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Homogenization of nonlinear scalar conservation laws

Anne-Laure Dalibard
14th June 2007

Abstract

We study the limit as € — 0 of the entropy solutions of the equation d:u® + div, [A (f, us)] =0.
We prove that the sequence u® two-scale converges towards a function u(t, z,y), and u is the unique
solution of a limit evolution problem. The remarkable point is that the limit problem is not a scalar
conservation law, but rather a kinetic equation in which the macroscopic and microscopic variables
are mixed. We also prove a strong convergence result in Li, .

1 Introduction

This article is concerned with the asymptotic behavior of the sequence u® € C([0, 00), LL .(RY)), as the
parameter ¢ vanishes, where u° is the entropy solution of the scalar conservation law

Ous(t,x) ) x
v, r) 9 oA (E 0 t> RN 1
5 +;axi I(E,u(t,x)) 0 t>0, zeRN, (1)

W (t=0) = up (:c g) 2)

The functions A4; = A;(y,v) (y € RY, v € R) are assumed to be Y-periodic, where Y = III¥ | (0, T})
is the unit cell, and wug is also assumed to be periodic in its second variable.

Under regularity hypotheses on the flux, namely A € Wgéfjoc(]RN 1), and when the initial data
u®(t = 0) belongs to L™, it is known that there exists a unique entropy solution u® of the above system
for all ¢ > 0 given (see [@, E, @, @]) The study of the homogenization of such hyperbolic scalar
conservation laws has been investigated by several authors, see for instance [E, E, E], and in the linear
case , @] In dimension one, there is also an equivalence with Hamilton-Jacobi equations which allows
to use the results of [@] In general, the results obtained by these authors can be summarized as follows:
there exists a function u® = u°(¢, x,y) such that

€ .
uf —u (t,:c, g) — 0 in L{.((0,00) x RM). (3)

The function u°(¢, x,y) satisfies a microscopic equation, called cell problem, and an evolution equation,
which is a scalar conservation law in which the coefficients depend on the microscopic variable y. In
general, there is no “decoupling” of the macroscopic variables ¢, z, and the microscopic variable y: the
average of u® with respect to the variable y is not the solution of an “average” conservation law.

To our knowledge, there are no results as soon as the dimension is strictly greater than one when
the flux does not satisfy a structural condition of the type A(y, &) = a(y)g(§). Here, we investigate the
behavior of the family u® for arbitrary fluxes. We prove that ) still holds in some sense which will be
precised later on, and the function u? is a solution of a microscopic cell problem. Precisely, we prove
that even though there is no simple evolution equation satisfied by the function u° itself, the function

f(taxayag) = 1§<u0

is the unique solution of a linear transport equation, with a source term which is a Lagrange multiplier
accounting for the constraints on f. This statement is reminiscent of the kinetic formulation for scalar
conservation laws (see [[Ld, Bd, BJ), the general presentation in [RF], and [§] for the heterogeneous case); this



is not surprising since our method of proof relies on the kinetic formulation for equation () However, in
general, it is unclear whether u° is the solution of a scalar conservation law. Thus the kinetic formulation
appears as the “correct” vision of the entropy solutions of (m), at least as far as homogenization is
concerned.

The rest of this introduction is devoted to the presentation of our main results. We begin with the
description of the asymptotic problem, and then we state the convergence results in the general case.

1.1 Description of the asymptotic evolution problem

We first introduce the asymptotic evolution problem, for which we state an existence and uniqueness
result; then we explain how this asymptotic problem can be understood formally.
In the following, we set, for (y,&) € RN+L,

0A; )
a/i(yag): aé- (y7£)a 1§Z§Na

aAN+1 (ya 5) = —leyA(y, 5)

We set a(y, &) = (a1(y,€), - ,an+1(y,€)) € RNFL Notice that div, ¢a(y,£) = 0. These notations were
introduced in [g].

Before giving the definition of the limit system, we recall the kinetic formulation for equation (),
which was derived in [E] Indeed, we believe it may shed some light on the limit system. Let u® be an
entropy solution of (EI) Then there exists a non-negative measure m® € M*((0,00) x R¥*1) such that
J€ = 1¢cue(r,0) 18 a solution of the transport equation

0uf° i (2.€) 005 + Zansa (2.€) 0er* = oo, @

R
g

fe(t:()vxvg):1§<uo(myf)' (5)

In fact, this equation was derived in [ for the function g°(t,z,&) = x(&,us(t,z)), where x(& u) =
loce<u — lyce<o, for u,& € R, and under the additional assumption ay41(y,0) = 0 for all y € RY.
However, it is easily proved, using the identity f¢ = g%+ 1¢<o, that f© satisfies (H), even when an41(y,0)
does not vanish.

We now define the limit system, which is reminiscent of equation (E) :

Definition 1. Let f € L>([0,00) xRY xY xR), ug € L®(RY xY). We say that f is a generalized kinetic
solution of the limit problem, with initial data l¢<u,, if there exists a distribution M € Dj,,(]0,00) x
RY x Y x R) such that f and M satisfy the following properties:

1. Compact support in £: there exists a constant M > 0 such that

Supp M C [0,00) x RN x Y x [-M, M], (6)
f(t,$,y,€):1 if€<_Ma (7)
f(t,$,y,€):0 Zf€>M (8)

2. Microscopic equation for f: there exists a non-negative measure m € M1((0,00) x RY x Y x R)
such that f is a solution in the sense of distributions of

divy g(aly, ) f(t,2,9,8)) = Oem, 9)

and Supp m C [0,00) x RN x Y x [-M, M].
3. Ewvolution equation: the couple (f, M) is a solution in the sense of distributions of

N

th—f—zai(yvf)amf =M, (10)
i=1

f(t = O,ZC,y,g) = 1E<ug(x,y) = fO(:Cayag);



In other words, for any test function ¢ € Dper([0,00) x RY x Y x R),
N

/O /RNXYXRf(t,z,y,ﬁ) {at¢(t7$7ya§)+Zai(y,§>ami¢(t,$,y,g)} dt dx dy dé¢ =

=1

= - <¢5 M>’D7D/ - / 1§<u0(z,y)¢(t = 05 z,y, g) dx dy df
RN XY xR

e . . . N
4. Conditions on f: there exists a non-negative measure v € M, ([0,00) x RN x Y x R) such that

Oef = —v, (11)
0< f(t,z,y,€) <1 almost everywhere. (12)
And for all compact set K C RY,
1 T
; 0 ||f(s)_f0||L2(K><Y><]R) d87j60. (13)

5. Condition on M: define the set

Gi={eL3(Y xR), b >0,and 3u € M., (Y xR), 3C > 0,3a_ € R,

loc per

divy ¢(a)) = =Ogp, Supp u CY x [-C,C], >0,
Y(y, &) =a- if § < —C}.

Then for all ¢ € D([0,00) x RY) such that ¢ > 0, the function M %, ¢ belongs to C([0,0) x
RN L?(Y x R)), and

V(t,z) € [0,00) x RY, W eg, M xt0 @) (t,2,) P < 0. (14)
Y xR

We now state an existence and uniqueness result for solutions of the limit problem :

Theorem 1. Let A €¢ W>™ (Y x R).

per,loc

1. Existence: let ug € L} (RYN;Cper(Y)) N L®(RYN) such that there exists a mon-negative measure

mo = mo(x,y,§) such that fo(r,y,&) = lecuy(a,y) 95 @ solution of

3m0

> i @ E10) + g (ann (0, Ofo) = T (15)

and Supp mo C RN x Y x [-M, M|, where M = ||ug||oo-

Assume that there exists w1, ug € L®(Y) such that 1<y, is a solution of (@) fori=1,2, for
some non-negative measures my, ma, and

ur(y) < wo(w,y) <us(y) for ae. xRV yey. (16)

Then there exists a generalized kinetic solution f of the limit problem (in the sense of definition
[), with initial data fo.

2. “Rigidity”: let up € L°RN x Y), and let f € L>=([0,00) x RY x Y x R) be a generalized kinetic
solution of the limit problem, with initial data fo = lecw,. Then there exists a function u €
L>([0,00) x RN x Y) such that

ft,2,9,8) = Lecu(tay) almost everywhere.



3. Uniqueness and contraction principle: let ug,vo € L®(RN x Y), and let f,g be two generalized
kinetic solutions of the limit problem with initial data le¢cy, and lecy, respectively. Then there
exists a constant C > 0 such that for all t > 0, for all R, R’ > 0,

I[f(t) =gl (Brxy xr) < eCHHR (||u0 —vollL1 (B xy) + €7R/) . (17)

As a consequence, for all ug € L(RN x Y) N L}, (RN, Cpe,(Y)) satisfying (L5) and ([L4), there exists a

loc

unique generalized kinetic solution f € L>([0,00) x RN x Y x R) of the limit problem.

Remark 1. Notice that for any function v € L°(Y), v is an entropy solution of the cell problem
divy Ay, v(y)) =0

if and only if there exists a non-negative measure m € M;eT(Y x R) such that the equation

divy,e(a(y, §)Le<uy)) = Oem.

is satisfied in the sense of distributions on'Y x R.
In the case where A is divergence-free this condition becomes

N
> 0y (ai(y, ) lecury)) = 0.

i=1
Indeed, in that case, v satisfies

N

Z Oy, (ai(y, 5)1§<U(y)) =0em

i=1
for some non-negative measure m such that Suppm CY x (=M, M). Consequently,

N

§
Za i </ ai(va)1w<v(y) dw) =m(y,§) > 0.
=1

—M-1

Since the left-hand side has zero mean-value on'Y for all & € [—-M, M), we deduce that m = 0. Thus,
in the case where the flux A is divergence free, the limit system takes a slightly simpler form: conditions

(E), (E) become
divy(a(y,«f)f(t,x,y,g)) =0,

N
Of + Y ai(y,€)0u, f =M,
i=1
{ folR (M *t,x (10) (ta Z, ) 1/1 < Oa
Vi € L2 (Y x R), divy(ap) =0, and dep > 0.

loc

(18)

All the other properties remain the same.

Remark 2. Assume that the flux A is divergence-free, and set

Cy = {p € L2 (Y xR), Z a% (ai(y, ¥ (y,€)) = 0},

Cy = {’l/) e Ly (Y X R), 85’1/) > 0}

loc

Then C1, Co are convex sets of the vector space Llro(Y x R); thus condition (@) can be re-written as :
for all ¢ € D((—o0,0) x RYN) such that ¢ >0, for all (t,z) € (0,00) x RN, we have

M % ga(t,:c) S (Cl N 02)0,



where C° denotes the normal cone of C. Let us recall that when the space dimension is finite (that is, if
C1,Cy are convex cones in R? for some d € N), then

(cl(Cy) Nel(Cy))° =l (C} + CF) ,

where cl(A) denotes the closure of the set A.
If we forget about the closure and the fact that we are considering convex sets in an infinite dimensional
space, then we are tempted to write

M (t,x) € (C1 NCo)° = p1 + pz,
with p; € C?, 1 =1,2. Moreover, very formally, we have
C5 “="{0¢gm, m non-negative measure}.
Thus, we may think of M as some distribution of the form
M = dem + pu,

with m a non-negative measure on [0,00) x RY x Y x R, and pu; € CY.

