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Strong convergence of the gradient in non-linear parabolic

equations

Michel Pierre and Julien Vovelle

June 14, 2007

Abstract

We consider the Cauchy-Dirichlet Problem for a non-linear parabolic equation with L
1 data. We

show how the concept of kinetic formulation for conservation laws [LPT94] can be be used to give a
new proof of the existence of renormalized solution. To illustrate this approach, we also extend the
result to the case where the equation involves a term with natural growth.

We consider the question of existence of solution to the non-linear parabolic problem




ut − div(a(∇u)) = f (x, t) ∈ Ω × (0, T ),
u(x, 0) = u0(x) x ∈ Ω,
u(0, t) = 0 (x, t) ∈ Σ

(1)

where Ω is a bounded subset of R
N , N ≥ 1, T is positive and Σ = ∂Ω × (0, T ). Let p > 1 be given. In

(1), the operator −div(a(∇u)) is a Leray-Lions operator of the type −∆pu:

Assumption 1 The function a ∈ C(R × R
n,RN ) satisfies: there exists α > 0, β ∈ C(R+,R+) such that

a(X) ·X ≥ α|X|p, (2)

|a(X)| ≤ β(|ξ|)|X|p−1, (3)

(a(X) − a(Y )) · (X − Y ) > 0 (4)

for all distinct X,Y ∈ R
N , where X · Y is the canonical scalar product of two vectors of R

N and |X| the
associated euclidean norm of X.

The framework is L1:

Assumption 2 The data u0, f are L1 functions on Ω and Ω × (0, T ) respectively.

1 Introduction

The existence of solution (precisely, of renormalized solution, see Definition 1 below) to Problem (1)
(actually even to more general problems than Problem (1)) has already been proved, we refer in particular
to the paper by Blanchard, Murat, Redwane [BMR01]. Our purpose here is to give a new proof of this fact.
Actually, the cornerstone in the proof of existence of solution (by means of a process of approximation)
of such a non-linear parabolic Problem as (1) is the proof of the strong convergence of the gradient. We
give a new method (inspired from the kinetic formulation of conservation laws developed by Perthame
and coauthors [LPT94, Per02, CP03]) to prove this result.

Let us briefly summarize how and in which context the question of strong convergence of the gradient
occurs. First (historically), as soon as the problem under consideration involves a non-linear function of
the gradient, for example (under the hypotheses above with p = 2), the non-linear elliptic Problem

−div(a(∇u)) = g in Ω, u = 0 on ∂Ω,
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for g ∈ L2(Ω). To prove existence of a solution (in H1(Ω)), it is usual to prove existence by approximation
(e.g. by Galerkin approximation), i.e. for a set of data gn converging to g. Then weak convergence in
H1 of (a subsequence of) un, the solution with datum gn, although easily obtained by uniform estimate
on ‖un‖H1(Ω), is not enough to pass to the limit in the equation since a is non-linear: one has to prove
the strong convergence of the gradient ∇un. This is done by use of monotonicity methods. We refer to
[Min63, Bro63, LL65], and [Eva98] for a very brief and clear explaination of the technique.

Non-linear expression of the gradient also occurs after renormalization of an elliptic or parabolic equation.
Actually, it occurs even if the original equation is linear. Nevertheless, renormalization for elliptic or
parabolic equation has been introduced to deal with non-linear equations with data of low regularity, so
that the renormalized equation involves (at least) two non-linear expressions of the gradient (see, e.g.
Eq. (6) below). At any rate, it will be necessary to prove the strong convergence of the (truncates of)
the gradient in order to get existence of a solution by approximation.

We give a new proof of the strong convergence of the gradient by use of an equation on the charac-
teristic function on the level sets of the unknown, similar to the kinetic formulation for conservation
laws introduced in [LPT94] (see also [Per02] and [CP03] concerning the kinetic formulation of second-
order conservation laws). We intend to use it to study certain systems of reaction-diffusion equations (a
forthcoming paper).

Let us conclude this introduction by few words about the concept of renormalized solutions. Intro-
duced by DiPerna and Lions for the study of ordinary differential equations and Boltzmann Equation
[DL89b, DL89a], it has been extended to non-linear elliptic equations in [BGDM93] (in parallel with
the (equivalent) notion of entropy solution [BBG+95]) and has been extended to non-linear parabolic
equations in [Bla93, BMR01, Lio96] (in parallel with the (equivalent) notion of entropy solution [Pri97]).
It has also been extended to first-order conservation laws [BCW00, PV03].
The problem of strong convergence of the gradient (hence the question of existence of solution) has initially
be solved by the method of Minty-Browder and Leray-Lions [Min63, Bro63, LL65], then extended to the
case of non-linear elliptic (then parabolic) equations with less and less regular data by several methods,
see, e.g. [BG92a, BM92, BGM93, BGDM93, DMMOP97, BDGO99, DMMOP99, BMR01, BP05]. Notice
that our list of references to works in the fields of renormalized solutions for elliptic and parabolic
equations is far from being complete.

The paper is organized as follows : in Section 2.1, we introduce the notion of renormalized solution
and state the equivalent formulation by the (so-called) level-set P.D.E. In Section 2.2, we analyze this
formulation and explain how it can be relaxed (although still characterizing renormalized solutions),
see Theorem 2 and Theorem 3. In Section 2.3, we apply our tools to prove the convergence of an
approximation to Problem (1) and thus existence of a renormalized solution to (1) (of course, we focus
on the strong convergence of the gradient). In Section 3, we give the proofs of various results, which
were reported at the end to let the main arguments of Section 2 stand out. Eventually, in Section 4, we
extend the method to prove the existence of a renormalized solution to the Cauchy-Dirichlet Problem for
a non-linear parabolic equation with a term with natural growth.

Notations : We set QT := Ω×(−1, T ) and UT := QT ×R. Any measurable function v : Ω×(0, T ) → R
m

is implicitly extended to a measurable function QT → R
m still denoted by v, with v ≡ 0 on Ω × (−1, 0).

