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Abstract  

In this paper, alternative techniques for the measurement of porosity based upon Gibbs-

Thomson equation are reviewed and discussed. The paper focuses on thermoporosimetry 

trying to demonstrate that it is a valuable tool relevant to sol-gel science. A detailed 

calibration procedure using sol-gel derived silica gels is presented for acetone. It is then 

shown that it is possible to predict the behaviour of confined liquids related to a given 

chemical family. Finally two selected examples illustrate the great potential of this technique 

for the study of gels networks and cross-linking. Perspectives concerning the study of 

organic-inorganic hybrids materials are finally given. 
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1. Introduction 

Porous materials are solids made up of interconnected networks of pores delimited by solid 

walls. These materials are omnipresent in nature and find various industrial applications. 

Numerous biological processes also involve such porous materials making them the object of 

abundant studies. The characterization of porosity is therefore a crucial issue.  

Numerous techniques have consequently been developed to characterize the texture of porous 

solids. Among them, gas sorption and mercury intrusion porosimetry are probably the most 

popular.  Alternative techniques relying on the Gibbs-Thomson equation [1,2] have also been 

proposed. This equation quantifies the observed experimental shift of the melting point of a 

liquid confined in pores and can be written: 
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 (Equation 1)   

where Tp is the melting temperature of a liquid confined in a pore of radius Rp, T0 is the 

normal melting temperature of the liquid, σSL is the surface energy of the solid/liquid 

interface, θ the contact angle, ∆Hm is the melting enthalphy and ρS the density of the solid. 

According to this equation, the shift of the transition temperature of a confined liquid ∆T is 

inversely proportional to the radius of the pore in which it is confined. In fact it is well known 

that not all the solvent takes part in the transition and that a significant part of it remains 

adsorbed on the surface of the pore. The state of this adsorbed layer has been discussed 

extensively in the case of water. Consequently, the radius measured by application of the 

Gibbs-Thomson equation should be written R=Rp-t where t is the thickness of the adsorbed 

layer leading to a reformulation [3] of Equation 1 as 
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=  (Equation 2) 

 In principle, it is then possible to determine the pore size of a given material by measuring 

∆T. In 1955 Kuhn et al. [4] proposed to use Differential Scanning Calorimetry to measure ∆T 



 

 

and invented the so called thermoporometry technique (or thermoporosimetry as will be used 

in the following). This technique has been further described by Fagerlund [5] and popularized 

and developed by Brun [6]. In 1969, Derouane et al. [7] published the first measurement of 

liquid water content by NMR in a partially frozen sample. In 1993, Strange et al. [8] proposed 

to measure ∆T by NMR technique giving birth to NMR Cryoporometry. The two techniques 

despite their historical and confusing different names are indeed very similar from a 

theoretical point of view.  If the measurement of ∆T is direct in the case of DSC, the situation 

is quite different for NMR cryoporometry. The basis of the later is the measurement of the 

fractions of frozen and unfrozen liquids as a function of temperature. In such an experiment, 

the porous sample is cooled down enough to freeze all the liquid inside the pores. The sample 

is then slowly heated up and the NMR signal of the mobile protons from the solvent is 

recorded. The intensity of this signal obviously increases as the fraction of liquid solvent 

increases during the heating process. When all the confined solvent is melted the signal 

becomes constant before increasing again when the temperature reaches the normal melting 

temperature of the excess solvent. Knowledge of k in Equation 2 is mandatory, but once 

determined, the curve obtained from NMR cryoporometry can be transformed into the pore 

size distribution. In this sense, thermoporosimetry and NMR cryporometry are secondary 

methods since they require preliminary determination of the evolution of ∆T as a function of 

Rp for a given solvent.  

Thermoporosimetry is obviously much simpler to perform when compared to NMR 

cryoporometry. The cost of the equipment is also much lower. Nevertheless, NMR 

cryoporometry continues to develop under the efforts of some groups [9,10]. The use of 129Xe 

NMR of xenon dissolved in confined organic solvents [11] seems to be particularly promising 

and offers new possibilities. One of the main advantages of NMR cryoporometry that makes 

it unique, is the possibility to combine the NMR experiment with standard NMR imaging 



 

 

techniques [12,13,14]. This offers the possibility to get spatial resolution in all three 

dimensions on a macroscopic scale (100 µm-10mm). Up to now, and to the best of our 

knowledge, this is the only technique able to give spatially resolved pore size distributions. 

