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PERIODIC HARMONIC FUNCTIONS ON LATTICES

AND POINTS COUNT IN POSITIVE CHARACTERISTIC

MIKHAIL ZAIDENBERG

Abstract. This survey addresses pluri-periodic harmonic functions on lattices
with values in a positive characteristic field. We mention, as a motivation, the
game “Lights Out” following the work of Sutner [Su], Goldwasser-Klostermeyer-
Ware [GKW], Barua-Ramakrishnan-Sarkar [BR, SB], Hunzikel-Machiavello-Park
[HMP] e.a.; see also [Za1, Za2] for a more detailed account. Our approach explores
harmonic analysis and algebraic geometry over a positive characteristic field. The
Fourier transform allows us to interpret pluri-periods of harmonic functions on lat-
tices as torsion multi-orders of points on the corresponding affine algebraic variety.

1. Introduction

We consider the Caley graph Γ of a free abelian group (i.e., a lattice) and harmonic
functions on Γ with values in a field K of positive characteristic. We are interested
in determining all pluri-periods of such functions. In the characteristic 2 case, this
question arises naturally in relation with the game “Lights Out” on a rectangular or
a toric board, or otherwise in studies on the dynamics of linear cellular automata on a
lattice Λ. We present two possible reductions of this problem. The first one, developed
by Sutner [Su], Goldwasser-Klostermeyer-Ware [GKW], Barua-Ramakrishnan-Sarkar
[BR, SB], Hunzikel-Machiavello-Park [HMP] e.a. deals with the Chebyshev-Dickson
polynomials and their generalizations. The second one leads to points count on a
certain affine algebraic variety Σ over the algebraic closure of K. The points on Σ
correspond to harmonic characters on Λ. We express the pluri-periods of harmonic
functions on Λ, or, which is the same, the sizes of the toric boards obstructed for the
“Lights Out” game, as torsion multi-orders of the corresponding points on Σ.
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2 MIKHAIL ZAIDENBERG

1.1. The game “Lights Out”. The “Lights Out” is a solitary game on a rectangular
m×n board. Initially the board is filled in with 0’s (“black”) and 1’s (“white”). The
rule of the game consists in the following: A click in a cell changes the state to the
opposite in this cell and in all its horizontal and vertical neighbors. The goal of the
game is: to reach finally the “all white” pattern.

As an example, let us consider a 3 × 3 board. Starting with an initial pattern as
shown below and performing a sequence of clicks in the cells indicated over arrows,
we obtain:





0 0 0
1 1 0
0 0 1





(1,3)
  





0 1 1
1 1 1
0 0 1





(1,2)
  





1 0 0
1 0 1
0 0 1





(2,1),(2,3)
    





0 0 1
0 0 0
1 0 0





(1,3),(3,1)
    





0 1 0
1 0 1
0 1 0





(2,2)
  





0 0 0
0 1 0
0 0 0





(1,2),(2,1),(2,3),(3,2)
       





0 1 0
1 1 1
0 1 0





(2,2)
  





0 0 0
0 0 0
0 0 0



 .

To find a shorter way it is enough just to cancel the clicks that are done twice:





0 0 0
1 1 0
0 0 1





(3,2)
  





0 0 0
1 0 0
1 1 0





(3,1)
  





0 0 0
0 0 0
0 0 0



 .

Indeed, the clicks represent commuting involutions.

Observation 1.1. More generally, one can play the “Lights Out” game on any finite
graph Γ. Sutner’s Garden-of-Eden Theorem [Su] says that starting with the “all black”
pattern on Γ one can always reach the “all white” pattern. That is, the “all black”
pattern is winning for any graph Γ.

A general question is: For which graphs Γ one can win the “Lights Out” game on Γ
starting with an arbitrary initial pattern? In the latter case we say that Γ is winning.
This turns out to be equivalent to a spectral problem for the corresponding Laplacian
∆Γ on Γ. Indeed, the nonzero harmonic functions on Γ provide obstructions for the
“Lights Out” game on Γ to always win.
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Definition 1.2. Let Γ be a graph and K be an abelian group. A function h on the
set of vertices of Γ with values in K is called harmonic1 if

(∆Γh)(v) := h(v) +
∑

[v,v′]∈Γ

h(v′) = 0 ∀v ∈ Γ .

Or, in other words, if

< h, av >= 0 ∀v ∈ Γ, where av = δv +
∑

[v,v′]∈Γ

δv′ .(1)

We call av the star-function centered at v.