If ν is a Radon measure on UT , we denote by ν̃ the measure on the whole space R
N+2

ν̃(E) = ν(UT ∩ E), E ∈ B(RN+2)

and we denote by ν̃∗ be the projection of ν̃ on Rξ:

ν̃∗(E) = ν̃(RN+1 × E), ∀E ∈ B(R).
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2 Existence of a renormalized solution - strong convergence of

the gradient

2.1 Renormalized solutions

2.1.1 Renormalized solutions

For k > 0, we let Tk(u) be the truncate of a function u at level k: Tk(u) := min(u, k) if u ≥ 0, Tk odd.

Definition 1 A function u ∈ L∞(0, T ;L1(Ω)) is said to be a renormalized solution of the problem (1) if

1. (Regularity of the truncates)

Tk(u) ∈ Lp(0, T ;W 1,p
0 (Ω)), ∀k > 0, (5)

2. (Renormalized equation) For every function S ∈ W 2,∞(R) such that S′ has compact support, the
following equation holds in the sense of distributions in QT :

S(u)t − div(S′(u)a(∇u)) = S(u0) ⊗ δt=0 + S′(u)f − S′′(u)a(∇u) · ∇u, (6)

3. (Recovering at infinity)

lim
k→+∞

∫

QT ∩{k<|u|<k+1}

a(∇u) · ∇udxdt = 0. (7)

2.1.2 Level-set P.D.E.

For α ∈ R, ξ ∈ R, we set χα(ξ) = 10<ξ<α − 1α<ξ<0. This is the “equilibrium function” in the kinetic
formulation of conservation laws.

Theorem 1 A function u ∈ L∞(0, T ;L1(Ω)) is a renormalized solution of the problem (1) if, and only
if, it has the regularity of the truncates (5) and it satisfies

1. (Level-set P.D.E.) The function (x, t, ξ) 7→ χu(x,t)(ξ), denoted by χu, is solution in D′(UT ) of the
equation

∂tχu − div(a(∇u)δu=ξ) = χu0
⊗ δt=0 + fδu=ξ + ∂ξµ, (8)

where µ is defined by
µ := a(∇u) · ∇uδu=ξ, (9)

2. (Recovering at infinity)

lim
k→+∞

∫

QT ∩{k<|u|<k+1}

a(∇u) · ∇udxdt = 0.

Proof of Theorem 1 : see Section 3.1.

2.1.3 Definition of the distributions a(∇u)δu=ξ and µ

The (vector-valued) distribution
a(∇u)δu=ξ

is defined by its restriction to each space DK(UT )N (the set of smooth vector-valued functions with
support in the compact subset K of UT ) as

〈a(∇u)δu=ξ, α〉 =

∫

Q

a(∇Tk(u)) · α(x, t, Tk(u))dxdt (10)
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where α ∈ DK(UT )N , K ⊂ QT × [−k, k]. Similarly, Eq. (9), which defines the distribution µ, means that

〈µ, α〉 =

∫

Q

a(∇Tk(u)) · ∇Tk(u)α(x, t, Tk(u))dxdt (11)

for all α ∈ DK(UT ).
By (5) and assumption (3), we have

|〈a(∇u)δu=ξ, α〉| ≤ β(k)‖Tk(u)‖
Lp−1(0,T ;W 1,p−1

0
(Ω))‖α‖L∞(K)

≤ β(k)‖Tk(u)‖Lp(0,T ;W 1,p
0

(Ω))‖α‖L∞(K)

and
|〈µ, α〉| ≤ β(k)‖Tk(u)‖Lp(0,T ;W 1,p

0
(Ω))‖α‖L∞(K).

This shows that the right-hand sides of (10) and (11) are distributions on UT of order 0. To prove that
(10) and (11) makes sense, we must also show that their respective right-hand sides do not depend on
the choice of k: suppose k < k′ for example, with K ⊂ QT × [−k, k], then α(x, t, Tk′(u)) 6= 0 for |u| ≤ k
only, in which case Tk(u) = Tk′(u).

2.2 Relaxation of the definition of renormalized solution - analysis of µ

2.2.1 Analysis of µ

Since µ ≥ 0, µ is represented by a non-negative Radon measure on UT (equality on Cc(UT ), thus in
D′(UT )). We study the properties of the Radon measure µ̃∗ (defined at the end of the introduction).

Fact 1. For every h ∈ Cc(R),

∫

R

h(ξ)dµ̃∗(ξ) =

∫

RN+2

h(ξ)dµ̃(x, t, ξ) (12)

Proof: by definition of µ̃∗, (12) is satisfied if h = 1E is the characteristic function of a Borel set E ⊂ R,
and therefore if h is a simple function. There exists a point-wise converging sequence of simple functions
with limit h with the same compact support than h: the Lebesgue dominated convergence Theorem gives
the result.

Fact 2. For every h ∈ Cc(R) with, say, supp(h) ⊂ [−k, k],

∫

R

h(ξ)dµ̃∗(ξ) =

∫

QT

a(∇Tk(u)) · ∇Tk(u)h(u)dxdt. (13)

Proof: let (ϕn) be a non-negative sequence of Cc(QT ) such that ϕn ↑ 1 everywhere on QT . By definition
of µ, we have

∫

RN+2

ϕn(x, t)h(ξ)dµ̃(x, t, ξ) =

∫

QT

a(∇Tk(u)) · ∇Tk(u)ϕn(x, t)h(u)dxdt.

The Lebesgue dominated convergence Theorem then gives, at the limit [n→ +∞],

∫

UT

h(ξ)dµ̃(x, t, ξ) =

∫

QT

a(∇Tk(u)) · ∇Tk(u)h(u)dxdt.

Since, by definition, µ̃ is supported in UT , we have
∫

RN+2

h(ξ)dµ̃(x, t, ξ) =

∫

QT

a(∇Tk(u)) · ∇Tk(u)h(u)dxdt
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and we conclude by (12).

Fact 3. The measure µ̃∗ has no atom.

Proof: Given k > 0, set v = Tk(u). For ξ∗ ∈ (−k, k), let (hn) be a sequence of Cc(−k, k) converging
monotonically to 1{ξ∗} (take the hn to be tent functions for example). For every n, we have, by (13),

∫

R

hn(ξ)dµ̃∗(ξ) =

∫

QT

a(∇v) · ∇vhn(v)dxdt.