This is of considerable interest in fields such as geology, biology, and materials science. It has 

been shown [15] that the correlation between gas sorption, thermoporosimetry and NMR 

cryporometry   is good making the later two interesting alternatives for measuring pore size 

distribution. At this point, it must be noticed that application of Gibbs-Thomson equation to 

measure PSD is limited to pore radius higher than 1 nm (the limit depends strongly on the 

nature of the solvent).  

The aim of this paper is to report recent developments of thermoporosimetry that make it, in 

our opinion, a technique deserving much attention. In particular, we will show how 

thermoporosimetry can give important information about the reticulation of gels networks. It 

will also be shown that for reasonably similar solvents, calibration procedures can be avoided 

making this technique even more attractive. Our calibration procedure using sol-gel derived 

mesoporous silica will be firstly exemplified with acetone. Two different examples 

concerning cross linked polyolefins and aged silicones will illustrate how thermoporosimetry 

can be used efficiently on gels networks. Perspectives will be given concerning hybrid 

organic-inorganic materials.                                                                                                                                  

 

2. Experimental section 

2.1 Calibration Porous Materials 

Nanoporous monolithic silica gels (2.5 mm × 5.6 mm diameter cylinders) were  prepared by 

the acid catalysed hydrolysis and condensation of a silicon alkoxide, following procedures 

reviewed elsewhere [16]. Careful control of the aging time performed at 900°C allowed the 

production of samples with controlled textural properties. In this study four samples (1-4) 



 

 

with different textural properties (Specific Surface Area (SSA), total pore volume (Vp) and 

pore size distribution (PSD)) were used. The textural characteristics of the samples were 

determined by N2 sorption. 

 

2.2 Gas sorption measurements 

Textural data of the silica gels were determined on a Quantachrome Autosorb 1 apparatus. 

The instrument permits a volumetric determination of the isotherms by a discontinuous static 

method at 77.4 K. The adsorptive gas was nitrogen with a purity of 99.999%. The cross 

sectional area of the adsorbate was taken to be 0.162 nm2 for SSA calculations purposes [17]. 

Prior to N2 sorption, all samples were degassed at 100°C for 12 h under reduced pressure. The 

masses of the degassed samples were used in order to estimate the SSA. The BET [18] SSA 

was determined by taking at least 4 points in the 0.05<P/P0<0.3 relative pressure range. The 

pore volume was obtained from the amount of nitrogen adsorbed on the samples up to a 

partial pressure taken in the range 0.994<P/P0<0.999. Pore size distributions were calculated 

from the desorption isotherm by the BJH method [19]. The mean pore radius Rav was 

calculated according to  
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corresponding to a cylindrical shape for the pores. 

Textural data for the different samples are displayed in Table 1. In this table, the modal pore 

diameter Rp is also shown and this value was used for the DSC calibration. This value fairly 

matches the Rav derived from SBET measurement with cylindrical shape assumption thus 

confirming the validity of the hypothesis on the pore shape. 

 



 

 

2.3 DSC measurements 

A Mettler-Toledo DSC30 instrument calibrated (both for temperature and enthalpy) with 

metallic standards (In, Pb, Zn) and with n-heptane was used to record the thermal curves. It 

was equipped with a Nitrogen liquid set allowing a scanning range of temperature between -

170 and 600 °C.  About 10 or 20 mg of the studied material were introduced into a DSC pan 

to undergo an appropriate temperature program. As recommended by Brun [6] and recalled 

recently by Landry [20] and as performed in our previous work, the measurement is 

performed following the following thermal cycle. The sample is first cooled down at a 

temperature low enough to freeze all liquid (free and confined) and then heated up slowly at a 

temperature just below the equilibrium melting point until only the confined solvent is melt. 

Doing this, the unconfined solvent remains under solid state and acts as seeds to the 

crystallisation of the confined liquid following further cooling. To allow the system to be in 

an equilibrium state, a slow freezing rate is required, a rate of -0.7 °C/min was chosen. Other 

slower cooling rates have been tested not showing any significant discrepancy.  