Observation 1.3. Given a finite field K and a simple finite graph Γ, one can equally
play the game “Lights Out” on Γ with patterns taking values in K; see e.g. [GMT].
The click in a vertex v ∈ Γ corresponds to the translation f 7−→ f + av in the vector
space F(Γ, K) of all K-valued functions on Γ. Thus f is winning2 if and only if
f ∈ span (av | v ∈ Γ) .

For any harmonic function h on Γ and for any f ∈ F(Γ, K), by virtue of (1)

< h, f > = < h, f + av > ∀v ∈ Γ.

Hence h provides a linear invariant of the game “Lights Out” on Γ, and any such
invariant appears in this way. Therefore a pattern f : Γ → K is winning if and only if
f ⊥Harm(Γ, K) , where Harm(Γ, K) = ker(∆Γ) stands for the space of all K-valued
harmonic functions on Γ. So Γ is winning if and only if Harm(Γ, K) = (0) .

Problem 1.4. Given a finite field K, determine all winning m× n boards, or, alter-
natively, all those which possess a nonzero K-valued harmonic function.

Example 1.5. For K = F2, the square board 3 × 3 is winning, whereas the boards
4 × 4 and 5 × 5 are not as both of them possess nonzero binary harmonic functions,
for instance









1 1 1 0
0 1 0 1
0 0 1 1
0 0 0 1









resp.,













1 1 0 1 1
0 0 0 0 0
1 1 0 1 1
0 0 0 0 0
1 1 0 1 1













.

1Alternatively, one can define harmonic functions by the identity

h(v) =
∑

[v,v′]∈Γ

h(v′) ∀v ∈ Γ .

The class of harmonic functions remains the same if K is a field of characteristic 2 and changes
in case Char(K) = p > 2. However, similar results hold after this replacement. We give below a
general approach covering the both cases.

2That is, starting with f one can reach the “all white” pattern.
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Observation 1.6. Problem 1.4 for a rectangular m× n board is closely related to a
similar question for the toric (m+1)× (n+1) board; see [Za1]. Considering the game
“Lights Out” on toric boards rather that on rectangular ones provides certain advan-
tages. Indeed, the toric m × n board Tm,n represents the Caley graph of the abelian
group Z/mZ × Z/nZ for the standard choice of generators. Its maximal abelian
cover is the Caley graph of the free abelian group Λ = Z2. Every harmonic function
h ∈ Harm(Tm,n, K) can be lifted to a bi-periodic harmonic function h̃ ∈ Harm(Λ, K)
with periods me1 and ne2. Thus Problem 1.4 for toric boards is equivalent to the
following one.

Problem 1.7. Given a lattice Λ and a field K, determine the pluri-periods of all
nonzero pluri-periodic harmonic functions h : Λ → K.

Example 1.8. The game “Lights Out” played over the binary field F2 on the toric
board T10,10 does not always win. Indeed, T10,10 possesses nonzero binary harmonic
functions, for instance, the following one obtained via the doubling of periods trick
[Za1]:

h =































0 1 1 0 1 0 1 0 1 1

1 0 0 0 0 0 1 0 0 0
1 0 1 0 1 1 0 1 1 0
0 0 1 0 0 0 1 0 0 0
1 1 0 1 1 0 1 0 1 0
0 0 1 0 0 0 0 0 1 0
1 0 1 0 1 0 1 1 0 1

0 0 0 0 1 0 0 0 1 0
1 0 1 1 0 1 1 0 1 0
1 0 0 0 1 0 0 0 0 0































This pattern h composed of five crosses












1

1

1 1 0 1 1

1

1













lifts to a bi-periodic binary harmonic function h̃ on the lattice Λ = Z2 with periods
10e1, 10e2.

Observation 1.9. The Laplacian ∆Λ acting on the space F(Λ, K) of all functions
Λ → K provides a linear cellular automaton on Λ [MOW]. Actually any homogeneous
linear cellular automaton on Λ appears in this way. Furthermore, ∆Λ can be expressed
as the convolution operator

∆Λ : f 7−→ f ∗ a0
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with kernel the star-function a0 on Λ centered at the origin. Thus

h̃ ∈ Harm(Λ, K) ⇐⇒ h̃ ∗ a0 = 0 .

The period vectors of a pluri-periodic harmonic function h̃ on Λ form a finite index
sublattice

Λ′ = Λ′(h̃) ⊆ Λ .

The quotient T = Λ/Λ′ is a finite abelian group, and h̃ is the pull-back of a function
h : T → K harmonic with respect to an appropriate Laplacian ∆T on T.

Example 1.10. For a circular graph Tn = Caley(Z/nZ) and for any field K of
characteristic p > 0, one has

Harm(Tn, K) 6= (0) ⇐⇒ n ≡ 0 mod 3 .