At the limit [n→ +∞], we obtain, by the Lebesgue dominated convergence Theorem,

µ̃∗({ξ∗}) =

∫

QT

a(∇v) · ∇v1{ξ∗}(v)dxdt,

and this last quantity is 0 by the Stampacchia’s Theorem since, for a.e. t, v(t) is in the Sobolev space
W 1,p.

Fact 4. For every l > k,

∫

R

1(k,l)(ξ)dµ̃∗(ξ) =

∫

QT ∩{k<u<l}

a(∇u) · ∇udxdt. (14)

Proof: In the right hand-side of (14), u stands for Tl(u). Let (hn) be a sequence of Cc(k, l) such that
hn ↑ 1 on (k, l). For each n, we have by (13),

∫

R

hn(ξ)dµ̃∗(ξ) =

∫

QT

a(∇u) · ∇uhn(u)dxdt

where u stands for Tl(u). At the limit [n→ +∞], the monotone convergence Theorem gives the result.

Fact 5. For ϕ ∈ Cc(QT ), ϕ ≥ 0, define

µϕ(A) :=

∫

A

ϕ(x, t)dµ(x, t, ξ).

The measure µϕ has the same properties than µ and its analysis follows the same lines. In particular,
µ̃ϕ,∗ has no atoms and, for every k > 0,

µ̃ϕ,∗([−k, k]) = µ̃ϕ,∗((−k, k)) =

∫

QT

a(∇Tk(u)) · ∇Tk(u)ϕ(x, t)dxdt. (15)

2.2.2 Relaxation of the definition of renormalized solution, Theorem 2

From Theorem 1 and the analysis of µ follows the following characterization of renormalized solutions.

Proposition 1 Let u be a function of L∞(0, T ;L1(Ω)) which has the regularity of the truncates (5).
Define

µ := a(∇u) · ∇uδu=ξ.

Then u is a renormalized solution of the problem (1) if, and only if, it satisfies the equation

∂tχu − div(a(∇u)δu=ξ) = χu0
⊗ δt=0 + fδu=ξ + ∂ξµ,

and if
lim

k→±∞
µ̃∗((k, k + 1)) = 0. (16)
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However, a weaker form of definition can be given, as stated in the following theorem.

Theorem 2 Let u be a function of L∞(0, T ;L1(Ω)) which has the regularity of the truncates (5) and
satisfies the condition at infinity (7). Then u is a renormalized solution of the problem (1) if, and only
if, there exists a non-negative Radon measure µ on UT such that

lim
k→±∞

µ̃∗((k, k + 1)) = 0

and such that the following equation is satisfied in D′(UT )

∂tχu − div(a(∇u)δu=ξ) = χu0
⊗ δt=0 + fδu=ξ + ∂ξµ. (17)

Proof of Theorem 2 : see Section 3.2.

The proof of this Theorem consists in showing that µ = a(∇u)·∇uδu=ξ. It is therefore a result of structure
of µ: under the hypotheses of Theorem 2, µ has to be the measure a(∇u) · ∇uδu=ξ. We generalize this
result in the following paragraph.

2.2.3 Structure of µ, Theorem 3

Theorem 3 Let u be a function of L∞(0, T ;L1(Ω)) which has the regularity of the truncates (5). Let σ
be a measurable function Ω × (0, T ) → R

N such that

∀k > 0, σ1|u|<k ∈ Lp′

(QT )N

and suppose that σ and u satisfy the condition at infinity

lim
k→±∞

∫

QT ∩[k<|u|<k+1]

σ · ∇udxdt = 0.

Suppose that u is a quasi-renormalized solution of the problem (1) in the sense that there exists a non-
negative Radon measure µ on UT such that

lim
k→±∞

µ̃∗((k, k + 1)) = 0

and such that the following equation is satisfied in D′(UT )

∂tχu − div(σδu=ξ) = χu0
⊗ δt=0 + fδu=ξ + ∂ξµ. (18)

Then we have µ = σ · ∇uδu=ξ.

The proof of Theorem 3 is exactly the same as the proof of Theorem 2, it has just to be generalized in the
case where the vector-valued function a(∇u) is replaced by the vector-valued function σ. This parallel
analysis applies in priority to the definition of the distribution σ · ∇uδu=ξ which is comparable to (11):

〈σ · ∇uδu=ξ, α〉 =

∫

Q

(σ1|u|<k) · ∇Tk(u)α(x, t, Tk(u))dxdt

for all α ∈ DK(UT ), K compact subset of QT × [−k, k].
In the situation described by Theorem 3, and once the equality µ = σ · ∇uδu=ξ has been proved, we can
mimic the analysis of Section 2.2.1, to deduce the following result.

Corollary 1 Under the hypotheses of Theorem 3, and given ϕ ∈ Cc(QT ), ϕ ≥ 0, the measure µ̃ϕ,∗ has
no atom and, for all k > 0,

µ̃ϕ,∗([−k, k]) = µ̃ϕ,∗((−k, k)) =

∫

QT

σ · ∇Tk(u)ϕ(x, t)dxdt. (19)
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2.3 Existence of a renormalized solution - Strong convergence of the gradient

2.3.1 Approximation

Let (un
0 ) and (fn) be some approximating sequences of, respectively, u0 and f in, respectively, L1(Ω) and

L1(Ω × (0, T )) such that un
0 ∈ Lp(Ω), fn ∈ Lp′

(Ω × (0, T )). For each n, the problem





un
t − div(a(∇un)) = fn (x, t) ∈ Ω × (0, T ),
un(x, 0) = un

0 (x) x ∈ Ω,
un(0, t) = 0 (x, t) ∈ Σ,

(20)

has a unique solution un in the space of functions v ∈ Lp(0, T ;W 1,p
0 (Ω)) with vt ∈ Lp′

(0, T ;W−1,p(Ω)).
The function un is a weak solution to (20), hence a renormalized solution and therefore satisfies the
equation

∂tχun − div(a(∇un)δun=ξ) = χun
0
⊗ δt=0 + fnδun=ξ + ∂ξµ

n, (21)

where µn is defined by
µn := a(∇un) · ∇unδun=ξ. (22)