Of course, these computations are not rigorous, but we believe they may help the reader understanding
the action of the distribution M (at least in the divergence-free case), even though the precise structure
of M shall not be needed in the proof. Inequality (@) is sufficient for all the applications in this paper.

Let us stress that uniqueness for the limit problem holds, even though the cell problem does not have
a unique solution in general; indeed, in the linear divergence free case, that is, if A(y, &) = a(y)§, with
divya = 0, then a function u is a solution of the cell problem if

divy(a(y)u(y)) =0, (u), =0.

The constant function equal to zero is a solution of this equation, but in general there are other entropy
solutions: think for instance of the case where N = 2, and

a(y1,y2) = (—020(y1,y2), 10(y1,y2)),

for some function ¢ € C2,(Y). Then any function u of the form g(¢) — (g(¢)), with g a continuous
function, is an entropy solution. Let us emphasize that nonlinearity assumptions on the flux are not
enough to ensure uniqueness of solutions either, see for instance [

In Theorem , the uniqueness of the solution of the limit system derives from a contraction principle
associated with the macroscopic evolution equation, rather than the microscopic cell equation. The well-
preparedness of the initial data, that is, the fact that ug(z,-) is an entropy solution of the cell problem,
is fundamental.

On the other hand, the lack of uniqueness of solutions of the cell problem entails that in general,

there is no notion of homogenized problem. Indeed, if u is a solution of
diVyA(y,p =+ U(y)) = 07 <U>Y - 07

then in general, the quantity
(AC,p+u())

depends on u (except when N = 1, and in some special cases, when N = 2; see [B, B]) Hence the
macroscopic and microscopic scales cannot be decoupled: if 1¢y (1,4, is a solution of the limit evolution
problem, then @(t, z) = (u(t, z,-)) does not satisfy any remarkable equation. This is the main consequence
of the absence of uniqueness for the cell problem.

Let us mention an important particular case of the theorem , which we call the “separate case”. We
now assume that the flux A can be written A(y, &) = ao(y)g(§), with divyap = 0. This case has already
been thorougly investigated by Weinan E in [E] in the case where ¢’'(§) # 0 for all £, that is, when the
function g is strictly monotonous. Here, we prove that his results hold with no restriction on g.



Let us introduce the so-called “constraint space”
Ko := {f € L}(Y); divy(agf) =0 in D'},

and the orthogonal projection Py on Ko N L?(Y) for the scalar product in L*(Y).
Then the following properties hold: for all f,g € L?(Y), if f € Ko, then

Po(fg) = fPo(9)-

And if f, g € Kg, then the product fg belongs to Kg. Notice also that all functions which do not depend
on y belong to K.

Proposition 1. Assume that ug € L*(RY,Cper(Y)) N L¥(RN x Y), and ug is such that ug(z,-) € Ko
for a.e. x € RV,
Let ag = Py(ag) € L>®(Y). Let u = u(t,x;y) be the entropy solution of the scalar conservation law

{ Owu(t, zyy) + divy (@o(y)g(u(t, z;y))) =0, t>0, z€RY, yeY, (19)

U(t = O,x;y) = ’LL()((E,y)-

Then the function f(t,2,y,£) = lecu(t,ey) 95 the unique generalized kinetic solution of the limit
problem (E) with initial data 1¢cyg(z,y)- In that case the distribution M is given by

M= %—? +6(€)(@o(y) — a0(®)) - Vaf,

where m is the kinetic entropy defect measure associated with the function u, that is, f is a solution of
Ouf +9'(©ao(y) - Vaf = Oem.
As a consequence, the solution u(t,x;y) of () s an entropy solution of
divyA(y,u) =0

for almost every (t,z) € (0,00) x RV,

1.2 Convergence results

Our first result is concerned with entropy solutions of (fll).

Theorem 2. Let A € Wie’ff’loc(RN“). Assume that the initial data ug € L}, (RN, Cper(Y) satisfies ([[F),

(E) Let f = 1¢<y be the unique generalized kinetic solution of the limit problem, with initial data 1ecy;
the existence of f follows from theorem E Then as € vanishes,

ScC.

2
lecus(to) — Lecutay)- (20)

As a consequence, for all reqularization kernels ©° of the form
(1) = (f) zeRN
5N 5 ) )
with ¢ € DRY), [p=1,0 < <1, we have, for all compact K C [0,00) x RV,

= 0. (21)

lim lim Hua(t, L) — U kg ©° (t, x, E)‘
L1(K)

6—0e—0 9

Remark 3. The assumption (@) means that ug is “well-prepared” in the sense that ug(x,-) is an entropy
solution of

diVy (A(ya UO(xvy») =0



for a.e. x € RN, If this hypothesis is not satisfied, then it is expected that the behavior of the sequence
u® will depend on the nature of the flux. If the flux is linear, then oscillations will propagate, and the cell
equation (E) shall not be satisfied in general. If the flux satisfies some strong nonlinearity assumption,
on the contrary, the conjecture is that the solution u® re-prepares itself in order to match the microscopic
profile dictated by the equation. Few results in this direction are known in the hyperbolic case; the reader
may consult for instance /@, @, @, . In /ﬂ], the author studies the same equation as (m) in which
a viscosity term of order € is added, and proves such a result, but the method relies strongly on the
parabolicity of the equation.

Remark 4. The way in which theorem E 1s stated might seem slightly peculiar; indeed, convergence
results of the type
ue—u(t,x,f) —0 in L}
€

loc

are expected to hold. But in order to establish such a result, it seems necessary to prove that

lim [ sup }u(t, z,y) —u g O (¢, y)} dt dx = 0.
=0 /K yey

But the evolution equation for w (or rather, for le<,) is given by definition I]; since the distribution M
allows for very few computations, it seems difficult to derive such estimates.

The next result generalizes theorem [l to weaker solutions of equation @), called kinetic solutions. In
order to simplify the presentation, we explain how to generalize the result in the divergence-free case;
we explain in the remark following the theorem how to derive an analogous result in the case where the
flux A is arbitrary.

Thus, for the reader’s convenience, we first recall the definition of kinetic solutions in the divergence-
free case (see [E] for the heterogeneous case, and the presentation in [E] for the homogeneous case) :

Definition 2 (Kinetic solutions of ([])). Let u € C([0,00), LY(RY)). Assume that there exists a
non-negative measure m¢ € C(Re,w — M*([0,00) x RY) such that for all T > 0, the function

T
g»—>/ m(t,z,£) dt dx
0o JrN

is bounded on R, and vanishes as |£| — oo.
Assume also that fe(t,z,£) = x(&u®(t,x)) is a solution in the sense of distributions of the linear
transport equation

or +z (LQ)as =20 120 acm”, (22)
F=0)=x(&uo (2.2)). (23)

Then it is said that u® is a kinetic solution of equation (ﬂ)

The existence of such solutions is only known when the flux satisfies additionnal regularity assump-
tions. Assume that a; € C! (Y xR) for 1 <4 < N, and assume that there exists a constant C' such that

per

la(y, )| < C (1 +[f]) VyeY VEeR. (24)

Under such hypotheses, it is proved in [E] that for all ug € L*(RY, Cper(Y)), there exists a unique function
u® € C([0,00), LY(RN)) such that x(&,u) is a solution of ([l); u® is called the kinetic solution of ([])-(@).
And if v is bounded in L>((0,T) x RN) for all T > 0, then ¢ is the entropy solution of ([l). Moreover,
a contraction principle holds between kinetic solutions.

Let us now state the convergence result for kinetic solutions :



Theorem 3. Let A € W;;joc(Y xR) such that divy A(y, &) = 0 for all y, €. Assume that a; € Czl,er(Y xR)

for 1 <i < N, and that (P4) is satisfied. Assume that the initial data ug belongs to L'(RN,c}..(Y)) and
satisfies

Z aiyl (a’i(yag)X(gv’UJO)) =0.

Let uf € C([0,00), LY(RN)) be the kinetic solution of () with initial data uo(z,x/€). Then there
exists a function u € L>®([0,00), LY(RN x Y)) such that the convergence results (R0) and RI]) hold, and

a(zi (a(y, )x (& ult,z,y)) =0 inD.

Moreover, if we set
9 a )
Pyp— . [ES— /
M= zx(§u) + ;:1 ai(y: &) 5 -x(&u) €D,

then M satisfies ([[§).

Remark 5. Let us explain how this result can be generalized to the case where the flux A is arbitrary.
First, the L' setting is not adapted to this case, because the L' norm is not conserved by the equation in
general. Hence another notion of kinetic solutions is needed; the correct functional space should be of the
type V + LY (RY), where V is a fized solution of the cell problem.

Then, the crucial point in Theorem E is to find a sequence ug such that ug converges towards wg
in LY(RY,Cpe,(Y)), and for all n € N, u} satisfies (1), (). Finding such a sequence is easy in the
divergence-free case, but seems more difficult in the general case, since solutions of the cell problem are
not known. This seems to be the main obstacle to the generalization of Theoremﬁ to arbitrary fluzes. If
this step is admitted, it is likely that the proof of Theorem E can be adapted to general settings.

The plan of the paper is the following: in section E we prove, under the hypotheses of theorem E,
that the two-scale limit of the sequence 1¢ = (1) is a generalized kinetic solution of the limit system. In
section , we study the limit problem introduced in definition [l] and we prove the rigidity and uniqueness
results in theorem EI; hence theorem ﬂ andE will be proved by the end of section E In section E, we study
a relaxation model of BGK type, approaching the limit system in the divergence free case. In section
E, we prove Proposition EI Eventually, in section E, we have gathered further remarks on the notion of
limit evolution problem.

2 Asymptotic behavior of the sequence u°

In this section, we prove that the two-scale limit of the sequence f© = 1¢ye (s ), say ot x,y,€), is a
generalized kinetic solution of the limit system; thus the existence result of Theoremﬁl follows from this
section. The organization is the following: we first derive some basic (microscopic) properties for the
function f°. Then we explain how regularization by convolution can be used in two-scale problems. The
two other subsections are devoted to the other properties of the limit system, namely condition (@) and
the strong continuity at time t = 0.