Indeed if n ≡ 0 mod 3 then

h(k) := k(mod 3) ∈ K, k ∈ Z/nZ ,

is a nonzero K-valued harmonic function on Tn. Conversely, we can write

∆Tn
= 1 + τ + τ−1 ,

where
τ : f(x) 7−→ f(x + 1 mod n)

is the right shift acting on F(Tn, K). Hence by virtue of the Spectral Mapping
Theorem,

0 ∈ spec(∆Tn
) ⇐⇒

∃ζ ∈ K̄ : ζn = 1, 1 + ζ + ζ−1 = 0

⇐⇒ ∃ζ ∈ K̄ : ζ 6= 1, ζn = 1, ζ3 = 1

⇐⇒ n ≡ 0 mod 3 ,

where K̄ stands for the algebraic closure of K.

1.2. “Lights Out” played on circular graphs. For any finite simple graph Γ,
the matrix of the “Markov operator” ∆Γ − 1 in the canonical base of δ-functions
(δv : v ∈ Γ) in the lattice F(Γ, Z) is just the adjacency matrix of Γ. For a circular
graph Tn with n ≥ 3 vertices and for a linear path Pn with n ≥ 1 vertices we have,
respectively,

adj (Tn) =

























0 1 0 . . . 0 0 1
1 0 1 . . . 0 0 0

0 1 0
. . . 0 0 0

...
...

. . .
. . .

. . .
...

...

0 0 0
. . . 0 1 0

0 0 0 . . . 1 0 1
1 0 0 . . . 0 1 0

























, adj (Pn) =

























0 1 0 . . . 0 0 0
1 0 1 . . . 0 0 0

0 1 0
. . . 0 0 0

...
...

. . .
. . .

. . .
...

...

0 0 0
. . . 0 1 0

0 0 0 . . . 1 0 1
0 0 0 . . . 0 1 0

























.
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We let
Cn(x) := (−1)n det (adj (Tn) − xIn)

denote the characteristic polynomial of adj (Tn). Then Cn = (x−2)Dn ∈ Z[x], where

D3 = (x + 1)2, D4 = x2(x + 2) and Dn = xDn−1 − Dn−2 + 2 ∀n ≥ 5 .

In particular 3 ∈ spec (∆Tn
) ∀n ≥ 3, and the corresponding eigenfunctions are con-

stant functions on Tn. Furthermore,

C3(−1) = 0, C4(−1) = C5(−1) = −3 and Cn+3(−1) = Cn(−1) ∀n ≥ 3 .

Hence over C, for n ≥ 3 one has:

0 ∈ spec(∆Tn
) ⇐⇒ Cn(−1) = 0 ⇐⇒ n ≡ 0 mod 3 .

Consequently, the “Lights Out” game on the circular graph Tn (n ≥ 3) is winning
over a field K of characteristic p 6= 3 if and only if n 6≡ 0 mod 3. While for p = 3
none of the graphs Tn (n ≥ 3) is winning. Every non-winning graph Tn carries a
nonzero K-valued harmonic function. For p = 3 these are constant functions. For
p 6= 3 and n = 3k the space Harm(Tn, K) consists of 3-periodic functions and is
spanned by the function h from Example 1.10 above and its shifts.

1.3. How can one recognize winning boards? In Theorem 1.11 below we men-
tion two different approaches to Problem 1.4 for the “Lights Out” game on toric
boards. None of them is explicit. The first one applies over the Galois field Fp, while
the second one deals with its algebraic closure F̄p. See e.g., [Su, GKW, HMP] for the
proof of (a) and [Za1] for (b).

Theorem 1.11. (a) For a toric graph Tm,n = Caley (Z/mZ × Z/nZ) one has

Harm (Tm,n, Fp) = (0) ⇐⇒ gcd (C(p)
m (x), C(p)

n (1 − x)) = 1 .

(b) For a toric graph Tn̄ = Caley (Z/n1Z× . . .×Z/nsZ) , where n̄ = (n1, . . . , ns),
one has

Harm (Tn̄, Fp) 6= (0) ⇐⇒ ∃ (ζ1, . . . , ζs) ∈ (F̄×
p )s :

(∗) 1 +

s
∑

i=1

(ζi + ζ−1
i ) = 0, ζni

i = 1, i = 1, . . . , s .

1.4. Generalized Chebyshev-Dickson polynomials. Consider further a lattice
Λ, a field K of characteristic p > 0, an arbitrary function a : Λ → K with finite
support, and the corresponding Laplacian

∆a : f → f ∗ a .