2.3.2 Estimates and limit equation

There are bounds independent on n on un in L∞(0, T ;L1(Ω)), on a(∇Tk(un)) · ∇Tk(un) in L1(QT ), on
∇Tk(un) in Lp(QT ), on Tk(un)t in Lp′

(0, T ;W−1,p(Ω))+L1(Ω×(0, T )). They are obtained by multiplying
the equation by Tk(un) (see, e.g., [BMR01]).
Aubin-Simon’s compactness Theorem shows that there exists a function u ∈ L∞(0, T ;L1(Ω)) such that,
up to a subsequence, un → u a.e. and in L1(QT ). By weak compactness of Lp and Lp′

, we can suppose
that Tk(un) → Tk(u) in Lp(0, T ;W 1,p

0 (Ω))-weak and a(∇Tk(un)) → σk in Lp′

(QT )-weak. Actually, by
use of a diagonal process, there exists a supplementary subsequence still denoted (un) and a measurable
function σ : Ω × (0, T ) → R

n such that

∀k > 0, σ1|u|<k ∈ Lp′

(QT ), a(∇Tk(un)) → σ1|u|<k in Lp′

(QT ) weak.

The bound on a(∇Tk(un)) ·∇Tk(un) in L1(QT ) gives a uniform bound on µ̃n(K) for each compact subset
K of R

N+2. We can therefore suppose that (µ̃n) converges weakly to a Radon measure µ on R
N+2. In

particular, µn converges in D′(UT ) to the measure µ defined as the restriction of µ to UT .
With these results of convergence at hand, we pass to the limit [n→ +∞] in (21) to obtain the equation

∂tχu − div(σδu=ξ) = χu0
⊗ δt=0 + fδun=ξ + ∂ξµ, (23)

By multiplying the equation of (20) by the function min(1, (un − (k + 1))−, (un + k + 1)+) (k > 0) we
obtain the estimate

∫

QT ∩{k<|un|<k+1}

a(∇un) · ∇undxdt ≤

∫

Ω∩{|un
0
|>k}

|un
0 |dx+

∫

QT ∩{|un|>k}

|fn|dxdt.

This is

µ̃n
∗ ((k, k + 1)) + µ̃n

∗ ((−k − 1,−k)) ≤

∫

Ω∩{|un
0
|>k}

|un
0 |dx+

∫

QT ∩{|un|>k}

|fn|dxdt.

Up to a subsequence (and as a consequence of the strong convergence in L1), there exists some functions
U0, U, F in L1(Ω) and L1(UT ) respectively such that |un

0 | ≤ U0, |u
n| ≤ U , |fn| ≤ F a.e. This implies the

uniform estimates

µ̃n
∗ ((k, k + 1)) + µ̃n

∗ ((−k − 1,−k)) ≤

∫

Ω∩{U0>k}

U0dx+

∫

QT ∩{U>k}

Fdxdt
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and ∣∣∣∣∣

∫

QT ∩[k<|u|<k+1]

σ · ∇udxdt

∣∣∣∣∣ ≤
∫

Ω∩{U0>k}

U0dx+

∫

QT ∩{U>k}

Fdxdt

from which we deduce (since R
N+1 × (k, k + 1) is open and thus µ∗((k, k + 1)) ≤ lim inf

n→+∞
µ̃n
∗ ((k, k + 1))):

µ∗((k, k + 1)) + µ̃n
∗ ((−k − 1,−k)) ≤

∫

Ω∩{U0>k}

U0dx+

∫

QT ∩{U>k}

Fdxdt (24)

and

lim
k→±∞

∫

QT ∩[k<|u|<k+1]

σ · ∇udxdt = 0.

2.3.3 Strong convergence of the gradient

Since µ is defined to be the restriction to µ to UT , we have 0 ≤ µ̃ ≤ µ and, in particular, 0 ≤ µ̃∗ ≤ µ∗.
Therefore, from the estimate (24), we deduce that µ̃∗(k, k + 1) tends to 0 when k → ±∞. Taking into
account the equation (23), we are now in position to apply Theorem 3, which gives

µ := σ · ∇uδu=ξ

in D′(UT ).
Now, we fix a test-function ϕ ∈ Cc(QT ), ϕ ≥ 0. We use the notations of Section 2.2.1: if ψ ∈ Cc(R

N+2),
then ψϕ ∈ Cc(R

N+2), therefore
∫

RN+2

ψ(x, t, ξ)ϕ(x, t)dµ̃n(x, t, ξ) →

∫

RN+2

ψ(x, t, ξ)ϕ(x, t)dµ(x, t, ξ),

that is to say (µ̃n
ϕ) weakly converges to µϕ : A 7→

∫

A

ϕ(t, x)dµ(x, t, ξ). We deduce that (µ̃n
ϕ,∗) weakly

converges to µϕ,∗. Indeed, if E is an open subset of R, then R
N+1×E is a open subset of R

N+2, therefore

µϕ,∗(E) = µϕ(RN+1 × E) ≤ lim inf
n→+∞

µ̃n
ϕ(RN+1 × E) = lim inf

n→+∞
µ̃n

ϕ,∗(E),

which proves the result. Besides, since ϕ is supported in QT , we have µ̃ϕ,∗ = µϕ,∗ as easily checked, and
thus the weak convergence of (µ̃n

ϕ,∗) to µ̃ϕ,∗. Given k > 0, the identity (19) show that µ̃ϕ,∗ does not
charge the boundary of [−k, k]. The weak convergence thus gives

µ̃n
ϕ,∗([−k, k]) → µ̃ϕ,∗([−k, k]).

By (15) and (19), this is
∫

QT

a(∇Tk(un)) · ∇Tk(un)ϕdxdt→

∫

QT

σ · ∇Tk(u)ϕdxdt. (25)

This proves the strong convergence of the gradient (see Section 3.4) and in particular the fact that
σ = a(∇u) a.e. on QT . In particular u is solution to the level-set p.d.e. associated to the problem (1):

∂tχu − div(a(∇u)δu=ξ) = χu0
⊗ δt=0 + fδun=ξ + ∂ξµ.