2.1 Basic properties of f°

We use the concept of two-scale convergence, formalized by G. Allaire after an idea of G. N’Guetseng
(see [l, RT)). The fundamental result in [[[] can be generalized to the present setting as follows:

Corollary 1. Let (¢°).>0 be a bounded sequence in L>((0,00) x RN*1). Then there exists a function
g% € L*°((0,00) x RN x Y x R), and a subsequence (¢,,) such that e, — 0 as n — 0o, such that

/OOO /RNH g (L, ) (t:cgg) dt da dga/ooo /RNXYXRgO(t,x,y,f)w(t,%yaf) dt dz dy d¢

for all functions ¢ € L*((0,00) x RN*1:Cper (V).

It is said that the sequence (g™ )nen two-scale converges towards g°.



Here, the sequence f¢ is bounded by 1 in L°°; hence we can extract a subsequence, still denoted by
g, and find a function f° € L®((0,00) x RY x Y x R) such that (f¢) two-scale converges to f0. It is
easily checked that f° inherits the following properties from the sequence f¢

0< fO(tz,,8) <1, (25)
Oef® = —v(t,x,y,€), v non-negative measure. (26)
Now, let us prove ([)-({): let
M := max ([|us]oo; [[uzlloo) ,

where u1,us are the functions appearing in assumption ([[§). Since u; (z/¢) is a stationary solution of
(m), by a comparison principle for equation (EI), we deduce that

x x
Uy (—) <uf(t,z) < wug (—) for almost every t > 0, z € RV,
€ €
Thus |[uf]| e ([0,00)xrY < M, and for almost every ¢, z,&, for all € > 0,

fg(t,l',g):l 1f§<7Ma
F(ta,€) =0 if &> M.

Passing to the two-scale limit, we infer () and (§).
Now, we derive a microscopic equation for f0. First, multiplying (fl) by S'(¢), with S’ € D(R), and
integrating on (0,7T) x Br X R, with "> 0, R > 0, yields

/BR (S (@.2) =5 (w0 (+.2))) d“/T//aB @ (2.€) - nn(@)f°S'(€) don(z) d dt—

- —/ //BR aN+1 fES”(«E) dr d¢ dt = / / BRm (t,z,€)S" (&) dx d€ dt,

where ng(z) is the outward-pointing normal to B at a given point & € dBpg, and dog(x) is the Lebesgue
measure on 0Bg.
Hence we obtain the following bound on m*

mg((O,T) X BR X R) S CT,R

foralle >0, R> 0, T > 0, and Supp m* C (0,00) x R x [-M, M].

Consequently, there exists a further subsequence, still denoted by e, and a non-negative measure
m® = mO(t,z,y, &) such that em? two-scale converges to m® (the concept of two-scale convergence can
easily be generalized to measures; the arguments are the same as in ], the only difference lies in the
functional spaces). Moreover, Supp m® C (0,00) x R x Y x [-M, M].

We now multiply (f) by test functions of the type e (¢, 2, /e, &), with ¢ € Dper([0, 00) x RV x ¥V x R),
and we pass to the two-scale limit. We obtain, in the sense of distributions on (0,00) x RY x Y x R

0 omO
(an+1(y,)f°) = gz -

9¢
Thus (E) is satisfied, which completes the derivation of the basic properties of f°.
Now, we define the distribution

5 (@) + (27)

0 fO a
; aily 8:131

The distribution M obviously satisfies ([). The next step is to prove that M satisfies ([L4); since regu-
larizations by convolution are involved in condition )7 we now describe the links between convolution
and two-scale convergence.



2.2 Regularization by convolution and two-scale convergence

In this subsection, we wish to make a few remarks concerning the links between convolution and two-scale
convergence. Indeed, it is a well-known fact that if a sequence (f,,) weakly converges in L?(R”) towards
a function f, then for all convolution kernels ¢ = ¢(x), the sequence (f, * ) two-scale converges in
L? towards f * . It would be convenient to have an analogue property for two-scale limits. However,
in general, if a sequence f = f¢(z) is bounded in L?(RY) and two-scale converges towards a function
f = flx,y) € LARY x Y), then f¢ % ¢ does not two-scale converge towards f x, . Indeed, if 1) =
P(z,y) € L>(RY,Cper(Y)), then

/]RN e xo(z)y (z, g) dx

_ 1@z — ) (=, g) dz da’

R2N

— /}RN dx’ fe(a') [/RN ol — 2" (:L" g) dm] _

In general, the quantity between brackets in the last integral cannot be written as a function of 2’ and
2’ /e, and it seems difficult to pass to the limit as e — 0.

In order to get round this difficulty, let us suggest the following construction, which is reminiscent
of the doubling of variables in the papers of Kruzkhov, see [E, @] With the same notations as above,
consider the test function (¢ . @) (2, %), where @(x) := ¢(—x) Vo € RY. Then by definition of the
two-scale convergence,

F@ el (02) doo [ few) o bl ) dedy

RN RN XY

And

/RN e (x) [Y %4 @] (x, g) dx = -~ fe(@)p(x — 2’ ) (m, %) dx da’,
[ gl sl @y dody= [ (e )it dody,
RN xY RN xY

Consequently, as € — 0,

/

Feto = (0 ) dode = [ (e gt dody (29)

R2N RN xY

for all p € D(RY), for all ¢ € L*(RY, Cper(Y)).

In fact, different assumptions on the function v can be chosen; the key point is that 1 should be
an admissible test function in the sense of Allaire (see [[]). In particular, if there exist ¢; € D(RYN),
o € L*°(Y) such that

P(@,y) = Yr(e)da(y),
then ¢ is an admissible test function, and the limit (2g) holds.

2.3 Proof of the condition on M
The goal of this subsection is to prove that with

N
M =0, + Zai(yaf)aifo,
=1

condition ([4) holds; hence, let ¢ € D(R x RY), § € D(R x RY), such that

©>0,02>0,
o(t,r) =0Vt >0Ve c RN, 0(t,x) =0Vt <0VeecRY;

10



the function ¢ shall be used as a convolution kernel, and 6 as a test function, which explains the above
hypotheses on the supports of ¢ and 6.

Let ¢ € G arbitrary (the definition of the set G is given in definition El) We have to prove that the
quantity

e’} 00 N
:/ / / fo(sazayag) {at@(t—s,x—z)+Zaz(y,£)6ltp(t—s,x—2)}><
0 0 R2N xY xR i=1

x Y(y,£)0(t, x) d dy dx dz ds dt
in non-positive.

Before going into the technicalities, let us explain formally why the property is true; let us forget
about the convolution and the regularity issues, and take the test function

otz (Z.¢)
in equation ({).

Let R > max(M, C); recall that M and C are such that Supp f° C [0,00) x RN x Y x [-M, M], and
Py, &) = a_ if £ < —C. Integrating on [0, 00) x RY x [-R, R], we obtain

/OOO /RN /I;ff(t,:c,g) [8t9(t,z)+ai(§,§) axio(t,x)} w(g,g) d d€ dt
oo R
,l/ /RN/ fs(t,x,g)g_g (gg) 0(t, ) dz de dt
+a_ / / —aN+1 —,—R) 0(t, x) dt dx
RN

/ /RN/ #8)0c0 (2.6) da de ds’/RN /zl&uo(m,g)@(tO,xw(f,g) da de.

Notice that )
ant1 (f fR) — _div, A (f fR) :
€ 5 €

and thus

/OOO/RN /zfs(t 7.€) [00(6,2) + a: (£.€) 00,00,0)] 0 (£.€) dodg dt
- /O°° /]RN /I; m(s,2,€)0¢¢ (55) - éﬂ (gé) 3sf€(t,w,§)} O(t, x) dz dE ds
> R
a/o A (f,fR) 8i0(t, z

)dtdl'f/]RN /R1€<uo(z7§
00 T R
foz,/ / A; (—,fR) 0;0(t, ) dt dzf/ /

0 RN g RN

Passing to the limit as € — 0, we retrieve

(t = 0,2) (gg) d dE

1

)9
" )

(t = 0,z) (gg) da dE.

é<uo(z, 2

') R
/ / / SOt 2,9, €) [0:0(t, @) + ai (3, €) 00, 0(t,2)] @ (y,€) da dy dE dt
0 RN J—R

Y

o) R
o [ ARt deds [ [ ey o 00 = 0,000 (0,6) dadg
0 RN XY RN J—-R

R
_/ / 1£<uo(m,y) e(t =0, CUW (Q,E) dx dg.
RN J_R

11



This means exactly that

) P / .
A aif 1/} S 07
ot Jy«r 0z; Jy xr

or in other words, that [, , M1 < 0 in the sense of distributions on [0, c0) x RY.
Now, we go back to the regularizations by convolution. According to the preceding subsection,

_6113%/ / /]R2NY]R szf){@ttp(t—sx—z —I—Zal( ,) lnpt—sac—z)}x

m/;(

™ |

,5) 0(t,x) d€ dx dz ds dt.

Hence, in ({l), we consider the test function

o(s,2,8) = {/ /RN (t—s,x—2) (tm)dtdw} w(g( f) K(¢),

where K is a cut-off function such that 0 < K <1, K € D(R), K(§) =1if |{| < R, and
s 1= xy 9 ke 05,
with p1 € D(RY), 2 € D(R), 0 < ¢; <1, [¢; =1 for i =1,2, and

0} (y) = 5LN<P1 (%) 38 = %902 (g) .

According to (), we have

/ /RNH (s, ls@“ 5+Zaz( €) 0.0 5)] dz d¢ ds

n / /RM (5,2, €)ans1 ( 5) Ded(s, 2, €) dz d€ ds (29)
N /O /RNH mE (s, 2, €)9eb(s, 2, €) dz de ds+/RNHX(§,uO (zg)) é(s = 0,2,€) dz de
And
000,26 = | [ [ ot sz 20000 avae] ws (2.6) (o)
V.o(s,2,6) = [ 000/ Veolt — s,x — 2) 0(t, z) dtdx} 1/)5(5,5) K(€)
—l—é [/OOO/RNgot—s x —z)0(t, x)dtdm] (V yw(s)( f)K(g),

000,26 = | [ [ ott-sa—2)0(ta) aras] K0 200 (2.

+ [/OOO/RN ot —s,x—2z)0(t, ) dtdz] Vs (g,f) 0:K (€)
G(s=0,2,6) = /OOO N 8tga(t,xz)9(t,x)dtdx} bs (gg) K(€) =0.

Thanks to the assumption on the support of ¢, and the fact that

Oeths = (0et)) #y @ #¢ ¢ > 0,

12



we have

@, (

Moreover, thanks to ([q), E), and the assumptions on ¢ and K, we have d¢ K = 0 on Supp m®, and

)
[/Om /RN p(t = 5,2~ 2) 0(t,7) dt dw} Us (2,€) 0K () (5, 2,8)

_ [/OOO /RN ot —s,2— 2) 0t, ) dt dz] DK (€).