Let f : Λ → K be a pluri-periodic function with the lattice of periods Λ′ ⊆ Λ. Then
clearly the period lattice of the function ∆a(f) contains Λ′. So the subspace F(Λ, K)Λ′

of all Λ′-periodic functions on Λ is ∆a-invariant, of dimension

dim F(Λ, K)Λ′

= ind(Λ′, Λ) .
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Definition 1.12. We call a generalized Chebyshev-Dickson polynomial Ta,Λ′ the char-
acteristic polynomial of the restriction ∆a|F(Λ, K)Λ′

. It has degree

deg(Ta,Λ′) = ind(Λ′, Λ) .

The classical Chebyshev-Dickson polynomials Tn
3 correspond to

p = 2, Λ = Z, Λ′ = nZ, and a = a0 = δ0 + δ1 + δ−1 .

Given a base V = (v1, . . . , vs) of the lattice Λ and a product sublattice Λ′ ⊆ Λ, where

Λ′ =
s

∑

i=1

niZvi ,

the Chebyshev-Dickson polynomial Ta,Λ′ can be expressed via iterated resultants [Za2].

Like in the classical case, the system of generalized Chebyshev-Dickson polynomials
possesses the following divisibility properties [Za2].

Theorem 1.13. (a) Λ′ ⊆ Λ′′ =⇒ Ta,Λ′′ | Ta,Λ′ .
(b) ind(Λ′, Λ′′) = pα =⇒ Ta,Λ′ = (Ta,Λ′′)pα

.

1.5. The partnership graph. In this subsection we return to the special case re-
lated to the game “Lights Out”, where K = F2, Λ = Z2, and a = a0 is the star
function on Λ. The covering Tkm,ln → Tm,n yields an inclusion

Harm (Tm,n) →֒ Harm (Tkm,ln) .

Thus one can stick in Problem 1.7 to “primitive” non-winning m × n toric boards.

Definition 1.14. A pair (m, n) ∈ N2 is called a pair of partners if there exists a
solution (ζ1, ζ2) of (∗) with exact torsion orders

m = ord(ζ1) and n = ord(ζ2) .

Since Char(K) = 2, m and n are odd integers.

Following a suggestion by Don Zagier, we can represent the above partnership
relation on a “partnership graph”. This graph P has the set Nodd of all positive odd
integers as the set of vertices and the pairs of partners for the edges. We label P

by attributing to an edge [m, n] the number of solutions of (∗) divided by 2. Given
a vertex n ∈ Nodd, the sum of labels over all its incident edges4 equals ϕ(n), where
ϕ stands for the Euler totient function. Indeed, given a primitive mth root of unity
ζ1, the equation (*) with s = 2 admits exactly 2 solutions of the form (ζ1, ζ2) and
(ζ1, ζ

−1
2 ), which yields the claim. In particular, P does not possess isolated vertices.

The following simple observation is also due to Don Zagier.

Proposition 1.15. All connected components of the partnership graph P are finite.

3See Appendix below.
4A loop at a vertex is count as a single incident edge.
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Proof. Given n ∈ Nodd, the order and the suborder of 2 modulo n are, respectively,

f(n) = ordn 2 = min{j : 2j ≡ 1 mod n}

and
f0(n) = subordn 2 = min{j : 2j ≡ ±1 mod n} .

Thus f(n)/f0(n) ∈ {1, 2}. Furthermore,

f(n) = 2f0(n) is even ⇐⇒ ∃j ∈ N : 2j ≡ −1 mod n .

Letting q = 2f0(n), n divides exactly one of q − 1 and q + 1. Namely n | (q − 1) if
f0(n) = f(n) and n | (q + 1) otherwise.

According to (*) a pair (m, n) of odd naturals is a pair of partners (that is, [m, n]
is an edge of P) if and only if ξ + ξ−1 = 1 + η + η−1 for some primitive roots ξ ∈ µm

and η ∈ µn (cf. also Example 1.16 below). Thus for a pair of partners (m, n),

f0(m) = deg(ξ + ξ−1) = deg(η + η−1) = f0(n) .

Hence the suborder function f0 is constant on each connected component of P.
We let Vr = f−1

0 (r), r = 1, 2, . . ., denote the level sets of f0. By definition of f0, a
level set Vr is contained in the set of all divisors of 22r − 1. Therefore it is finite.