Notice that we have also established the properties of the measure µ : it is a Radon measure on UT which
satisfies lim

k→±∞
µ̃∗(k, k + 1) = 0. By Theorem 2, u is a renormalized solution of Problem (1).

Remark 1 (Neuman Boundary conditions) The existence of a renormalized solution to the Prob-
lem 1 with homogeneous Neumann boundary conditions instead of homogeneous Dirichlet boundary con-
ditions can also be proved by use of the level-set PDE. This time extend u by 0 not only for negative
times, but also to R

N \ Ω and work with QT := R
N × (−1, T ), UT := QT × R.
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3 Missing proofs

3.1 Proof of Theorem 1

By density of the set {ϕ⊗ θ;ϕ ∈ D(QT ), θ ∈ D(R)} in D(UT ), (8) is equivalent to:

〈∂tχu − div(a(u,∇u)δu=ξ)θ〉D′(Rξ),D(Rξ) = 〈χu0
⊗ δt=0 + fδu=ξ + ∂ξµ, θ〉D′(Rξ),D(Rξ)

in D′(QT ) for all θ ∈ D′(R). By definition of µ, this is the condition

∂t

∫

R

χuθdξ − div(θ(u)a(u,∇u)) =

(∫

R

χu0
θdξ

)
⊗ δt=0 + θ(u)f − θ′(u)a(u,∇u) · ∇u (26)

in D′(QT ) for all θ ∈ D′(R). By an argument of density, it appears that the set of conditions (8) is
equivalent to the set of conditions (26) for θ belonging to W 1,∞(R) with compact support. We then
conclude the proof of the equivalence between the renormalized equations and the level-set P.D.E. by

using S(u) =

∫ u

0

θ(s)ds, or conversely, θ = S′, and by use of the identity

∫

R

χu(ξ)S′(ξ)dξ = S(u) − S(0),

which is satisfied for all S ∈W 2,∞(R) such that S′ has a compact support.

3.2 Proof of Theorem 2

Set ν := a(∇u) · ∇uδu=ξ. We will show that µ = ν in D′(UT ), which is the desired result, in view
of Proposition 1. By density of the set {ϕ ⊗ ψ} with ϕ running in D(QT ), ψ running in D(R) in
the set D(UT ), we have to check that 〈µ, ϕ ⊗ ψ〉 = 〈ν, ϕ ⊗ ψ〉. We first suppose that ψ = ∂ξθ with
θ ∈ D(R), so that 〈µ, ϕ⊗ψ〉 = −〈∂ξµ, ϕ⊗ θ〉. Explicit computations on the basis of (17) then show that
〈µ, ϕ⊗ ψ〉 = 〈ν, ϕ⊗ ψ〉 is equivalent to the following identity

−

∫ T

0

∫

Ω

(∫ u

u0

θ(ξ)dξ

)
ϕt +

∫ T

0

∫

Ω

(a(∇u) · ∇ϕ)θ(u) −

∫ T

0

∫

Ω

fϕθ(u)dξ

= −

∫ T

0

∫

Ω

(a(∇u) · ∇u)ϕθ′(u).

By use of the rule of derivation of a product of functions in W 1,p∩L∞, we obtain the more compact form

−

∫ T

0

∫

Ω

(∫ u

u0

θ(ξ)dξ

)
ϕt +

∫ T

0

∫

Ω

a(∇u) · ∇(ϕθ(u)) −

∫ T

0

∫

Ω

fϕθ(u)dξ = 0. (27)

Eq. (27) can be formally deduced from the chain-rule formula and from the equation

0 = ∂tu− div(a(∇u)) − u0 ⊗ δt=0 − f. (28)

To explain for the following steps of the proof, we also remark that the equation (28) is formally deduced
from Eq. (17) by integrating it from ξ = −∞ to +∞; indeed, that µ(ξ) → 0 when ξ → ±∞ is, still at
the formal level, a consequence of the condition µ̃∗((k, k + 1)) → 0 when k → ±∞. Therefore, we first
derive an approximation of the equation (28): fix k > 0, let (ρn)n be an approximation of the unit on R

(ρn having compact support in [−1/n, 1/n]), set αk := ρk ∗ (1[k,k+1] + 1[−k−1,−k]), and define

rk = rk(u) =

∫ ∞

|u|

αk, vk :=

∫

R

χu(ξ)rk(ξ)dξ, vk
0 :=

∫

R

χu0
(ξ)rk(ξ)dξ.

9



We have vk ∈ Lp(−1, T ;W 1,p
0 (Ω)) ∩ L∞(QT ), vk

0 ∈ L∞(Ω) and vk → u, vk
0 → u0, r

k → 1 when k tends
to +∞. Test Eq. (17) against ϕ(t, x)rk(ξ) to obtain

−

∫ T

0

∫

Ω

(vk − vk
0 )ϕt +

∫ T

0

∫

Ω

a(∇u) · ∇ϕrk −

∫ T

0

∫

Ω

fϕrk =

∫ T

0

∫

Ω

∫

R

ϕαkdµ. (29)

This is the approximate form of (28). Now we want to use a kind of chain-rule formula to obtain an
approximation of (27). To this purpose, we first infer from (29) the inequality

∣∣∣∣∣

∫

QT

ϕt(v
k − vk

0 ) −

∫ T

0

〈Gk, ϕ〉dt

∣∣∣∣∣ ≤ ‖ϕ‖L∞εk, (30)

where Gk := −(div(a(∇u)rk(u)) + frk(u)) ∈ Lp′

(0, T ;W−1,p′

(Ω)) +L1(Q) and εk := µ̃∗((k− 1, k+ 2)) +
µ̃∗((−k − 2,−k + 1)) → 0 when k → +∞. We then consider the following lemma.