3. Results and discussion 

3.1 Calibration and Pore Size Distribution (PSD) measurement 

The whole DSC curve is indeed representative of the pore size distribution of a given sample. 

From Equation 2 or its empirical corresponding relationship and the DSC thermogram, pore 

size distributions (PSD) can be derived as follows: 
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where Vp (cm3.g-1) is the pore volume, dQ(T)/dt (W.g-1) is the heat flow  per gram of the dry 

porous sample given by the ordinate of DSC thermogram, dt/d(∆T) (s.K-1) is the reverse of the 



 

 

cooling rate, d(∆T)/d(Rp) (K.nm-1) is derived from the empiric relationship corresponding to 

Equation 1 and Wa(T) (J.cm-3) is the apparent energy as defined by Brun. Equation 4 is similar 

to that proposed by Landry [20]. However, the specific energy of crystallization is 

temperature dependent and, in addition, all the solvent does not take part in the thermal 

transition since, as stated before, a layer of the solvent remains adsorbed on the internal wall 

of the pores. Only an apparent energy (Wa) can be calculated, dividing the total heat, released 

by the thermal transition, by the total volume or mass of the confined solvent. 

In order to reach the PSD calculation, it is necessary to establish the temperature dependence 

of both Rp and Wa. In the following original results concerning acetone will be given. In the 

last three years, numerous solvents have been calibrated for thermoporosimetry including 

acetonitrile [21], CCl4 [22,23], xylenes, substituted benzenes [24], linear alkanes [25], 

cyclohexane [26], dioxane [27], completing initial data published for water and benzene.  

Using the silica gels described in section 2, it has been possible to derive the Rp=f(∆T) and 

Wa=f(∆T) laws. DSC thermograms recorded for acetone confined in the various silica gels 

samples are shown in Figure 1. The experimental ∆T values are given in Table 1 for the 

different silica samples. 

 

[Figure 1 around here] 

 

Resulting calibration curves are displayed in Figure 2a and 2b for Rp and Wa respectively. 

Experimental data have been fitted with following laws: 
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c and f are constants depending on the solvent. W0 is the energy of crystallization of the bulk 

solvent at its normal solidification temperature and t is the thickness of the layer of adsorbed 

solvent. Orthogonal Distance Regression (ODR) minimizing for each point the distance 

between the fitting curve and the experimental points has been performed on the data. The 

corresponding curve is plotted in Figure 2 together with the corresponding Kelvin equation 

fit. ODR of the experimental data gives, c= -23.9 K t= 16.3 Å and f=20.696 K. W0 was taken 

and fixed from the value measured for the free acetone W0= 80.54 J.cm-3. 

It is indeed striking to note that in the case of Kelvin equation, the fit gives a meaningless 

negative t value. Our experimental model, even if it differs from the Kelvin equation, in 

particular for the high value of Rp, appears to be a better extrapolation of experimental data. 

Furthermore, it is worthy to note that this equation is very consistent with limits behaviors. In 

effect, when ∆T tends towards + ∞, Rp tends towards t the value of the adsorbed layer and 

when ∆T is zero Rp tends towards + ∞ (the solvent is no longer confined the pore is infinite). 

This model has proven to be the most suitable for other solvents like substituted benzenes or 

alkanes [24,25]. Obviously, the choice of the model has little influence for small pores but 

becomes critical for extrapolation towards higher values. 

 

[Figure 2 around here] 

 

These calibration curves have been validated on a porous alumina sample. The PSD 

measured by nitrogen gas sorption and by thermoporosimetry with acetone are shown in 

Figure 3 showing good agreement and thus validating the approach. 

 

[Figure 3 around here] 

 



 

 

Using similar procedures, various other solvents and in particular aromatic solvents have 

been calibrated [24].  