Given n ∈ Nodd, we let P(n) denote the connected component of P which contains
the vertex n. Since the set of vertices of P(n) is contained in the finite set Vr, where
r = f0(n), the former set is finite as well, as stated. �

The first 12 level sets Vr = f−1
0 (r), r = 1, . . . , 12, and the corresponding sub-

graphs of the labelled partnership graph P are shown on Figures 1-3 below; they were
computed by Don Zagier with PARI. A vertex n on these figures is underlined iff
f0(n) 6= f(n). These computations suggest that among the Vr’s, only V5 is discon-
nected.

1.6. Symbolic variety. From now on we let K be an algebraically closed field of
characteristic p > 0. Given a base V = (v1, . . . , vs) of a lattice Λ, one can identify Λ
with Zs, where s = rk (Λ) . For a function a : Λ → K with finite support, the symbol
of the corresponding Laplacian ∆a is the Laurent polynomial

σa =
∑

u=(u1,...,us)∈Zs

a(u)x−u ∈ K[x1, x
−1
1 , . . . , xs, x

−1
s ]

with the coefficient function a. The symbolic variety associated with ∆a is

Σa = σ−1
a (0) .

More generally, to a sequence ā = (a1, . . . , at)
5 we associate its symbolic variety

Σā = {σaj
= 0 : j = 1, . . . , t} ,

which is a closed subvariety of the affine algebraic torus (K×)s.

5In other words, to the system of corresponding Laplacians ∆a1
, . . . , ∆at

.
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Figure 3

Example 1.16. Consider again K = F̄2 and the Laplacian ∆a0
on the plane lattice

Λ = Z2 with kernel the star function a0. The corresponding symbolic variety is the
elliptic cubic curve

Σa0
= {x + 1/x + y + 1/y = 1} ⊆ (K×)2 .

The logarithm of the Hasse-Weil zeta-function counts points on Σa0
according to the

filtration F̄2 =
⋃

n∈N
F2n . This formula suggests that the number of toric m×n boards

which admit a nonzero binary harmonic function is infinite. Moreover, the number
of primitive boards (i.e., those which are not produced using smaller ones) is also
infinite. Indeed, the number of edges of the partnership graph P is infinite, because
the number of vertices is and P has no isolated vertex.

We consider the algebraic closure K = F̄p of a Galois field Fp. For n ∈ N coprime
with p = Char(K) we let µn ⊆ K× denote the subgroup of nth roots of unity. For a
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multi-index n̄ ∈ Ns, where ni 6≡ 0 mod p ∀i, we consider the finite s-torus

µn̄ = µn1
× . . . × µns

⊆ (K×)s .

The multiplicative group K× being a torsion group, the torus (K×)s is filtered by its
finite subgroups:

(K×)s =
⋃

n̄

µn̄ .

Furthermore,

(K×)s =
∐

n̄

νn̄ ,

where νn̄ ⊆ µn̄ denotes the set of all elements of µn̄ whose ith coordinates are primitive
nith roots of unity, i = 1, . . . , s. Given an algebraic subvariety Σ ⊆ (K×)s we wonder
whether the multi-sequence card(Σ ∩ νn̄) admits a recursive generating function.

1.7. Harmonic characters. We let Char(Λ, K×) denote the set of all characters χ :
Λ → K×. Given a base V = (v1, . . . , vs) of Λ we consider the associated isomorphism

j : Char(Λ, K×)
∼=

−→ (K×)s, χ 7−→ (χ(v1), . . . , χ(vs)) .(2)

For K = F̄p every K×-valued character of Λ is pluri-periodic. Given a sublattice
Λ′ ⊆ Λ of finite index, all Λ′-periodic K×-valued characters can be produced by
pulling back the K×-valued characters of the quotient group T = Λ/Λ′.

A character χ is called a-harmonic if ∆a(χ) = 0. The set of all a-harmonic charac-
ters of Λ is denoted by Chara−harm(Λ, K×). The next proposition follows immediately
by using the Fourier transform on a finite abelian group; see [Za2].

Proposition 1.17. For any product sublattice Λ′ =
∑s

i=1 niZvi ⊆ Λ of index

ind(Λ′, Λ) 6≡ 0 mod p ,

the space Harma (Tn̄, K) of all a-harmonic functions on the quotient group Tn̄ = Λ/Λ′

possesses an orthonormal basis of a-harmonic characters. In particular

Harma (Tn̄, K) = span
(

Chara−harm (Tn̄, K×)
)

and so

Harma (Tn̄, K) 6= (0) ⇐⇒ Chara−harm (Tn̄, K×) 6= ∅ .

Remark 1.18. The latter conclusion remains valid for any (not necessarily alge-
braically closed) field K of positive characteristic. Indeed, the space Harma (Tn̄, K)
is spanned by the traces of harmonic characters; see [Za2].