Lemma 1 Let ε > 0, v ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L1(QT ), v0 ∈ L∞(Ω) and

G ∈ Lp′

(0, T ;W−1,p′

(Ω)) + L1(QT )

satisfy ∣∣∣∣∣

∫ T

0

∫

Ω

ϕt(v − v0) −

∫ T

0

〈G,ϕ〉dt

∣∣∣∣∣ ≤ ‖ϕ‖L∞ε, (31)

for all ϕ ∈ D(QT ). Then, for all h ∈W 1,∞(R) we have

∣∣∣∣∣

∫ T

0

∫

Ω

ϕt

∫ v

v0

h(ξ)dξ −

∫ T

0

〈G, h(v)ϕ〉dt

∣∣∣∣∣ ≤ ‖ϕ‖L∞‖h‖L∞ε. (32)

The proof of Lemma 1 is given in the following section. We apply the Lemma to (30), with h(v) = θ(v)
to deduce
∣∣∣∣∣

∫ T

0

∫

Ω

(∫ vk

vk
0

θ(ξ)dξ

)
ϕt −

∫ T

0

∫

Ω

a(∇u)rk(u) · ∇
(
ϕθ(vk)

)
+

∫ T

0

∫

Ω

frk(u)ϕθ(vk)

∣∣∣∣∣ ≤ ‖ϕ⊗ θ‖L∞εk.

By use of the Lebesgue dominated convergence Theorem, we obtain (27) at the limit k → +∞. Recall that
ψ = ∂ξθ, so that we actually proved ∂ξ(µ− ν) = 0. By a classical Lemma in the theory of distributions,
this shows µ−ν is constant with respect to ξ (or, more precisely, that for every ϕ ∈ D(QT ) the distribution
on R defined by ψ 7→ 〈µ− ν, ϕ⊗ψ〉 is represented by a constant cϕ). The conditions at infinity on µ and
ν then show that cϕ = 0. This being true for every ϕ, we have µ = ν.

3.3 Proof of Lemma 1

It is a variation on the proof of Lemma 4.3 in [CW99] (Lemma 4.3 of [CW99] corresponds to the case
ε = 0).

Step 1. Suppose that v0 additionally satisfies v0 ∈W 1,p
0 (Ω). For t < 0, set v(t) = v0.

Also first suppose h is non-increasing and ϕ non-negative or h is non-decreasing and ϕ non-positive. We
have

−‖ϕ‖L∞ε ≤

∫ T

0

∫

Ω

ϕt(v − v0) −

∫ T

0

〈G,ϕ〉dt ≤ ‖ϕ‖L∞ε (33)

for all ϕ ∈ D(QT ) and thus, by regularity of v,G, for all ϕ ∈ Lp(−1, T ;W 1,p
0 (Ω)) ∩ L∞(QT ) with

ϕt ∈ Lp′

(QT ). To use the function h(v) as a test-function in (33), we have first to regularize its dependence
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on t: for fixed ϕ ∈ D+(QT ) and for η > 0 small enough (such that supp(ϕ) ⊂ Ω × (−1, T − 2η], we set
ζ := ϕh(v),

ϕη : (x, t) →
1

η

∫ t

t−η

ζ(x, s)ds.

In (33), this gives

∫ T

0

〈G,ϕη〉dt ≤ ‖ϕ‖L∞‖h‖L∞ε+

∫ T

0

∫

Ω

(ϕη)t(v − v0)

= ‖ϕ‖L∞‖h‖L∞ε+

∫ T

0

∫

Ω

1

η
(ζ(x, t) − ζ(x, t− η))(v − v0)(x, t)dxdt

= ‖ϕ‖L∞‖h‖L∞ε+

∫

R

∫

Ω

1

η
(ζ(x, t) − ζ(x, t− η))(v − v0)(x, t)dxdt

= ‖ϕ‖L∞‖h‖L∞ε+

∫

R

∫

Ω

1

η
(v(x, t) − v(x, t+ η))ζ(x, t)dxdt

= ‖ϕ‖L∞‖h‖L∞ε+

∫

R

∫

Ω

1

η
(v(t) − v(t+ η))h(v(t))ϕ(t)dxdt.

Since h is non-increasing and ϕ non-negative or h is non-decreasing and ϕ non-positive, we have the
inequality

(v(t) − v(t+ η))h(v(t))ϕ(t) ≤

∫ v(t+η)

v(t)

h(r)drϕ(t), t < T

and deduce

∫ T

0

〈G,ϕη〉dt ≤ ‖ϕ‖L∞‖h‖L∞ε+

∫

R

∫

Ω

ϕ(t)
1

η

∫ v(t+η)

v(t)

h(r)dr

= ‖ϕ‖L∞‖h‖L∞ε+

∫

R

∫

Ω

1

η
(ϕ(t) − ϕ(t− η))

∫ v(t)

v0

h(r)dr.

At the limit η → 0, a first inequality is obtained

∫ T

0

〈G, h(v)ϕ〉dt ≤ ‖ϕ‖L∞‖h‖L∞ε+

∫ T

0

∫

Ω

ϕt

∫ v(t)

v0

h(r)dr.

By use of ϕη : (x, t) →
1

η

∫ t+η

t

ζ(x, s)ds as a test-function, we derive in a similar way the second inequality

∫ T

0

〈G, h(v)ϕ〉dt ≥ −‖ϕ‖L∞‖h‖L∞ε+

∫ T

0

∫

Ω

ϕt

∫ v(t)

v0

h(r)dr

which gives (32). In case h is non-decreasing and ϕ non-negative or h is non-increasing and ϕ non-
positive, proceed similarly (just exchanging the order of the different time-regularizations) to prove (32),
then decompose h as the sum of two monotone functions and ϕ as the sum of two signed functions to
deduce the result in the general case.

Step 2. In the general case where v0 ∈ L∞(Q), regularize v0 by vn
0 , vn

0 ∈W 1,p
0 (Ω), ‖v0−v

n
0 ‖L1(Ω) ≤ 1/n.

Observe that, from (31), we deduce

∣∣∣∣∣

∫ T

0

∫

Ω

ϕt(v − vn
0 ) −

∫ T

0

〈G,ϕ〉dt

∣∣∣∣∣ ≤ ‖ϕ‖L∞(ε+ 1/n). (34)
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Apply Step 1. to get
∣∣∣∣∣

∫ T

0

∫

Ω

ϕt

∫ v

vn
0

h(ξ)dξ −

∫ T

0

〈G, h(v)ϕ〉dt

∣∣∣∣∣ ≤ ‖ϕ‖L∞‖h‖L∞(ε+ 1/n),

then pass to the limit [n→ +∞] to achieve the proof of Lemma 1.