Hence, we obtain, for all ¢, > 0,

f/fﬁ(svz@) {@cp(ts,xz)Jriai (g,&) 8i<p(ts,:cz)} X

X (gg) 0(t, ) dé dz dz ds dt
+1/f€(s,z,§)a 5,5) Vet (gg) ot — s, — 2) 0(t, ) K(€) dt da ds dz d¢

+—/ (t—s,2 — 2) 0(t, 2) O K (€)an11 (gg) dt dx ds dz dé

Following the formal calculations above, we have to investigate the sign of the term

/f@(s, 26 a (gg) V.t (gg) ot —s,x— 2) 0(t,x) K (€) dt dz ds dz dE.
Since divy ¢(a)) = —0¢p, we have
s

divy ¢(arhs) = 78—6 +7rs

where 5 = p1 %, 99 *¢ 3. Then

//RNH 5258‘? z U /RN tszz)@(tz)dtdx}dsdzdf
/ /]RN+1 =u tm))ﬂé {/ /RN t—sx—z)@(tx)dtdx} dsdz d¢ <0.

Hence, we have to prove that as § — 0,
rs — 0 in L{ (Y x R).
The proof is quite classical. We have

rs(y, &) a(y, v = (Vy.e0703) — [aly, Y] * (Vye0l9h)
N
Z/[ai(yaé) —a;(y1,€)] ¥ (Y1, €1)0y, 05 (y — y1)@3 (€ — &) dyr d&a

+ / lanv+1(y,€) —any1(y1,61)] 7/’@1751)90(1;(31 - yl)azisﬁg(f —&1) dyy d&y

Thus, we compute, for (y,y1,£,&1) € RPVF2 1 <i < N +1,
1
ai(y,§) —ai(y1,&) = (y—u) / Vyai(ty + (1 =7y, 7€ + (1 — 7)&) dr
0

1
+(E-&)- /0 Ocai(ty+ (1 —1)y1, 7€+ (1 — 7)&) dr

13



Set, for 1 < k,i <N,y ecRN, £ R,

Ol =G W20 S8 = w2 (o),
G0 =G WR©):, w8 =52 On W),

Notice that

/ Oki = —Okis / i = —0ONt1,-
RN+1 ]RN+1
Then

N+1 N
r6(y7§) = Z Z

N+

Jy1, 7€+ (1 — 7)€ Y(y1, )00 i (y — y1,€ — &) dyy déy dr

(ty + (1 = 7)y1, 7€+ (1 = 7)ED)Y (Y1, &) (y — y1, € — &) dyr déy dr.

=1

Hence as § — 0, rs converges to
—divy e(a(y, £)) ¢(y.§) =0

in LI (RN*1) for any p < oo and for all (¢,z) € [0,00) x RY. We now pass to the limit as § — 0, with
¢ fixed, and we obtain

f/fs(s,z,g) {8tga(t—s,zfz)+ai (g,f) 8iga(t—s,zfz)}1/)(§,§) 0(t,x) d§ da dz ds dt

—a_ /G(t, x) 0eK(§)A (g,f) Vet —s,x —z)dt de ds dz d€
> 0.

Passing to the limit as € vanishes, we are led to
- / FO5,2,9,6) {Brp(t — 5,2 — 2) + ai (4,€) Bip(t — 5,2 — 2)} (y, £)0(t, x) d€ dr d= ds dy dt

—a,/G(t,z) 0:K (A (y,€) - Voot —s,x — z) dt do ds dy dz d§
> 0.

Since
/G(t, )Vt —s,x —z)dt dv dsdz = — </9(t,:c) dt das) (/ V.o(s,z)ds dz> =0,

we deduce that
N
/fo(sa zayag) {at@(t — 5T = Z) + Zai (yaE) al(p(t - 5T = Z)} 1/1 (yaE) G(ta $)d€ dx dz ds dy dt < 0,
i=1

which means that f° satisfies condition (@) There only remains to check the strong continuity of f at
time ¢t = 0.
2.4 Strong continuity at time ¢t =0

The continuity property forfY is inherited from uniform continuity properties at time t = 0 for the
sequence f€. This is strongly linked to the well-preparedness of the initial data (condition (E)), that is,
the fact that for all z € RY, ug(x,-) is an entropy solution of the cell problem

divy Ay, uo(z,y)) = 0.

14



First, let us consider a regularization of the initial data

95 = fo ¥z pn ¥y 3 e 5.

with p,, a convolution kernel (n € N), 6 > 0, and gaf defined as in the previous subsection. Then we can
write

= L (2 e (2 ¢ e (20) () (20 0

Notice that
V293l Lo & xy ) < | VapnllL @y,
and
a(y,€) Vygy (,9,6) = demy, + 74,
where

5 () §
M, = Mo *g P *y P1 *¢ Po,

ro(@,y,€) = a(y. &) Vygn (@,9,€) = [afo s pul #y.6 Vi (9)5(6)-
Then for all n € N, for all z € RV, 70 vanishes as § — 0 in L (Y x R) and almost everywhere. The

proof of this fact is exactly the same as in the preceding subsection, and thus, we leave the details to the
reader. As a consequence,

1
i a(@,€) = Z0em, (2, 2,€) + B 5(2,).

and there exists a constant C,,, independent of ¢, such that for all n € N, for all € > 0, and for almost
every x, &
1imsup|Rf%5(:E,£)| <C,.
§—0

Moreover, Supp R, 5 C RN x [-R—1,R+1]if§ < 1.
Now, we multiply (E) by 1 —2¢° (z,2/¢,£), and () by 1 —2f%(t,x,£). Setting

Bsta) = fA(t2) [1-29] (2. 2,€) ] + 98 (2. 2.€) L -2/ (2, ©)

= |t g (0. 20 46l (v 26) ~Joi (= L6
we obtain
o Paalt €+ S (Z.6) et st .) + Zanar (2,6) Gt ot ,) =

=1

(1203 (. 2.6)] + Z0em, (=, 2.€) 11— 27762, + R ol O [1 - 2/°(1,,6)) . (31)

_ Om?

23

Notice that

65 [1 - 2f6(t’x’§)] = 26(5 = ug(t’x))a

9 (1292 (2.2.€) ) = 20mcs(@,9).

where v, . 5 is a non-negative function in C°>*(RN*1), with support in RY x [-M — 1, M + 1] if § < 1.
Notice also that f&(t,x,&) — g (z,2/e,&) = 0if [¢] is large enough (|¢| > M +1). Take a cut-off function
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¢ = ((z) such that ¢(z) = e~1*l when |z| > 1, and 1 < ((x) < 1for |z| < 1. Then there exists a constant
C such that

|V.C(z)| < C¢(x) Vo eRY,
Hence, mutliplying @) by ¢(z) and integrating on RV*1 we obtain a bound of the type
d
dt RN+1

st () dodg < c/ 5t 2, )¢ (x) da de
+/RN+1 |RE 5(z,6)| 11— 2f%(t,2,)| () da de.

Using Gronwall’s lemma and passing to the limit as 6 — 0 with € and n € N fixed, we retrieve, for all
t>0,

Pt = 0o (5. 2.6)[ C@dede < @ [ (0. 56) =on (0. 5.)| o) do e
x
e

+ eCt/ {gn (z,
RN+1

+ C’n(eCt —1),

o (5. 2.6)[ | o o e

where the constant C,, does not depend on ¢, and g, = fo *, pn. And for all n € N, € > 0, we have

/]RN+1

fo (=, 5,5) g (:c, 2| ¢t doae

< [ /RN\fo 0, 26) ~ o (¢, 2.6) [ uler — () i ' e
< /RN /RN Ug x,—,f — ug (m',g,f) pn(z — 2")¢(2) do dz’
<

[ suplun ..~ w0 ' .9.) pula = (o) dar
RN JRN

yey

The right-hand side of the above inequality vanishes as n — oo because ug € L (RY,Cper(Y)). Similarly,

Lo o (29 -

o (2. 2.9)[ ] ) v

< [l (@29 - h (s Le)]cw e
(R (0 ) e asas

< [ o (2 2) — o (. 2.6) ) do e

< 5[ [ sl @) = @)l pule —)C(a) do de'

yey

Hence, we deduce that there exists a function w : [0,00) — [0, 00), independent of ¢ and satisfying

lim; g w(t) = 0, such that
/IRN+1
for all ¢ > 0.

Then, we prove that the same property holds for the function f°. Indeed, we write

17t ,€) = fo (2, 2,€)| ¢(@) dar dg < it

P28 = Tecug (o) | = F7 = 2F ey (o2) F Lecug(wz )i

16



let 8 € L*°([0,00)) with compact support and such that § > 0. Then for all £ > 0,

/ /szl fsf2fs g<ug(z,2) 1£<u0(11%)} §(:c)9(t)dxd§dt§/0 w(t)0(t) dt.

Since ug € Li (RN, Cper(Y)), it is an admissible test function in the sense of G. Allaire (see [[]); we
deduce that 1¢.,, is also an admissible test function. This is not entirely obvious because it is a
discontinuous function of uy. However, this difficulty can be overcome thanks to an argument similar to
the one developed below in subsection @, and which we do not reproduce here. Thus, we can pass to
the two-scale limit in the above inequality. We obtain

L [ 0 P O 1720259~ Lecauon) POO) i o dy e <

< /0 0(t)w(t) dt

Notice that |f°] — |f°|?> > 0 almost everywhere. As a consequence, taking 0(t) = lo<¢<r, with 7 > 0
arbitrary, we deduce that

2100 - xe P drardy < [
0

and the left-hand side vanishes as 7 — 0. Thus the continuity property is satisfied at time ¢t = 0.

Hence, we have proved that any two-scale limit of the sequence f¢ is a solution of the limit system.
Thus the existence result in Theorem EI is proved, as well as the convergence result of Theorem E We
now tackle the proof of the uniqueness and rigidity results of Theorem El The strong convergence result
of Theoremljl will follow from the rigidity.

3 Uniqueness of solutions of the limit evolution problem

In this section, we prove the second and the third point in Theorem m, that is, if f is any solution of the
limit evolution problem, then there exists a function u € L>([0,00) x RN x Y) such that f(t,z,y,&) =
Lecu(t,z,y) almost everywhere, and if f1 = 1¢cu,, f2 = le¢<u, are two generalized kinetic solutions, then
the contraction principle (L) holds.

3.1 The rigidity result

Let f be a generalized kinetic solution of the limit problem, with initial data 1¢<y,. The rigidity result
relies on the comparison between f and f2. Precisely, we prove that f = |f|? almost everywhere, and
since O¢ f = —v < 0, this identity entails that there exists a function u such that f = 1¢.,. Thus, we
now turn to the derivation of the equality |f| = | f|?.

Let 6 > 0 arbitrary, and let 6; € D(R), 5 € D(RY) such that

01 >0, 02 >0,

/91:/ by = 1.
R RN

Supp #; C [—1,0] and 61(0) = 0.