There is a natural bijection between the a-harmonic characters Chara−harm(Tn̄, K×)
and the points on the corresponding symbolic variety Σa with torsion multi-order
dividing n̄. More precisely, the following hold [Za2].
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Theorem 1.19. Consider a product sublattice

Λ′ =
s

∑

i=1

niZvi ⊆ Λ

of index coprime to p. Then for K = F̄p the isomorphism j as in (2) yields bijections

j : Chara−harm(Λ, K×)
∼=

−→ Σa ⊆ (K×)s

and

j : Chara−harm(Tn̄, K×)
∼=

−→ Σa ∩ µn̄ ,

where Tn̄ := Λ/Λ′.

Corollary 1.20.

dim Harma (Tn̄, K) = card
(

Chara−harm(Tn̄, K×)
)

= card (Σa ∩ µn̄) = multλ=0 (Ta,Λ′) .

Observation 1.21. Reversing the logic we let Σ be an arbitrary affine algebraic
subvariety in the torus (K×)s. Thus Σ can be defined by a finite sequence (pj) of
Laurent polynomials. When does Σ possess a point with a given torsion multi-order?

To answer this question, we pass to the associated system of Laplacians ∆aj
, j =

1, . . . , t, where aj : Zs → K is the coefficient function of the polynomial pj . It is
easily seen that the orthogonal projection

π : F(Λ, K)Λ′

→ ker (∆ā)

is given by

π =
∏

j

(

1 − ∆q
aj

)

for a suitable q = pα.
If t = 1 i.e., Σ = Σa ⊆ (K×)s is a hypersurface, we can indicate a dynamical way to

determine whether Σa ∩ µn̄ 6= ∅. Namely the latter holds if and only if the following
sequence of functions on the quotient group Tn̄ = Λ/Λ′ is not periodic:

f0 = δ0, fk = ∆k
a(δ0), k ∈ N .

Indeed, in the latter case fk+l = fk for certain minimal k, l with k > 0, l > 0, and so
h = fk+l−1 − fk−1 is a nonzero harmonic function on Tn̄.

1.8. Winning boards and Artin’s conjecture on primitive roots. The follow-
ing results were elaborated in Hunziker-Machiavelo-Park [HMP]. We formulate them
in terms of existence of a nonzero harmonic function on a toric square board with
values in a Galois field Fp as p varies.
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Theorem 1.22. ([HMP]) For an n × n torus Tn,n the following hold.

(a)

∀n ≥ 3 ∃p : Harm (Tn,n, Fp) 6= (0) .

(b)

Harm (Tn,n, Fp) 6= (0) ∀p ⇐⇒ n ≡ 0 mod 3 or n ≡ 0 mod 5 .

(c) Except for at most 2 values of the prime p, the set of all primes l such that

Harm (Tl,l, Fp) = (0)

is infinite.

(d) If n = p±1
2

and p ≥ 23 then Harm (Tn,n, Fp) 6= (0).

(e) We let Pp denote the set of all n ∈ N such that Harm (Tn,n, Fp) 6= (0) while for
any proper divisor d of n, Harm (Td,d, Fp) = (0). Then P2 and P3 are infinite.

The proof of (c) is based on a result of Heath-Brown [HB], which concerns the fol-
lowing conjecture.

Artin’s conjecture on primitive roots (1927; see [Mo, Mu]): Every integer n 6=
−1 which is not a square is a primitive root modulo l for an infinite number of primes
l.

Due to [HB] this conjecture holds indeed for all primes n = p with at most 2 excep-
tions, and for all square-free integers n with at most 3 exceptions (see also [Mo, §5]).
For instance, at least one among the primes 2, 3, 5 must satisfy Artin’s condition.
However, no specific prime p is known to possess the Artin property.

2. Harmonic functions on trees

We fix a field K of characteristic p > 0 and a finite graph Γ. According to Amin-
Slater-Zhang [ASZ] and Gravier-Mhalla-Tannier [GMT], one simplifies Γ by applying
the following two surgeries:

• suppressing p extremal vertices u1, . . . , up joint with a common neighbor v together
with the edges [ui, v] (i = 1, . . . , p) as shown on the following diagram:

GFED@ABCu1 GFED@ABCu2 . . . GFED@ABCup

Γ = ?>=<89:;v   Γ′ = ?>=<89:;v

GFED@ABCT GFED@ABCT
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• suppressing an extremal linear branch of length 2, say, [u, v, w], where u is an
extremal vertex, together with all edges joining w with the rest Γ′ of Γ:

Γ = c

u
c

v
c

w Γ′

  
Γ′

The following simple observation is essentially due to [GMT].

