉, for every fragment F resulting from phase i, each node
u 6= rF in F knows the port number of its incident edge leading to its parent in TF , and the root
rF of TF knows that it is the root.

The proof is by induction on i. At phase 1 of the decoding process, every fragment F is active,
and reduced to the unique node rF , and every node knows that it is the root of its fragment.
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Assume by induction that the claim holds for phases up to phase i − 1 ≥ 1, and let us prove that
it holds for phase i. At phase i, fragments of phase i are merged into larger fragments. Let F
be an active fragment at phase i. By induction, every node u 6= rF of F knows its parent in TF .
Therefore, step (1) of A can be executed. From Claim 2, the edge e selected by vj at step (5) is
the edge selected by Boruvska’s algorithm for fragment F . If bup is true, i.e., e is up, then vj is
actually the root rF of F , and e is the edge leading to its parent in the new fragment (cf. Step (6)).
If bup is false, i.e., e is down, then, by Step (6), vj informs the other extremity of e, say wj , that e is
the edge leading to its parent in the new fragment. Node wj is actually the root rF ′ of a fragment
F ′ one level below F in Ti. Receiving a message from vj , node wj learns its parent in the new
fragment. A root of a fragment that did not acquire a parent at phase i remains root, possibly of
a larger fragment resulting from merges at phase i. This proves the claim.

From the previous claim, algorithm A computes the MST T . Indeed, by this claim we get that
after phase ⌈log log n⌉, every node but the root of its fragment knows its parent. Steps (8) and (9)
of Algorithm A enables each of these roots to learn its parent.

We complete the proof by showing that algorithm A runs in at most 9⌈log n⌉ rounds. For every
phase i, 1 ≤ i ≤ ⌈log log n⌉, the decoding process runs in a time corresponding to one convergecast
and one broadcast in every tree TF , where F is an active fragment. Therefore, phase i runs in at
most twice the maximum size of an active fragment, hence, from Claim 1, in at most 2i+1 rounds.
The last phase of A, i.e., the one corresponding to phase ⌈log log n⌉ + 1 of Boruvska’s algorithm,
runs in the time required to collect ⌈log n⌉ bits from ⌈log n⌉ different nodes in every tree TF for
each fragment F (not only the active ones). This takes at most ⌈log n⌉ rounds. Thus in total the
decoding process runs in at most

⌈log n⌉ +

⌈log log n⌉
∑

i=1

2i+1 ≤ ⌈log n⌉ + 4(2⌈log log n⌉ − 1) ≤ 9⌈log n⌉.

This completes the proof of Theorem 3. �

4 Conclusion

Our result suggests a tradeoff between the computation time and the amount of advice for con-
structing a MST distributively. In particular we show that computing a MST in time 0 requires
an average of Ω(log n) bits of advice whereas computing a MST in time 1 can be achieved by an
algorithm using an average of O(1) bits of advice. As far as the maximum size of the advices is
concerned, we have designed an (O(1), O(log n))-advising scheme for MST. It would be interest-
ing to establish whether the tradeoff between computation and knowledge does exist or not for
the maximum size of the advices. In particular, it would be of interest to prove or disprove the
existence of an (O(1), O(1))-advising scheme for MST.
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