1 t T
0°(t,2) = =501 (5) 02 (5)-
Set f0 = f ;. 0° M? = M, 0°. Then f° is a solution of

We set, for (t,z) € RN*1

N

§
6f +Z

M5

17



Moreover, f? satisfies the following properties

0< f2<1, (32)
divy e(a(y, &) f°) = Ogm 1. 0°, (33)
Ocfo = —v oy 0°, (34)
whereas M? satisfies
MO eC((0,T) x RY, L2(Y x R)) N L=([0,00) x RN x ¥ x R), (35)
MO(LE) =0 if €] > M, f°(,&) =0 if&>M, f(,)=1 if&E<—M, (36)
Mo <0 Yy eg. (37)

Y xR

In particular, notice that (1 — 2f(t,z)) € G for all t,z, and fO(t,x,y,&) — fO(t,x,y,£)% = 0if |¢] > M.
Let ¢ € C®(R™M) be a cut-off function as in the previous subsection. We multiply the equation on f?
by (1 —2f%)¢(x), and we integrate over RV x Y x R. We obtain

(f - |f“|2)<—/

RN xY xR

d

dt RN XY xR

ai(y, €)0:¢(x) (£ — /) = / M (1-2f%) ¢ <0,

RN XY xR

We then deduce successively, using Gronwall’s lemma,

< (F-1PP)c<0 (7 = 1FP) ¢
RN XY xR RN XY xR
/ (f‘s(t)—|f6(t)|2)4§ec‘f/ (fPt=0)~[f(t=0)")¢ vt>0,
RN XY xR RN XY xR
[ Lo wmrnes S [ femo-ite=one @
N - C N ’
0 RNV XY xR RN XY xR

with a constant C' depending only on ||al|pe(y x[~R,R])-

Let us now check that f°(t = 0) strongly converges towards lec,, = fo at time ¢ = 0. In fact,
the main difference between the proof of Theorem ﬂ and the one for generalized kinetic solutions of
scalar conservation laws (see chapter 4 in [@]) lies in this particular point. Indeed, in the case of scalar
conservation laws, the continuity property can be inferred from the equation itself; in the present case,
the lack of structure of the right-hand side M prevents us from deriving such a result, and hence the
continuity of solutions at time ¢ = 0 is a necessary assumption in definition .

Using hypothesis (B), we write, for almost every z, ¥, &,

fot=0,2,y,€)

/ f(s,z,y,f)@‘s(—s,x—z) ds dz
]RN+1

f(;(tzoamayag)_fo *g Gg(xayag) = /]RN+1 (f(S,Z,y,f)—f()(Z,y,f))e(;(—S,.’L’—Z) ds dz.
As a consequence, for all 6 > 0

/ 1F3(6 = 0) — o va 057 C(a) de dy d
RN XY xR

IN

/ / F(5:2,8,€) — folzsy, ©)P (@)% (=5, — 2) de dy dE ds d=
RN XY xR JRN+1

—S

1 .
/R||f(3) — follZ2@y xy xR ¢() de dydg)gel (T) ds dz dy d€ + 2R|Y| [|¢ = ¢ # 03| 11 )

IN

c [° }
g/o 1£(5) = foll T2 (mv xy xk,c(a) da dy de) @5 + 2RIV [[C = € % 03] 1 vy
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The right-hand side of the last inequality vanishes as § — 0, and thus f?(t = 0) converges towards fo as
§ — 0in L2(RN x Y xR, ((z) dx dy d€), and hence also in L' (RN x Y x R, ((z) dx dy d€). Consequently,

/ (F2t=0) — |2t =0)P) ¢ — 0 asd—0.
RN xY xR

Above, we have used the fact that fo = l¢<,, and thus fo = fZ.
Now, we pass to the limit as § — 0 in (), we obtain, for all T' > 0,

/oT /waym (f= 1) e <0

Since the integrand in the left-hand side is non-negative, we deduce that |f| = |f|? almost everywhere.
The rigidity property follows.

3.2 Contraction principle

Let f1, fo be two generalized kinetic solutions of the limit problem; we denote by My, M5, and M7, Mo,
the constants and distributions associated to f1, fo, respectively. Without loss of generality, we assume
that M7 < Ms. According to the rigidity result, there exist functions uy,us € L°°([0, 00) x RN x Y)n
L>=([0,00), LY (RN x Y)) such that f; = Lecy,.

As in the previous subsection, we regularize f;, M; by convolution in the variables ¢, z, and we denote
by ff , /\/lf the functions thus obtained. The strategy of the proof is the same as in [@], Theorem 4.3.1.
The idea is to derive an inequality of the type

d

where ( is a cut-off function as in the previous section.
Since |f1(t) — fa(t)| = |f1(t) — f2(t)|? = f1 + f2 — 2f1f2, let us first write the equation satisfied by
g% = f2+ f9 —2f0 f3. We compute

N
0
{atff +D iy O —f = M‘i} x1-2f3,
i=1 ’

al 9
ot s S ls-mf x1-as
i=1 ¢

Adding the two equations thus obtained leads to
Y )
g’ + ;ai(y,f)a—xig‘; = M{[1—2f5] + M3 [1—2f]].

Notice that thanks to (f]), (B) and the microscopic constraints (ff), (), 1 — 2f0(t,z) € G for all (¢, z).
Hence

M(t,z) [L—2f(t,x)] <0 V(t,z) € [0,00) x RV,
Y xR

and the same inequality holds if the roles of f; and fy are exchanged.
Now, take a cut-off function ¢ € C*°(R) satisfying the same assumptions as in the previous subsec-
tion; multiply the equation on g° by ((z), and integrate over RV x Y x R; this yields

d

— 9°(t, 2, y,£)C(x) do dy d¢ < C/ 9°(t,2,y,8)((z) dz dy dé Wt >0,
dt Jry sy xR

RN xY xR

and thus

/ 9°(t, @, y,£)C(x) dx dy d§ < eCt/ ¢°(t = 0,2,y,8)((z) dz dy dE.
RN xY xR RN xY xR
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According to the strong convergence results of ff (t = 0) derived in the previous section, we can pass to
the limit as § — 0. We infer that for almost every t > 0,

/ |f1(t,1',y,§>7f2(t,1',y,§)|<(1') dﬂfd’ydf
RN XY xR

= C/ it =02.5.8) = folt = 0,2,y O)IC(@) da dy 6. (40)

This completes the derivation of the contraction principle for the limit system. Uniqueness of solutions
of the limit system follows. In particular, we deduce that the whole sequence f¢ of solutions of (E) two-
scale converges towards f°.

3.3 Strong convergence result

Here, we explain why the strong convergence result stated in Theorem E holds, that is, we prove (@)
This fact is rather classical, and is a direct consequence of the fact that
2 sc.
) = Lecut,e,y)-
Let us express this result in terms of Young measures: the above two-scale convergence is strictly equiv-
alent to the fact that the two-scale Young measure 14 ., associated with the sequence u* is the Dirac
mass §(¢ = u(t,z,y)) (see 23, Chapter 2). And it is well-known (see [{]) that if u is a smooth function,
then "
dve 4 4(&) =0 =ult,z,y)) = v —u (t,x, —) — 0 in L.
€

For the reader’s convenience, we now prove the result without using two-scale Young measures. We
define us = u *, 5, with ;s a standard mollifier. Take K € D(R) such that 0 < K <1, and K(§) =1 if
|€] < M. Take also a sequence 6,, € C*°(R) such that 0 < 6,, <1, and

0u(€) = 13 €< —~, 0,(6) =0if € > —.
n n

Then we write

2

Lecus(te) — 1g<u5(t,m,§) = lecue(ta) — 215<u5(t,z,§)1£<uf(t,z) + 15<u5(t,$,§)

lmin(us(t,z),u(g (t,z,f))<§<max(u5(t,z),u5 (t,z,%)) '

The function 1
replace it by

) is not smooth enough to be used as an oscillating test function. Thus we

(e (1n5)).

and we evaluate the difference : for all compact set C' C [0,00) x RY,

/C/R Lecuy(rmnz) = n (€= us (12, g))‘K(g) dt dz dg < %|C|.

According to the two-scale convergence result, for all n € N,

[0 e (10 5)) tecuum ) i -

- / / On (E —us (ta T, y)) 1§<u(t,m,y)K(§) dt dz dy d£
Cc JR

€<u5(t,w,£

€

Since the sequence 6, (£ — us) uniformly converges towards le<,, as n — 0o, we can pass to the limit as
n — oo, and we deduce

/ / 1§<u5(t111§)15<u5(t,z)K(§) dt dx df - / / 1§<ug(t,z,y)1£<u(t,z,y)K(§) dt dx dy df
C JR C JRXY
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Simlarly, as ¢ — 0, for all § > 0,

[ [ty K@ dtdods = [ [ decionnK(€) d dudy
C JR C JRXY

// 1£<ua(t7z)K(§> dt dz dfﬂ/ /15<u(t7z7y)K(§) dt dx dy d€.
C JRxY c JRrR

Thus

/C/R‘]‘f<u5(t»$)1§<u5(t,z,§)

On the other hand,

/C/]R ‘1§<u€(t,m) - 1§<u5(t,z,§)

/ / Lecuttay) — Lecus(tay | K(€) dt dzdy d€ = ||u— us|| L1 (o xy)-
C JRxXY

2
K©dtdrde — [ [ [ecuon ~ Lecustuo| K€ dido dy de
C JRXY

K () dtdmdgz}

u®(t,x) — us (t, T, E) ‘

3

)

LY(O)

Hence we have proved that for all § > 0, for all compact set C' C [0,00) x RV,

. X
213% ut(t, ) — us (taxa g)} = |Ju — U6||L1(C><Y)-

)

Statement (1)) then follows from standard convolution results.

3.4 Application: proof of the convergence result for kinetic solutions

In this subsection, we prove Theorem E; this result is in fact an easy consequence of the convergence
result stated in Theorem E for entropy solutions, and of the contraction principle for the limit system.
Assume that ay,; = 0, and let u° be a kinetic solution of equation ([l), with an initial data uo(z,z/e)
such that ug € LY(RY, Cper(Y)) and

> o a(: x(€ o) = 0 ()

in the sense of distributions.
For n € N, let u? := sgn(ug) inf(|ug|,n). Then for all n € N, uf belongs to L>®(RY x Y) and

ul —ug asn— oo in LYRY,Cper(Y)).