Proposition 2.1. Let a graph Γ′ be obtained from Γ by performing a surgery as
above. Then any K-valued harmonic function on Γ restricts to a K-valued harmonic
function on Γ′ and vice versa, any K-valued harmonic function on Γ′ extends uniquely
to a K-valued harmonic function on Γ. This extension provides an isomorphism

Harm (Γ′, K) ∼= Harm (Γ, K) .

In particular, for a linear path Pn with n ≥ 3 vertices we have

Harm (Pn, K) ∼= Harm (Pn−3, K) .

Consequently, Harm (Pn, K) 6= (0) if and only if n ≡ 2 mod 3.
Every finite graph Γ can be reduced, via a suitable sequence of the surgeries as

above, to a graph, say, redp (Γ) such that any extremal linear branch of redp (Γ) has
length 1, and at each vertex of redp (Γ) there are at most p − 1 such extremal linear
branches.

In case p = 2 for a finite tree Γ such a graph red2 (Γ) consists of isolated vertices,
say, w1, . . . , wt and isolated edges, say, [u1, v1], . . . , [us, vs]. Any harmonic function
h on Γ takes value 0 at w1, . . . , wt, while h(ui) = h(vi) ∀i = 1, . . . , s. Conversely,
any such a binary function on red2 (Γ) is harmonic and extends uniquely to a binary
harmonic function on Γ. This leads to the following result.

Corollary 2.2. For a finite tree Γ, dim Harm (Γ, F2) is equal to the number s of
isolated edges in any reduction red2 (Γ) of Γ.

We wonder whether there exists an alternative (non-recursive) combinatorial inter-
pretation of the invariant dim Harm (Γ, F2) (it is related to the “parity dimension” as
considered e.g., in [ASZ]).

Remark 2.3. Let us note that the number of isolated vertices in a reduction red2 (Γ)
depends on the reduction. Thus this is not in general an invariant of Γ. Indeed, a
linear path with 3 vertices P3 admits two different reductions. One of them is empty,
while the other one is P1 and so consists of a single vertex.

Example 2.4. We say that a graph Γ is odd if the degree of each vertex of Γ is. By
virtue of Proposition 6 in [ASZ], for any finite odd tree Γ

dim Harm (Γ, F2) = 1 .

The only nonzero binary harmonic function on Γ is the constant function 1. However,
dim Harm (Γ, F2) = ∞ for any infinite locally finite odd tree Γ.
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3. Appendix: Classical polynomials

3.1. Normalized Chebyshev polynomials and Fibonacci polynomials. We
recall that the Chebyshev polynomials of the first (second) kind6 satisfy the following
relations:

V0 = 1, V1 = x and Vn = 2xVn−1 − Vn−2 ∀n ≥ 2 ,

respectively,

U0 = 1, U1 = 2x and Un = 2xUn−1 − Un−2 ∀n ≥ 2 .

The normalized Chebyshev polynomials of the first (second) kind Gn ∈ Z[x] (Fn ∈
Z[x], respectively) are defined [HMP] via

G0(x) = 2, G1(x) = x, and Gn(x) = xGn−1(x) − Gn−2(x) ∀n ≥ 2 ,

respectively,

F0(x) = 0, F1(x) = 1, and Fn(x) = xFn−1(x) − Fn−2(x) ∀n ≥ 2 .

The Fibonacci polynomials fn ∈ Z[x] are generated via the recurrence relation:

f0 = 0, f1 = 1, fn = xfn−1 + fn−2 ∀n ≥ 2 .

They reduce to the Fibonacci numbers for x = 1 and satisfy identities similar to those
known for the Fibonacci numbers. The polynomials Fn, Gn and xfn are even (odd)
iff n is. We have Gn(x) = 2Vn

(

x
2

)

and

(−1)n det (adj (Tn) − xIn) = Cn(x) = Gn(x) − 2 ∀n ≥ 3 ,

respectively,
det (adj (Pn−1) − xIn−1) = Fn(−x) ∀n ≥ 2 .

Proposition 3.1. [Bi, HBJ, HMP, §2] The normalized Chebyshev polynomials Fn,
Gn and the Fibonacci polynomials fn acquire the following properties:

• Fn(x + x−1) = xn−x−n

x−x−1 and Gn(x + x−1) = xn + x−n.
• gcd (Fm, Fn) = Fgcd (m,n) and gcd (fm, fn) = fgcd (m,n).
• Fm |Fn ⇐⇒ fm | fn ⇐⇒ m |n.
• Fmn = Fn · (Fm ◦ Gn) and Gmn = Gm ◦ Gn.
• (x2 − 4)FmFn = Gm+n − G|m−n| and GmGn = Gm+n + G|m−n|.