 

3.2 Calibration less use of thermoporosimetry 

A strong drawback of thermoporosimetry (and of NMR cryoporometry consequently) is the 

required calibration procedure for a given solvent. We have shown in recent work that for 

solvents belonging to a specific chemical family, it is possible to extrapolate the temperature 

of crystallization of the solvent confined in a given pore with the simple knowledge of its 

normal transition temperature T0. Law of the type : 

p
p R

BTAT += 0.   (Equation 7) 

has been derived for both substituted benzenes [24] and for linear alkanes [25]. In this 

equation Tp is the crystallization temperature of the solvent confined in a pore of radius Rp 

and T0 is the crystallization temperature of the free solvent. A and B are two constants which 

depend only on the type of solvent. Calibration over a wide range of solvents gives A=1.02 

and B=-1924.1 K.Å-1 for substituted benzenes and A=1.04 and B=-1251.2 K.Å-1 for linear 

alkanes. Deviation from the ∆T=k/Rp Gibbs-Thomson equation coming from the deviation of 

A from the unit, reflects the existence of the adsorbed layer on the surface of the pores which 

does not takes part in the transition. Giving a unique equation for all solvents belonging to a 

given family implies the assumption that the thickness t of this layer does not significantly 

vary from one solvent to another. For substituted benzenes and linear alkanes, this assumption 

is justified if one considers the t values obtained from the calibration curves and given in 

Table 2. 

The physical meaning of B is also interesting if one considers Equation 1. Our experimental 

results seem to indicate that the ratio σSL.Cosθ.T0/∆Hm.ρS is constant for all solvents 



 

 

belonging to the same family. Indeed all terms in this ratio are known to vary with 

temperature and with the solvent but it seems that all evolutions compensate each other for 

solvents that are closely related from a chemical point of view. 

From the derived expression (Equation 7), it is possible to predict Tp for a solvent belonging 

to the same family knowing T0. A comparison of the values of ∆T=Tp-T0 predicted by our 

model and measured experimentally is performed in Figure 4 for various substituted 

benzenes. 

The correlation is very good attesting the validity of the model. It is also worthy to note that 

on this curve, the toluene has not been calibrated and consequently not been taken into 

account to obtain the Tp=1.02T0-1924.1/Rp law attesting the predictive value of the model. 

  

[Figure 4 around here] 

 

Of course the validity of this empirical model is limited to the pore size range used for its 

determination. Clearly this model is not valid for extrapolation towards high Rp values where 

the sign of ∆T changes according to Equation 

The possibility to extrapolate Tp for various solvents is very attractive and could allow in 

particular using thermoporosimetry using solvents previously un-calibrated. 

  

 3.3 Application of thermoporosimetry to organic gels networks 

When a polymer is put into one of its good solvents, the latter tends to disperse the 

macromolecular chains. The ability of the solvent to disperse the molecular chains is related 

to the degree of repulsion that polymeric segments can develop between each others. The 

Flory-Huggins parameter χ allows quantification of this repulsion: the smaller the χ, the better 

the solvent.  



 

 

Upon cross linking, the dispersion of polymeric chains is hindered. Covalent bridges, 

established between the macromolecules, have a certain elasticity giving them the possibility 

to be spread out or contracted following the solicitation.  Between the natural tendency of the 

solvent to disperse the polymeric chains and the elastic response of the covalent cross links, 

an equilibrium state is found, characterized by a degree of swelling. A polymeric gel is then 

formed, constituted by a three-dimensional network whose Mesh Size Distribution (MSD) 

characterizes the cross linking level. For a given polymer, with a given cross liking level, the 

larger the mesh sizes, the better the solvent. The swelling ability of a given polymeric gel is 

closely related to its cross linking level. The knowledge of the cross linking level of a given 

polymer is fundamental since macroscopic properties such as the mechanical ones depend 

strongly on the cross linking level. Upon aging, the cross linking in polymers evolves 

considerably thus affecting its properties. It is therefore crucial to measure this cross linking 

level in order to predict the effect of aging on the behavior of polymers. Classically, the 

polymer aging is followed by spectrophotometric methods (mainly Fourier Transform Infra 

Red spectroscopy) which detect and quantify the oxidation products such as ketones, 

peroxides and other oxygenated structures. Nevertheless, apparition of these products is 

always initiated by the production of a radical, which can yield, either oxygenated structures 

or cross linking bond by recombination. The carbon-carbon bonds, which are the main cross 

linking source, are difficult to detect by spectrophotometry. Conventional methods such as 

swelling give only a mean characteristic values like the molecular weight between knots 

(Mc).  

We have been recently using thermoporosimetry as a tool to study the cross linking in gels 

networks [28,29] as proposed for the first time by Kuhn [4]. 