3.4 Proof of the strong convergence of the gradient

We start from (25) and prove the strong convergence of the gradient by the arguments of Minty, Browder
and Leray, Lions [Bro63, Min63, LL65]. Let ϕ ∈ Cc(Ω × (0, T )), ϕ ≥ 0 be given. Consider the sum

∫

QT

(a(∇Tk(un)) − a(∇Tk(u))) · (∇Tk(un) −∇Tk(u))ϕdxdt.

We develop the product in this last term. The result (25) yields precisely the convergence of the term
with quadratic dependence on ∇Tk(un). The other terms have at most a linear dependence on ∇Tk(un)
and therefore have a limit when n → +∞ by weak convergence of the gradient or of a(∇Tk(un)). We
obtain

lim
n→+∞

∫

QT

(a(∇Tk(un)) − a(∇Tk(u))) · (∇Tk(un) −∇Tk(u))ϕdxdt = 0.

Since Fn := (a(∇Tk(un)) − a(∇Tk(u))) · (∇Tk(un) −∇Tk(u))ϕ is non-negative (by monotony of a), this
shows that Fn → 0 in L1(QT ). A subsequence of (Fn) (still denoted (Fn)) therefore converges to 0 on

a set A of full measure in QT . Let (x, t) ∈ A and let q be an adherence value of (∇Tk(un))n in R
N

.
Suppose that ϕ(x, t) > 0. The vector q has finite-valued components as a consequence of the growth of
a(∇Tk(un)) · ∇Tk(un), which gives

(α|∇Tk(un)(x, t)|p − C|∇Tk(un)(x, t)|)ϕ(x, t) ≤ Fn(x, t) → 0.

At the limit [n→ +∞] in Fn(x, t) → 0, we thus obtain

(a(q) − a(∇Tk(u)(x, t))) · (q −∇Tk(u)(x, t))ϕ(x, t) = 0

Since ϕ(x, t) is supposed to be positive, and by strict monotony of a, we deduce that q = ∇Tk(u)(x, t).
The sequence (∇Tk(un))n has only one possible adherence value and therefore converges to it. Since ϕ
is arbitrary, we have ∇Tk(un) → ∇Tk(u) a.e. on QT . Together with the uniform bound on ∇Tk(un)
in Lp(QT ), it gives the strong convergence of ∇Tk(un) to ∇Tk(u) in any Lr(QT ), r < p. Similarly,
a(∇Tk(un)) converges to a(∇Tk(u)) a.e. and in Lr(QT ), r < p′. In particular, σ = a(∇u) a.e.

To conclude, notice that we can recover the strong convergence ∇Tk(un) → ∇Tk(u) in Lp
loc(QT ). In-

deed, we have shown that (a(∇Tk(un))) and ∇Tk(un) converge in L1(QT ) to a(∇Tk(u)) and ∇Tk(u)
respectively. Besides, for every ϕ ∈ Cc(Ω × (0, T )), we have the convergence

(a(∇Tk(un)) − a(∇Tk(u))) · (∇Tk(un) −∇Tk(u))ϕ→ 0

in L1(QT ), and these three results of convergence combine to show that (a(∇Tk(un)) · ∇Tk(un)ϕ) con-
verges (to a(∇Tk(u)) · ∇Tk(u)ϕ) in L1(QT ). In particular, the family {a(∇Tk(un)) · ∇Tk(un)ϕ} is equi-
integrable onQT . By hypothesis (2), |∇Tk(un)|p is dominated by α−1a(∇Tk(un))·∇Tk(un) and, therefore,
{|∇Tk(un)|pϕ} is equi-integrable on QT . Given K a compact subset of QT , {|∇Tk(un)|p} is therefore
equi-integrable on K. Together with the convergence ∇Tk(un) → ∇Tk(u) a.e., and by Vitali’s Theorem,
this implies |∇Tk(un)|p → |∇Tk(u)|p in L1(K). Besides, the weak convergence ∇Tk(un) → ∇Tk(u) in
Lp(K)-weak together with the convergence ∇Tk(un) → ∇Tk(u) a.e. implies that

lim
n→+∞

(‖∇Tk(un)‖Lp(K) − ‖∇Tk(un) −∇Tk(u)‖Lp(K)) = ‖∇Tk(u)‖Lp(K)

(this is a refinement of Fatou’s Lemma by Brezis and Lieb [BL83]). We conclude that

lim
n→+∞

‖∇Tk(un) −∇Tk(u)‖Lp(K) = 0.
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4 Parabolic equation with a term with natural growth

In this Section, we briefly indicate how to adapt the arguments and proofs given above to solve the
question of the strong convergence of the gradient (and therefore prove the existence of a renormalized
solution) in the approximation by regularization and truncation of the following problem:





ut − div(a(∇u)) + γ(u)|∇u|p = f (x, t) ∈ Ω × (0, T ),
u(x, 0) = u0(x) x ∈ Ω,
u(0, t) = 0 (x, t) ∈ Σ.

(35)

We keep the same assumptions on a and on the data: assumptions (1) and (2). The function γ ∈ C(R)
is supposed to satisfies the sign condition

uγ(u) ≥ 0, ∀u ∈ R. (36)

This sign condition ensures good a priori estimates for the additional term γ(u)|∇u|p. Actually, since
the power p is the same as the power of the operator −div(a(∇)), there will be an a priori estimates on
γ(u)|∇Tk(u)|p in L1(UT ). In fact, we may as well consider a term as γ(u)|∇u|r with 1 ≤ r ≤ p.

Numerous works have been devoted to the study of Problem (35) (or to its elliptic version). Let us cite
in particular [BMP83, BMP89, BG92b, BGM93, Por00, SdL03] and references therein.

In case p = 2, a = Id, there is a change of variables that transforms the equation in a classical Heat
Equation:

vt − ∆v = g, v =

∫ u

0

e−
R

ξ

0
γdξ, g = fe−

R

u

0
γ .