Moreover, x (&, uf) = x(&,u0)1le<n, and thus for all n € N, uf} satisfies (@)

For all n,e > 0, let us, € C([0,00), LY(RY)) N L>=([0,00) x RY) be the unique entropy solution of
equation (fl) with initial data uf}(z, 2 /). Then by the contraction principle for kinetic solutions of scalar
conservation laws, we have

x X
Vn € N, ||’LLE — Ui||Loo([07oo)7Ll(]RN)) < HUO (m, —) — ’U,g (m, —)‘

- . < uo — ug L@~ cper(v))-

LY(RN)

On the other hand, for all n € N, let 1¢<,, be the unique solution of the limit system with initial
data 1¢<yp. By the contraction principle for solutions of the limit system (see inequality @)), we have,
for all integers n,m € N, for all ¢ > 0,

/ it 2,9) — tm(t,2,9)| (@) dady < ¢ / il (¢, 2, ) -l (¢, 2, )| C(2) da dy
RN XY RN xY

IN

e ug” = ug L1 @Y Cpur (7)), (42)

where ¢ € C°(RY) is a cut-off function satisfying the same hypotheses as in the previous subsections.

Consequently, the sequence (uy,)nen is a Cauchy sequence in L% ([0, 00), L' (RY x Y)); thus there exists a
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function u € L2 ([0, 00), L} (RN xY)) such that u,, converges towards u as n — oo in L ([0, 00), LY (RN x

Y)). Moreover, the limit u is independent of the chosen sequence uf thanks to (@) indeed, if vf, w§
are two approximating sequences giving rise to functions v and w respectively, we construct the sequence

n vy if n is even,
uy = e

0 wh  if nis odd.
Then the sequence uj converges towards g, and thus the corresponding sequence u,, converges towards
u, while ug, converges towards v and us,+1 towards w. By uniqueness of the limit, v = v = w.

On the other hand, since the sequence f¢ = x(&,u®) is bounded in L, there exists a sequence () ken
of positive numbers, g, — 0, and a function f € L>([0,00 x RY x Y x R), such that

X(Eus (t,2)) 225 f(t,2,y,€).
Now, for all k,n € N,

X (&5 u™) = X(& urf )| oo ([0,00), 1 @Y +1)) < w0 — ugll L1 &N cper(v))s
and for all n € N, since x(&,u) = 1¢<y — 1e<o, we have, as k — o0,

2 sc.

X(& urt) = x(& un).
Let ¢ € Dper([0,00) x RY x Y x R). By definition of two-scale convergence,

/0 /]RN+1 X (& u™(t, x)) — x(&ugt ()] ¢ <t7$, 57§> dt dz d¢ —

- / / F(62,9,€) — X(Eun(t,e, )] 0 (b, €) dt da dy de.
0 RN xY xR

And for all k € N, the following inequality holds

/ / D(E,u () — x(€ sk (£, 2)] (t,x,ﬁ,s) dt da d&‘ <
0 RN+1 Ek

<@l (10,00), L2 @Y x v xr)) |40 = Ug| |21 @Y e (v))-

Passing to the limit as k — oo, we deduce that for all n € N, ¢ € Dpe,([0,00) x RY x YV x R),

/ / F(62,9,€) — X(Eoun(to, )] 0 (b, ) dt do df‘ <
0 RN xY xR

<uo = wgll L1 @™ e (v ) Pl L1 ([0,00), L5 RN x ¥ xR)-

Thus, we pass to the limit as n — oo and we infer that f = x(&, u(t, x,y)) almost everywhere. Hence the
limit is unique, and the whole sequence x (&, u®) converges (in the sense of two-scale convergence).

Eventually, let us pass to the limit as n — oo in the limit evolution problem for x(&,u,). We set
f =x(& u), and define the distribution

M:=0f +a(y,§) - Vaf.

Then M,, — M in the sense of distributions, and it is easily checked that inequality (E) is preserved
when passing to the (weak) limit. Thus M satisfies ([Lg).

In the divergence-free case, the main difference between the L> and the L' setting, that is, TheoremE
and Theorem E, lies in the fact that uniqueness for the limit system in the L' setting seems difficult to
derive; indeed, the proof of uniqueness in the L°° case uses several times the fact that the distribution
M has compact support. In a L' setting, this assumption would have to be replaced by a hypothesis
expressing that M vanishes as [{] — oo, in some sense. But it is unclear how to retrieve such a
property from the hydrodynamic limit (see section E), for instance. The above argument only proves
that uniqueness holds among L' solutions which are obtained as the limit of a sequence of L™ solutions.
Thus we have left open the correct notion of limit system in a weak L' setting, and the derivation of
uniqueness therein.

Nonetheless, we wish to stress that the contraction principle in the L*° setting is sufficient to ensure
that the whole sequence x (&, u®) converges, even if uniqueness for the limit system fails.
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4 A relaxation model for the limit evolution problem

In this section, we exhibit another way of finding solutions of the limit system in the divergence-free case.
Indeed, the existence result in theorem ﬂ was proved by passing to the two-scale limit in (), and it may
be interesting to have another way of constructing solutions, which does not involve a homogenization
process.

Hence, we introduce a relaxation model of BGK type, in which we pass to the limit as the relaxation
parameter goes to infinity. The drawback of this method is that the existence of solutions of the limit
system is not a consequence of the construction. Indeed, we shall prove that if a solution of the limit
system exists, then the family of solutions of the relaxation model strongly converge towards it in the
hydrodynamic limit. Hence the proof is not self-contained, because the existence of a solution of the
limit system is required in order to pass to the limit. Nevertheless, the final result may be useful in other
applications.

In the whole section, when we refer to the limit system, we have in mind the modified equations
introduced in Remark El In the divergence-free case, it is also slightly more convenient to work with the
function x(&, u), rather than 1.,. Hence a solution of the limit problem is a function g satisfying

Z (y,€)9) = (43)

=1 N
Z 5% =M, (44)
Oeg = 6(«5) —v(t,z,y,§), v=0, (45)

and M is such that for all ¢ € D([0,00) x RY) such that ¢ > 0, the function M x; ., ¢ belongs to
C([0,00) x RN, L2(Y x R)), and

/ Mk ) (t,2,-) ¥ <0,
Y xR (46)
Vi € Lis (Y x R), divy(ay) =0, and 0:9p > 0.

4.1 A relaxation model

The goal of this subsection is to introduce a system approaching ({d)-(#d). With this aim in view, we
define a relaxation model of BGK type, which takes into account the constraints the limit system, that

is, equations ()-(4q). Let
M = ||uo|| Lo (v xm),
E:={fe€ L2(Y x R), Suppf C Y x [-M, M]},
K := {p € B, divy(a(y,&)p(y,£) =0 D},
K=Kn{pekE, ve M\ (Y xR), v>0, dep = 6(§) — v} .

per

Then F endowed with the usual scalar product is a Hilbert space, and K is a closed convex set in E.
Thus the projection P on K is well-defined.
The main result of this subsection is the following :

Proposition 2. Let \,T > 0 be arbitrary. Set
X7 :=C([0,T], A(RY x Y x R)).
Then there exists a unique solution fx € X of the equation

{ Oufr+a(y,&) - Vafa + Afa = AP(f1), (47)
f)\(t = 0,$,y,§) = X(gauo('rvy))

The function fx has the following properties :
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1. For almost every t,x,y, &,

fk(taxayag) =0 Zf& Z Ma
Sgn(g)fk(taxayag) = |f)\(taxaya€)| S L.

2. L? estimate: for all A > 0,
Al xz < [luollLr @y xy).- (48)

3. Strong continuity at time t = 0: there exists a function w : [0,00) — [0,00), such that limg+ w = 0,
and such that for all A >0, t >0,

I[fx(t) — follLr vy xy xr) < w(t). (49)
4. Fundamental inequality for My := X(P(fx) — fx): for all g € K, for almost every (t,x),

M (P(fx) —9) <0. (50)

Y xR

In equation (@), the projection P acts on the variables y, ¢ only; since f is a function of ¢, z,y,¢,
P(f) should be understood as

P, z,-) =P(f(E,x,-)),
and the above equality holds between functions in L?(Y x R), almost everywhere in ¢, z.
Proof. First step. Construction of fy. The existence and uniqueness of fy follows from a fixed point

theorem in X7. We define the application ¢r : Xy — X by ér(f) = g, where g is the solution of the
linear equation

{ g +a(y,§) - Vag+ Ag = XP(f),
g(t = 05 €z, yvg) = X(ga UO(xvy))

The existence and uniqueness of g follows from well-known results on the theory of linear transport
equations (recall that a € C!). Moreover, if fi, fo € X7 and g; = ¢7(f;), i = 1,2, then g = g1 — g2 is a

solution of
{ Org +a(y,§) - Vag + g = N[P(f1) — P(f2)],
g(t = Oaxayag) =0.

Multiplying the above equation by g, and integrating on RY x Y x R¢, we obtain the estimate

1d
5 IO gy sy + Mg OB sy <A [ [P(R) = Pfa)ls
RN xY xR

Recall that the projection P is Lipschitz continuous with Lipschitz constant 1. Thus

AN

[ P =Pl < FIPUE) = P Bamrcr ci + 90 cr ey
RN XY xR

IN

1 1
I = YOl 2@ v xm + S9N @y sy xm)-

Eventually, we obtain

d
EHQ(UH%%RMYW) F GO 2@y xy xry < M1 = F2) Ol 22 @y sy xmy < Al = fol -

A straightforward application of Gronwall’s lemma yields

g1 — g2llxr < V1—e AT ||fi — fol|x7-

Thus ¢ is a contractant application and has a unique fixed point in X7, which we call f).
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Second step. L? estimate. Multiplying @) by f and integrating on RN x Y x R, we infer

1d
5 IO sy + MO sy <A [ Pl
RN XY xR

Notice that 0 € K; thus the Lipschitz continuity of P entails that for almost every ¢, x

1P 2)|e < [IAAE2)]|5:

Hence, using the Cauchy-Schwartz inequality, we deduce that ¢ +— || fx(f)||2®~ xy xr) 15 nOnincreasing
on [0,7T]. The equality

Lo (& unle. )P dody de = (& uor, )| dedydg = [ Juol, )] d dy

RN XY xR RN XY

then yields the desired result.

Third step. Compact support in . Let us prove now that fy(-,&) = 0 if |{| > M: let ¢ € D(R) be an
arbitrary test function such that ¢(¢) = 0 when |[£] < M. Then P(f)e = 0 since P(f») € K, and thus
frp is a solution of
0
5 () +a- Ve (fap) + A (fap) =0,
(fA(P) (t = O,HC,y,f) =0.
Hence (fa¢)(t,z,y,&) = 0 for almost every ¢, x,y,&, and fi(-,£) =0if |{] > M.

Fourth step. Sign property. We now prove the sign property, namely

sen(O)fn =1/l <1 ae.

This relies on the following fact: if g € K, then sgn(£)g(y,&) € [0,1] for almost every y,&. Indeed,
g(-€) = 0if € < —M, and thus if —M < € < 0,

¢
9(y,6) = —/ (y,&) d¢’ <.

v
-M

Hence ¢(y, ) is non positive and non increasing on (—oo,0). Similarly, ¢g(y, ) is non negative and non

decreasing on (0,00). And if £ < 0 < ¢, then

&/
9, &) =gy, &) =1 —/5 v(y,w) dw < 1.