The application of thermoporosimetry to swollen gels is based on the formal analogy assumed 

between the notion of the pore in the rigid material and the concept of mesh in the polymeric 



 

 

network.  The organic swollen network exerts a confinement action on the swelling solvent 

very similar to that exerted by any porous medium exhibiting an interconnected porosity. 

Using thermoporosimetry it is therefore possible to measure the MSD of a given gel network 

in a particular swelling state. 

Scherer and co-workers [30,31] reported that a shrinkage can occur when the swelling liquid 

crystallizes in particular for soft networks. Depending on the bulk modulus of the material K0 

and on the mesh radius R, the error might be very important (as high as ten times for soft 

materials and small radius). Anyway, even if the swollen gel experiences dimensional 

fluctuations because of the thermal transition of the liquid-probe, these variations must be 

small compared to the ones induced by swelling. Furthermore, mesh size associated with 

swollen polymeric networks is usually quite large, the error in this case is minimized. For the 

two considered polymers, the value of the bulk modulus K0 is not so low (K0= 140 MPa for 

polyethylene and K0=53 MPa for silicone). K0 value for medium density Polyethylene has 

been taken from the literature and for silicone it has been calculated from the Young modulus 

and Poisson’s coefficient given by the polymer supplier. The same value has been taken for 

swollen and dry gel inducing some uncertainty but we do not have any experimental way for 

measuring the K0 value of the swollen polymer. In a similar way, the same value (the one of 

the starting material) has been used for the silicone sample showing different cross-linking 

levels, in this case, the error does not affect our conclusion since the modulus of the more 

reticulated sample must be higher than the one of the initial polymer thus leading to a smaller 

contraction of the network.  

Combining high K0 and R values, the error is kept very low. It is completely negligible for 

polyethylene and will be calculated for the silicone sample. Thermoporosimetry consequently 

remains an efficient and unique tool to compare the relative state of cross linking of different 

gels networks. The mesh sizes distributions calculated from the thermoporosimetry formalism 



 

 

reflect the actual state of the sample taking in account the eventual shrinkage and the swelling 

equilibrium.  

We will illustrate the use of thermoporosimetry in polymer science in the two following 

examples. 

 

3.3.1 Cross linking of polyolefins 

Polyolefin samples have been cross linked at different levels and their MSD have been 

measured by thermoporosimetry with para-xylene. A commercial polymer based on a mixture 

of a polypropylene homopolymer and an ethylene-propylene copolymer has been cross linked 

in various conditions. The sample has been irradiated with high energy electrons (2.2 MeV) 

with a Van de Graaff apparatus up to 1000 kGy. This sample has also been irradiated with γ-

rays from 60Co (1.17 MeV and 1.33 MeV) with different doses. The samples have been 

swollen in para-xylene at 138 °C for one night. Table 3 gives the irradiation doses and the 

swelling ratios of the different samples. The swelling ratio G is defined as the ratio between 

the volume of the swollen gel and the volume of the dry gel as measured by gravimetry after 

soaking the dry gel in para-xylene. 

 

[Table 3 around here] 

 

MSD have been measured for all samples with para-xylene. The maximum of the MSD RMax 

is given for each sample in Table 3. Upon increasing irradiation dose, one can observe a 

decrease of G along with a decrease of RMax. These observations are in agreement with the 

subsequent cross linking increase upon irradiation. G and RMax decrease correlatively. Indeed, 

a correlation between RMax
3 and G can be expected in a first approximation since the volume 

of the confined solvent (volume of the mesh) is supposed to be proportional to RMax
3 and so is 



 

 

G. This correlation is presented in Figure 5 showing the evolution of RMax
3 as a function of G. 

The experimental data can be fitted with an exponential growth as drawn in Figure 5. From 

this curve it is possible to extrapolate the value of RMax for G=1, the value corresponding to a 

dry gel presenting the highest cross linking level. This value usually difficult to measure is 

found to be RMax= 230 Å. The discrepancy between the observed correlation and the Rav
3 ∝ G 

expected behavior can be compared to the behavior of aerogels as described in [30] where a 

direct proportionality between the radius r and the volume V is considered. The molecular 

motions involved in chain re-arrangement might be responsible for the observed behavior. 