The next result deals with the irreducible factorization of the Fibonacci polynomi-
als.

Proposition 3.2. [Le, JRS, Corollary 2.3] There are irreducible polynomials θn ∈
Z[x] with nonnegative coefficients, of degree deg θn = ϕ(n) 7 such that

fn =
∏

d|n

θd ∀n ≥ 1 .

6With the conventions used e.g., in MAPLE.
7Here ϕ stands as before for the Euler totient function.
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3.2. Dickson polynomials. We recall [LMT] that the Dickson polynomials Dn(x, a) ∈
Z[x, a] and En(x, a) ∈ Z[x, a] of the first (second) kind are defined recursively via:

D0 = 2, D1 = x, Dn+1(x, a) = xDn(x, a) − aDn−1(x, a) ,

and
E0 = 1, E1 = x, En+1(x, a) = xEn(x, a) − aEn−1(x, a) ,

respectively. They can be also characterized by the identities:

Dn(µ1+µ2, µ1µ2) = µn
1 +µn

2 resp., En(µ1+µ2, µ1µ2) = µn+1
1 −µn+1

2 /(µ1−µ2) .

Furthermore, En−1 = Dn
′/n. For a = 1 the Dickson polynomials specialize to the

normalized Chebyshev polynomials:

Gn(x) = Dn(x, 1) and Fn+1(x) = En(x, 1) .

Similarly, fn(x) = f̃n(x, 1), where f̃(x, y) ∈ Z[x, y] stands for the bivariate Fibonacci
polynomials. These are defined [HL] by the recursion

f̃0 = 0, f̃1 = 1, f̃n = xf̃n−1 + yf̃n−2 ∀n ≥ 2 .

The polynomials fn and f̃n are irreducible over Q if and only if n is prime [HL, WP].

An analog of Proposition 3.2 also holds for f̃n [JRS].

3.3. Reduction to a positive characteristic. Given a prime p and a polynomial
F ∈ Z[x], we let F (p) ∈ Fp[x] denote the reduction of F modulo p. The Dickson
polynomials reduced modulo p satisfy the relations [BZ]:

D
(p)
pαm = (D(p)

m )
pα

resp. E
(p)
pαm−1 = (E

(p)
m−1)

pα

(x2 − 4a)
pα

−1

2 ,

where m 6≡ 0 mod p. Similarly, for the reduction F
(p)
m of the normalized Chebyshev

polynomials of the second kind we have

Proposition 3.3. [HMP, §2]

• F
(p)
m |F

(p)
n ⇐⇒ m |n.

• F
(p)

pkm
= F

(p)

pk · (F
(p)
m )

pk

, where F
(p)

pk = (x2 − 4)(pk−1)/2.

• F
(p)

(pk−1)/2
F

(p)

(pk+1)/2
= xpk

−x
x2−4

if p 6= 2.

Corollary 3.4. [HMP, §2] Every irreducible polynomial τ ∈ Fp[x] of degree k occurs

as a factor of F
(p)

pk−1
F

(p)

pk+1
if p = 2 or of F

(p)

(pk−1)/2
F

(p)

(pk+1)/2
if p 6= 2.

Reducing the polynomials Gn modulo 2 yields the Chebyshev-Dickson polynomials

Tn ∈ F2[x]. Actually Tn = C
(2)
n = G

(2)
n = xF

(2)
n = xf

(2)
n for n ≥ 3 8. They can also be

defined recursively:

T0 = 0, T1 = x, Tn+1 = xTn + Tn−1 ,

8Although C0 ≡ T0, C1 ≡ T1 mod 2, however C2 = x2 − 1 6≡ T2 = x2 mod 2.
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or, alternatively, via the relation

Tn(x) ≡ xUn−1

(x

2

)

mod 2 ,

where Un ∈ Z[x] stands for the nth Chebyshev polynomial of the second kind.

Proposition 3.5. [GKW, SB, Su] The Chebyshev-Dickson polynomials Tn ∈ F2[x]
acquire the following properties:

• Tn(x + x−1) = xn + x−n.
• Tm ◦ Tn = Tmn.
• gcd (Tm, Tn) = Tgcd (m,n).
• Tm | Tn ⇐⇒ m |n.

• T2km = T 2k

m .

• T2k−1T2k+1 = (x2k−1 − 1)2.
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E-mail address : zaidenbe@ujf-grenoble.fr