Hence the sign property is true for functions in K.
Multiplying () by sgn(€), we are led to

% (sgn(§)fx) + aly, ) - Ve (sgn(€)fx) + A (sgn(§) fr) = AP(fx) € [0, A].

And at time ¢t = 0, sgn(&) fr(t =0) = |x(§, uo)| € [0,1]. Thus, using a maximum principle for this linear
transport equation, we deduce that the sign property is satisfied for fy.

Fifth step. Uniform continuity at time t = 0. Let 6 > 0 be arbitrary, and let fg = fo %5 0%, with 0° a
standard mollifier. Then f{(x) € K for all 2 € RY | and thus f\ — fJ is a solution of the equation

0

o1 (= 15) +a(y. ) Va (I = £8) + A (I = 1) = A (P(2) = P(3)) = aly,€) - (fo+a VO°) .

Multiply the above equation by ( r— fg ) and integrate on RY x Y x R. Using once more the Lipschitz
continuity of the projection P, we obtain

1d

2
5@}}fA*fg||Lz(wayxR) < Nlallpoo gy e—aramp i = Fl 2@y xy xwyl | foll L2 @ v <) ||V 22
EHfA*fOHL?(RNxYxR) = 5
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As a consequence, we obtain the following estimate, which holds for all t > 0, A > 0 and § > 0

Ct
HfA(t) - ngL?(RNxYxR) = S + Hfo - ngL?(]RNxYxR)'

Hence the uniform continuity property is true, with

) Ct
w(t) := 5H>1f(; (7 +2 HfO - ngL?(]RNxYX]R)) :

Sizth step. Inequality for M. Inequality @) is merely a particular case of the inequality

(P(S) =1, P(f) =gl <0
which holds for all f € E, for all g € K.

4.2 The hydrodynamic limit

In this subsection , we prove the following result :

Proposition 3. Let (f))aso be the family of solutions of the relazation model (I7), and let f(t) = x (€, u)
be the unique solution of the limit system (@)—(@) with initial data x(&,uo(x,y)). Then as A — oo,

fr— f in L*((0,T) x RY x Y x R).

The above Proposition relies on an inequality of the type

d

dt Jgy gy xR

|£x = fI? < ra(d),

with 7)(¢) — 0 as A\ — oo. The calculations are very similar to those of the contraction principle in the
previous section; the only difference lies in the fact that f) and f are not solutions of the same equation.

Before tackling the proof itself, let us derive a few properties on the weak limit of the sequence f.
Since the sequence fy is bounded in X7 C L2((0,T) x RN x Y x R), we can extract a subsequence, which
we relabel fy, and find a function g € L2((0,T) x RN x Y x R) such that f, weakly converges to g in L2.
Moreover, the sequence P(fy) is bounded in L2((0,7) x RY x Y x R), for all T' > 0. Hence, extracting
a further subsequence if necessary, we can find a function h € L?((0,7) x RY x Y x R) such that P(f))
weakly converges towards h as A — oco. Notice that the convex set K is closed for the weak topology in
L?. Consequently, h(t,z) € K for almost every ¢, z. At last,

P - h=0(5),

where the O is meant in the sense of distributions. Hence, g = h, and in particular, we deduce that
g(t,x) € K for almost every (t,z).

We are now ready to prove the contraction inequality; consider a mollifying sequence §° as in the
previous section, and set f0 = f k¢ 2 69, f/‘\s/ = ) *tz 0. Then

atf5 + a(yvé.) . V:Ef6 = Mlsa
Ofy +ay,€) - Vafl =M.

Let us multiply the first equation by sgn(§) — 2f/‘\5/, the second by 2(f§/ — f9), and add the two identities
thus obtained; setting Ff’é = sgn(€)f0 + 312 — 2f0 7, we have

OF 4 a(y,€)- Vo FH = M (sgn(g) — 2f§’) oME(f8 — £,
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We integrate over (0,t) x RY x Y x R and obtain
¢
[ Bteygdedgds = [ [ M (sea() - 255
RN XY xR 0 JRNXY xR

t
v [ amluf -
0 JRNXY XR
+/ FO(t = 0,2y, &) d dy dE.
RN XY xR

We now pass to the limit as §' — 0, with all the other parameters fixed. Notice that

‘}'iglo/ot/RNxYxRMi/(f)\/_fé) //]RNxYxR f/\_f)
Y R,
//wam (P(f2) — 1)

since f°(t,x) € K for all t,z. The passage to the limit in FA’ (t = 0) does not rise any difficulty because
of the strong continuity of the functions f) at time ¢ = 0. Hence, we retrieve

Lo AP 0I=170F) +17°0 - hoF)

/ / 5 (sgn(€) — 2/3)
]RN><Y><]R
+/ L1795 = 0)] — £t = 0)P) + £t = 0) — x(Esuo) )
RN xY xR

and thus, integrating once again this inegality for ¢ € [0, T,

// LUP = 1F°12) + 1750 — Fal?)
]RN><Y><]R

< [lal[ [, e - 2m6) o
AT [ 1= 0 - 7= 00P) + 17 = 0) — (& wo)
RN xY xR

We now pass to the limit as A\ — oo, with § > 0 fixed. Then

<

R 5 5
h/\H_ligf ||f/\ - f ||%2((0,T)><]RN><Y><]R 2 ||g —f ||%2((O,T)><]RN><Y><]R7

and
i [ [ e e - 2060 0]

N / a [/ /]RN><Y><]R o) (sen(¢) — 29(s)) ds} ="

Thus, we obtain, for all § > 0

s s s s
llg = S21IZ2 0.y xRN xv xk < T/ {(f°E=0)]=1ft=0)) +f(t=0) — x(&muo)*} .
RN XY xR
We have already proved in the previous section that the family f°(t = 0) strongly converges towards
X(&,ug) as § vanishes, due to the continuity assumption at time ¢ = 0. Hence, we obtain in the limit
2
llg — f||L2((0,T)xRN xyxr <0,
and consequently, g = f. Hence the result is proved.
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5 The separate case : identification of the limit problem

This section is devoted to the proof of Proposition EI Thus we focus on the limit system in the case
where the flux A can be written as

A(y, ) = ao(y)g(§),  with divyag = 0.

The interest of this case lies in the special structure of the limit system; indeed, we shall prove that
the function u, which is the two-scale limit of the sequence u?, is the solution of the scalar conservation
law (@) In view of Theorem , we wish to emphasize that Propositionljl implies in particular that the
entropy solution of (@) satisfies the constraint equation

divy (ao(y)g(u(t, z;y)))

for almost every t > 0,z € RY; this fact is not completely obvious when g # Id. We will prove in the
sequel that u(t, ) actually belongs to the constraint space Ko for a.e. t,z.

Before tackling the proof of the theorem, let us mention that the limit problem (@) is not the one
which is expected from a vanishing viscosity approach. Precisely, for any given § > 0, let u§ be the
solution of .

Opu§ + div, A (E, ug) —ed A u§ =0,

with the initial data u§(t = 0,2) = uo (x,z/e). Then for all ¢ > 0, u5 — u® as § — 0; moreover, the
behavior of u§ as & — 0 is known for each § > 0 (see [, f]). In the divergence-free case, for all § > 0,

. e _ = . 1
2111% Us = u(t,x) m Lloca

where @ is the entropy solution of

O+ divz((a) g(u)) = 0,
with initial data @(t = 0,2) = (uo(x,-)). Hence, it could be expected that the limits € — 0 and § — 0
can be commuted, that is

lim lim u§ = lim lim wu§,
e—06—0 §—0e—0

which would entail

lim v® = .
e—0

In general, this equality is false, even in a weak sense: a generic counter-example is the one of shear
flows (see for instance the calculations in [[f]). In that case, we have N = 2 and A(y, €) = (a1(y2)¢,0),
and the equation ([[9) becomes

Oru + a1 (y2) Oy u = 0,
with the initial condition u(t = 0,z,y) = ug(x1,22,y=2). It is then easily checked that in general, the
average of u over Y is not the solution of the transport equation

8tﬁ + <0,1> (911’(2 = 0

We now turn to the proof of Proposition . In view of Theorem m, it is sufficient to prove that the
entropy solution of (@) belongs to Kg for a.e. ¢,z, or in other words, that Ky is invariant by the semi-
group associated to equation (@) We prove this result in the slightly more general context of kinetic
solutions. The core of the proof lies in the following

Proposition 4. Let ug € LY(RY, L°(Y)) such that ug(x,-) € Ko for almost every x € RV .
Let v =v(t,z;y) € C([0,00); LY(RN x Y)) be the kinetic solution of

{ dv(t, m3y) + divy (ao(y)g(v(t, ;9))) =0, ¢t>0, z RN, yev,
U(t = 0,:6,3./) = ’LLO(ZL',y),

ie. fl(t,z,y, &) = x(&v(t, z;y)) is a solution in the sense of distributions of

{ Oft+ao(y) - Vauflg' (&) =0em, t>0, zeRN yevY, £eR,
Ut =0,2,9,€) = x(& uo(z,y)),

and m is a non-negative measure on [0,00) x RV x Y x R.
Then for a.e. t > 0,2 € RN, u(t,r) € Ko.
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Proof. First, let us recall (see [23, P4]) that for all T > 0,

ft= Jim iy in C([0,T); LY(RY x Y x R)),

where f\ = fu(t,z,y,€) (A > 0) is the unique solution of the system

Oefx+ao(y) - Vafr g'(§) + Afa = Ax (&, un),
U)\(t,.’lz',y) = f]R f)\(taxayag) d&’ (52>
fk(t = O) = X(gauo)

Moreover, for every A > 0, u) is the unique fixed point of the contractant application

C(0,T); LYRYN xY)) — C((0,T); LY(RN x Y))

(731 = U9

Ox
where uy = fg f and f is the solution of

O f + &O(y) Vo f g/(f) +Af = /\X(§7u1)7 (53)
f(t=10) = x(& uo).

Thus, the whole point is to prove that the space
{uec(0,T); L"RYN x Y));u(t,z) € Ko a.e}

is invariant by the application ¢j.
First, let us stress that for all u € L*(Y),

u €Ky < divy(a(y)x(&u)) =0in D'(Y x R). (54)

Indeed, if u € Ko, then for all § > 0, set us = u * #°, with #° a standard mollifier. The function us is a
solution of
divy (agus) = rs,

and the remainder rs vanishes strongly in L'(Y) (see the calculations in the previous sections). Since
the function us is smooth, if G € C1(RY), we have

divy(apG(us)) = G'(us)rs.