Indeed, a linear fit of the Rmax=f(G) curve is quite reasonable as shown in Figure 6. The 

limitation of this fit comes from the negative value of R given by the fit for G=1. The fit 

retained in Figure 5 is more consistent.  

In any case, the correlation between G and Rav is clear making Rav a valuable variable to 

discuss the evolution of a given network. 

 

[Figure 5 around here] 

 

[Figure 6 around here] 

 

3.3.2 Silicones 

A key issue in applied polymer science is the study and the prevision of polymer aging in 

their conditions of use (weathering, photo aging, electrical aging, thermo oxidation,…). The 

timescale of polymer aging is quite long. In order to study the effect of aging it is necessary to 

develop artificial accelerated aging procedures. The validity of such procedures is always 

questionable. 



 

 

In this study, a commercial silicone sample coming from an electrical device has been aged in 

working conditions for two years under a dry and hot climate in the desert. It has been 

manufactured by injection moulding at 170 °C for one minute. It is assumed that ageing of 

this material is accompanied by modification of the cross-linking level. To reproduce the 

cross-linking level of the naturally aged sample, a silicone rubber containing 

polydimethylsiloxane from Dow Corning was used. This sample was filled with 23 % wt 

silica and vulcanized with DCBP at 0.4 % wt reproducing the reference sample composition. 

Vulcanization was performed at 170 °C for 1 and 12 minutes. The sample vulcanized for 1 

minute is similar to the reference sample in its initial stage (before aging). The sample 

vulcanized for 12 minutes is expected to mimic the aged sample (same reticulation level) if 

our hypothesis is right. A 200 µm thick slice of the three materials has been soaked in 

cyclohexane for two days. Cyclohexane has been calibrated for thermoporosimetry in our 

previous work [26] and the derived laws have been used in the present work with 

extrapolation towards higher radii when required. This solvent is particular since it presents a 

phase transition at low temperature in the solid state. This transition has been used instead of 

the liquid to solid transition because it is much more energetic. MSD of the three samples 

have been measured by thermoporosimetry and are presented in Figure 7. 

 

[Figure 7 around here] 

 

For a vulcanization time increasing from 1 to 12 minutes, the maximum of the MSD shifts 

from 310 to 140 Å indicating clearly an increase of the cross linking level associated with a 

decrease of the mean mesh size. The MSD of the aged sample is quite similar to the one of the 

sample vulcanized for 12 minutes confirming our working hypothesis. For these samples, the 

contraction induced during freezing is very limited. Considering model of [30], the error is 



 

 

negligible for low reticulation level material and is about 10 % (with an overestimated K0 

value of 53 MPa) for the materials presenting the highest level of cross-linking (K0 > 53 MPa 

and R=14 nm). The error is quite low and in any case, the two samples showing the same 

distribution (MSD), even if an error exists on the value of the average mesh size Rav, this error 

is the same for both samples and does not modify our conclusions. From this study, it can be 

concluded that the ageing for this material is essentially due to an increase of the cross linking 

level. This conclusion is unusual for silicones which are believed to be very stable. In fact, 

thermoporosimetry appears to be most suitable for such measurement when compared to 

FTIR spectroscopy which is not directly sensitive to the evolution of cross linking. 

 

4 Conclusion and perspectives 

It has been shown that thermoporosimetry is an attractive technique for the study of confined 

liquids. We also demonstrated that it is possible, to some extent, to predict the behavior of 

confined liquids without having to perform a fastidious calibration. Thermoporosimetry also 

appear to be a very valuable technique for the study of gels networks. This point has been 

demonstrated on two selected examples concerning polyolefin and silicones presenting 

various degree of cross linking.  Thermoporosimetry allows getting information on the 

organization of the network and on the mesh size distribution of the networks. By selecting 

solvents with different polarities, and thus different interactions with the gel, it is possible to 

get more information about the structure of the networks. In the case of organic-inorganic 

hybrids materials, the inorganic building block is usually well known from a structural point 

of view (titanium oxo-clusters for instance [32]) but the organization of the organic network is 

much more difficult to study. Thermoporosimetry could be a useful tool to perform such 

study. In the specific case of mesoporous hybrids materials, thermoporosimetry is expected to 

bring information both on the porosity and on the organic network in a single experiment. 