Passing to the limit as § vanishes, we infer divy(aoG(u)) = 0 for all G € C'(RY). At last, taking a
sequence of smooth functions approaching x(§,u), we deduce that divy(aox(§,u)) = 0 in Dy, (Y x R).
Conversely, assume that div,(agx(&,u)) = 0; then integrating this equation with respect to § yields
u € Ko. Hence (54) is proved.

Now, let u; € C([0,T]; LY (RN x Y)) such that u;(t,x) € Kq a.e. Then div(agx (&, u1) = 0). Let f be

the solution of (@), since @g € Ko, the distribution divy(aof) satisfies the transport equation

Oy (div(aof)) + ¢'(§)ao(y) - Ve (div(aof)) + Adiv(ao f) =0,

and div(aof)(t = 0) = 0 because ug(z) € Ko a.e. Hence divy(agf) = 0; integrating this equation with
respect to £ gives us € Kg a.e.
Consequently, uy (¢, x;-) € Kq a.e. Passing to the limit, we deduce that v(¢t, ;) € Ky a.e.
o

Let us now re-write equation (§1)): setting b(y) = ao(y) — @o(y), we have
Ouf* + ao(y)Vaf'g'(§) = 0em — b(y)Va flg'(€) = M.

If ug € L®(RY), then v € L>([0,00) x RY x Y), and it is easily checked that f! and M, satisfy the
compact support assumptions. According to the above Proposition, f! also satisfies (), and thanks to
the structure of the right-hand side, the distribution M; satisfies (@) Thus f! is the unique solution
of the limit system, and Proposition [ is proved.
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6 Further remarks on the notion of limit system

Here, we have gathered, by way of conclusion, a few remarks around the limit evolution system introduced
in definition . The main idea behind this section is that the limit system is not unique (although its so-
lution always is), and thus several other relevant equations can be written instead of (E) Unfortunately,
there does not seem to be any rule which would allow to decide between two limit systems.

Let us illustrate these words by a first series of examples : assume that the flux is divergence free,
and let

N
K:={f € Lio(Y xR), > 9,,(a;if) =0 inD'}.

i=1

We denote by P the projection on K in L{ (Y x R). Precisely, consider the dynamical system X (¢, y; £)
defined by .
{ X(t,y:€) = a(X(t,y;€),€),t >0

X(t=0,y;6) =y.

Then for all £ € R, the Lebesgue measure on Y is invariant by the semi-group X (¢;£) because of the

hypothesis divya(y, &) = 0. Hence by the ergodic theorem, for all f € L{ (Y x R), there exists a function
in LL (Y x R), denoted by P(f)(y,£), such that

loc

P(f)(y,€) = hm—/f (£.:€).€) dt

T—oo T

and the limit holds a.e. in y,§ and in Y x (=R, R) for all R > 0.
Set @ := P(a). Then if f is a solution of the limit system, f also satisfies

Of +a(y, &) -Vof =M
and f, M satisfy (f) and (1) - (4). Indeed,

M =M+ ay,€) —a(y,8)] - Vaf

and the term [a(y, £) — a(y, &)]- Vi (f*z0)(t, 7,9, €) belongs to K+ for all ¢, z. Of course, uniqueness holds
for this limit system (the proof is exactly the same as the one in section E), and thus this constitutes as
legitimate a limit system as the one in definition m In fact, in the separate case, Proposition [l I indicates
that the above system seems to be the relevant one, rather than the one in definition |l I Notice that the
distribution M satisfies the additional property

M i, ¢t x) € KE Vi, .
Let us now go a little further: let § € C}(R) such that 0 < < 1, and let
ag(y,§) = 0(§)aly, &) + (1 = 0(5))aly, §).

Then f is a solution of
atf + &9(y7§> : vmf = M97

for some distribution My satisfying (@) Thus this still constitutes a limit system which has the same
structure as the one of definition m Hence the limit system is highly non unique, and it must be seen
as a way of identifying the two-scale limit of the sequence f¢, rather than as a kinetic formulation of a
given conservation law, for instance. We wish to emphasize that if the flux A is not “separated”, that is,
if the hypotheses of Proposition ﬂ are not satisfied, then in general, the function u such that f = 1¢, is
a solution of the limit system, is different from the solution v = v(t, z, y) of the scalar conservation law

O + divz/i(y, v) =0,

where the flux A is such that 85141'(34, &) = ai(y,&). Indeed, the function v above is not a solution of the
cell problem in general, even if v(t = 0) is. In other words, the set K is not invariant by the evolution
equation

N

i=1
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where m is a non-negative measure and g = l¢cs,.

Let us now assume that the flux A is not divergence free. Then there are cases where yet another
notion of limit problem can be given: assume that there exists real numbers p; < pe, and a family
{v(",P) } p1 <p<p», Which satisfies the following properties:

1. The function (y,p) — v(y,p) belongs to L>(Y X [p1, p2]);

2. For all p € [p1,p2], v(-,p) is an entropy solution of the cell problem; in other words, there exists a
nonnegative measure m(y, §; p) such that f(y,&;p) = lecy(y,p) is a solution of

0 (any1(y, &) f) =

)+ 5¢

m;

o€

3. For all p € [p1,p2], (v(-,p))y =0;

4. The distribution d,v is a nonnegative function in L'(Y" x [p1,ps]); this implies in particular that
for all couples (p,p’) € [p1, p2)? such that p > p’, for almost every y € Y,

v(y,p) > v(y,p’).

Under these conditions, one can construct a kinetic formulation for equation (), based on the family
v(z/e,p) of stationary solutions of ([]), rather than on the family of Kruzkov’s inequalities. This kind of
construction was achieved in [ﬂ] in a parabolic setting, following an idea developed by Emmanuel Audusse
and Benoit Perthame in [ﬂ]7 these authors define a new notion of entropy solutions for a heterogeneous
conservation law in dimension one, based on the comparison with a family of stationary solutions. Let
us explain briefly how the kinetic formulation for entropy solutions of () is derived: let u® be an entropy
solution of ([). Define the distribution m* € D'((0,00) x RN x (p1,p2)) by

it = {2 (o (), e (1) A C C)]] 9

Then according to the comparison principle (which was known by Kruzkhov, see [E, E]), me is a
nonnegative measure on (0,00) x RY x [p1, p2]. Now, set

fet,z,p) =1 o2 p)<us (t.e) € L°°([0,00) x RY x [p1,p2])-

Thanks to the regularity assumptions on the family v(-,p), we can differentiate equality (53) (which is
meant in the sense of distributions) with respect to p, and we are led to

& (o () g (o (L) (2o () = 2 o

This equation is in fact the appropriate kinetic formulation in the heterogeneous case; its main advantage
on the equation @) is the absence of the highly oscillating term

20 [ (1€) 1eer].

Notice that for all p € [p1,p2],

vy (2L oyt =0 10 Dp (1) (57)

This equation is derived by differentiating equation

divy, Ay, v(y,p)) =0

31



with respect to p. Thus, if we set

a(y,p) := Tpa(y,v(y,p)),

the vector field a € LY(Y x [p1,p2]) is divergence-free, and the same kind of limit system as in the
divergence free cas can be made. Of course, the interest of such a construction lies in the simplicity of
the structure of the limit system in the divergence free case.

Definition 3. Let f € L*([0,00),L'(RY x Y x R)), ug € L' N L¥(RY x Y). We say that f is
a generalized kinetic solution of the limit problem associated with the family v(-,p) if there exists a
distribution M € D;,.([0,00) x RN x Y x R) such that f and M satisfy the following properties:

1. Compact support in p: there exists (py,ph) € [p1,p2]? such that p1 < p} < ph < pa2, and
SuppM C [0,00) x RY x Y x [p}, py;
ftey,p) =1ifpr <p<py, [f(t,z,y,p)=0ifpy<p<ps
2. Microscopic equation for f: f is a solution in the sense of distributions on'Y x (p1,p2) of

divy (a(y, p)f(t, 2,y,p)) = 0. (58)

3. Evolution equation: the couple (f, M) is a solution in the sense of distributions on [0,00) x RN x
Y x (p1,p2) of

{ O (vp(y,p)f) +aly,p) - Vaf =M, (59)

f(t = Oa z, yvp) = 1U(y,p)<u0(m,y) = fO(xvyap);
In other words, for any test function ¢ € Dper([0,00) x RN x Y x (p1,p2)),

/ / F (6,2, 9 p)op (. p) {06(t, 2,9, 9) + aly, vy, p)) - Vod(t, 2.y, p)} dt d dy dE =
0 RN xY xR
== <¢a M>D7D/ - / 1U(y,p)<uo(m,y)vp(y7p)¢(t =0, =, y,p) dx dy d§.
RN xY xR

4. Conditions on f: there exists a nonnegative measure v € M}, ([0,00) x RN x Y x R) such that

per
By = v, (60)
0< flt,z,y,6) <1 ae., (61)
1 T
= [ U6 = olle o 5 30 (62)

5. Condition on M: for all ¢ € D([0,00) x RN such that p < 0, the function M ;. @ belongs to
C([0,00) x RN LYY x R)), and

fY><]R (M *t,x (10) (ta xz, ) 1/1 < Oa
Vi € LY (Y x R), divy(ay) =0, and 0gyp > 0.

loc

(63)

We now state without proof a result analogue to Theorems , E :

Proposition 5. Let A € W2 (Y xR). Assume that a € C},,(Y x R) and that @ € W (Y x (py1, p2)).

per,loc per

Let ug € L (RN x V)N L}, (RN, Cper(Y)) such that ug(z,-) is an entropy solution of the cell problem

for almost every x € RN . Assume furthermore that there exists py < ph in (p1,p2)? such that
v(yapll) < ’U,()(:C,y) < v(yapé)a
and let
fO(za yvp) = 1v(y,p)<u0(l7y)
Then the following results hold :
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1. There exists a unique generalized kinetic solution f of the limit problem associated with the family

(v(-,P))pr<p<p» With initial data fo. Moreover, there exists a function u € L>°([0,00) x RN x Y)
such that

ft2,9,p) = Loy p)<u(tay) €

Let u¢ € L>®([0,00) x RN) be the entropy solution of ([l) with initial data uo(w,z/c). Let
F(t,2,9,0) = Ly p)<u(t,ey) e the unique solution of the limit problem. Then for all reqularization
kernels @0 of the form

1 T
SN N
90(1')*61\[90(5)7 ZL'ER,
with ¢ € DRY), [o=1,0< ¢ <1, we have, for all compact K C [0,00) x RY,

lim lim
§—0e—0

u(t, ) — u kg o’ (t,x, E)‘
€

= 0. 64
L) (64)

Hence a whole variety of limit systems can be given, depending on the choice of the family of solutions

of the cell problem. However, it is not obvious that any given system is “better” than another one. But
the important result, as far as homogenization is concerned, is that all systems have a unique solution.
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