 

 

This aspect is under study in our group. The variety of now available solvents for 

thermoporosimetry should make this technique a very valuable tool to study self assembly 

processes, and hybrid materials formation on a mesoscopic scale.  
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Tables and Figures captions 

 

Table 1: Textural data of the four nanoporous silica gels used for calibration. 

Table 2:  Thickness of the adsorbed layer t for various solvents derived from calibration. 

Table 3: Irradiation doses, swelling ratio G and maximum of Mesh Size Distribution RMax for 

the polyolefin samples. 

 

Figure 1: DSC curves recorded for free acetone and acetone confined in silica gels 1-4 and in 

porous alumina (dotted line). 

Figure 2: Calibration curves of acetone using silica gels 1-4 for Rp with Kelvin model (dotted 

line) and our model (continuous line) (Figure 2a) and Wa (Figure 2b). 

Figure 3: Pore Size Distributions of reference porous alumina sample measured by nitrogen 

gas sorption (- -) and by thermoporosimetry with acetone (    ). 

Figure 4: Correlation between experimental values of ∆T measured with DSC (∆Texp) and the 

∆T values predicted by our model (∆Tcal) for various aromatic solvents. 

Figure 5: Correlation between RMax
3 and the swelling ratio G for the various polyolefin 

samples. The dotted line corresponds to the best exponential growth fit. 

Figure 6: Correlation between RMax and the swelling ratio G for the various polyolefin 

samples. The line corresponds to the best linear fit.  

Figure 7: Mesh Size Distributions measured by thermoporosimetry with cyclohexane for a 

silicone sample aged in real conditions (   ) and a silicone sample vulcanized at 170 °C for 1 

min (- -) and 12 min (- -). 

 

 

 



 

 

 

 

 

 

Sample SSA (m2.g-1) Vp (cm3.g-1) Rp (Å) Rav (Å) ∆T (°C) 

1 183.1 1.327 142.5 145 -11,24 

2 166.2 0.991 87 119 -13,16 

3 472.7 0.922 34.2 39 -34,48 

4 532 0.696 24 26 -55,56 

 

Table 1: Textural data of the four nanoporous silica gels used for calibration and measured ∆T 

values. 

 

 

 

n in CnH2n+2 t (Å) Solvent t (Å) 

6 18.5 o-xylene 18.1 

7 13.5 m-xylene 17.9 

10 9.4 p-xylene 19.1 

12 8.5 p-Dichlorobenzene 14.6 

  Trichlorobenzene 14.7 

  Naphtalene 13.5 

 

Table 2:  thickness of the adsorbed layer t for various solvents derived from calibration.  

 



 

 

 

 

 

 

Irradiation dose (kGy) G RMax (Å) 

1000 (electrons) 3.86 104 

940 (γ) 9.01 600 

830 (γ) 11.45 719 

620 (γ) 13.78 961 

 

Table 3: Irradiation doses, swelling ratio G and maximum of Mesh Size Distribution RMax for 

the polyolefin samples. 
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Figure 1: DSC curves recorded for free acetone and acetone confined in silica gels 1-4 and in 

porous alumina (dotted line). 
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Figure 2: Calibration curves of acetone using silica gels 1-4 for Rp with Kelvin model (dotted 

line) and our model (continuous line) (Figure 2a) and Wa (Figure 2b) 
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Figure 3: Pore Size Distributions of reference porous alumina sample measured by nitrogen 

gas sorption (- -) and by thermoporosimetry with acetone (    ) 
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Figure 4: Correlation between experimental values of ∆T measured with DSC (∆Texp) and the 

∆T values predicted by our model (∆Tcal) for various aromatic solvents. 
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 Figure 5: Correlation between RMax
3 and the swelling ratio G for the various polyolefin 

samples. The line corresponds to the best exponential growth fit.  
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Figure 6: Correlation between RMax and the swelling ratio G for the various polyolefin 

samples. The line corresponds to the best linear fit.  
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Figure 7: Mesh Size Distributions measured by thermoporosimetry with cyclohexane for a 

silicone sample aged in real conditions (   ) and a silicone sample vulcanized at 170 °C for 1 

min (- -) and 12 min (- -). 
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