It is this change of variables that we will adapt to the non-linear case by use of the kinetic formulation
(or level-set PDE).
A renormalized solution to (35) is defined as a function u ∈ L∞(0, T ;L1(Ω)) having the regularity of
the truncates Tk(u) ∈ Lp(0, T ;W 1,p

0 (Ω)), ∀k > 0, which satisfies the renormalized equation: for every
function S ∈W 2,∞(R) such that S′ has compact support,

S(u)t − div(S′(u)a(∇u)) + S′(u)γ(u)|∇u|p = S(u0) ⊗ δt=0 + S′(u)f − S′′(u)a(∇u) · ∇u,

and satisfies the condition at infinity

lim
k→+∞

∫

QT ∩{k<u<k+1}

a(∇u) · ∇udxdt = 0.

We can also use directly the level-set PDE and define a renormalized solution to (35) as a function
u ∈ L∞(0, T ;L1(Ω)) having the regularity of the truncates Tk(u) ∈ Lp(0, T ;W 1,p

0 (Ω)), ∀k > 0, which
satisfies the equation:

∂tχu − div(a(∇u)δu=ξ) + γ(ξ)|∇u|pδu=ξ = χu0
⊗ δt=0 + fδu=ξ + ∂ξµ,

where µ := a(∇u) · ∇uδu=ξ, and satisfies the condition at infinity

lim
k→±∞

µ∗(k, k + 1) → 0.

We now explain how to prove the existence of a renormalized solution to Problem (35).

Step 1. Approximation. Let (un
0 ) and (fn) be some approximating sequences of, respectively, u0 and f

in, respectively, L1(Ω) and L1(Ω × (0, T )) such that un
0 ∈ Lp(Ω), fn ∈ Lp′

(Ω × (0, T )). For each n, the
problem 




un
t − div(a(∇un)) + γ(un)|∇un|p = fn (x, t) ∈ Ω × (0, T ),
un(x, 0) = un

0 (x) x ∈ Ω,
un(0, t) = 0 (x, t) ∈ Σ,

(37)
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has a unique solution un in the space of functions v ∈ Lp(0, T ;W 1,p
0 (Ω)) with vt ∈ Lp′

(0, T ;W−1,p(Ω)).
The function un is a weak solution to (20), hence a renormalized solution and therefore satisfies the
equation

∂tχun − div(a(∇un)δun=ξ) + γ(ξ)|∇un|pδun=ξ = χun
0
⊗ δt=0 + fnδun=ξ + ∂ξµ

n, (38)

where µn is defined by
µn := a(∇un) · ∇unδun=ξ.

Step 2. Estimates. As in Section 2.3.2, we show that, up to a subsequence, un → u ∈ L∞(0, T ;L1(Ω))
in L1(QT ), a(∇Tk(un)) → σ1|u|<k and µ̃n → µ weakly. We also prove, by the same technique as in
Section 2.3.2, the conditions at infinity

lim
k→±∞

µ∗((k, k + 1)) = lim
k→±∞

∫

QT ∩[k<|u|<k+1]

σ · ∇udxdt = 0. (39)

Step 3. Limit of the equation. The difficulty to understand the limit of Eq. (38) is that the term
γ(ξ)|∇un|pδun=ξ is uniformly bounded in L1 and that no stronger a priori bound is available. We define

Γ+(ξ) =





1

α

∫ ξ

0

γ if ξ > 0,

−
1

β

∫ 0

ξ

γ if ξ < 0.

The function Γ+ is continuous, not C1, on R, but a step of regularization shows that we have

∂te
−Γ+(ξ)χun − div(e−Γ+(ξ)a(∇un)δun=ξ) = e−Γ+(ξ)(χun

0
⊗ δt=0 + fnδun=ξ) + ∂ξ(e

−Γ+(ξ)µn) +R

where
R := e−Γ+(ξ)(γ(ξ)(α−11ξ>0 + β−11ξ<0)µn − γ(ξ)|∇un|pδun=ξ)

(observe that the function ξ 7→ γ(ξ)(α−11ξ>0 + β−11ξ<0) is continuous since γ(0) = 0). Since µn :=
a(∇un) · ∇unδun=ξ, the hypotheses of coercivity and boundedness (2) and (3) on a ensure that R ≥ 0
and, therefore, that

∂te
−Γ+(ξ)χun − div(e−Γ+(ξ)a(∇un)δun=ξ) ≥ e−Γ+(ξ)(χun

0
⊗ δt=0 + fnδun=ξ) + ∂ξ(e

−Γ+(ξ)µn). (40)

Similarly, we define

Γ−(ξ) =





1

β

∫ ξ

0

γ if ξ > 0,

−
1

α

∫ 0

ξ

γ if ξ < 0

and show the inequality

∂te
−Γ−(ξ)χun − div(e−Γ−(ξ)a(∇un)δun=ξ) ≤ e−Γ−(ξ)(χun

0
⊗ δt=0 + fnδun=ξ) + ∂ξ(e

−Γ−(ξ)µn). (41)

It is then possible to pass to the limit [n→ +∞] in (40) and (41) to obtain

∂te
−Γ+(ξ)χu − div(e−Γ+(ξ)σδu=ξ) ≥ e−Γ+(ξ)(χu0

⊗ δt=0 + fδu=ξ) + ∂ξ(e
−Γ+(ξ)µ), (42)

∂te
−Γ−(ξ)χu − div(e−Γ−(ξ)a(∇u)δu=ξ) ≤ e−Γ−(ξ)(χu0

⊗ δt=0 + fδu=ξ) + ∂ξ(e
−Γ−(ξ)µ). (43)

What information do we extract from (42) and (43)? At a formal level, we can do the following compu-
tations: sum each inequality with respect to ξ ∈ R and use the condition at infinity (39) to obtain the
(formal) weak equations

∂t

∫

R

e−Γ+(ξ)χudξ − div(e−Γ+(u)σ) ≥

∫

R

e−Γ+(ξ)χu0
dξ ⊗ δt=0 + e−Γ+(u)f, (44)

∂t

∫

R

e−Γ−(ξ)χudξ − div(e−Γ−(u)σ) ≤

∫

R

e−Γl(ξ)χu0
dξ ⊗ δt=0 + e−Γ−(u)f. (45)
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Multiply the first inequality by eΓ+(ξ)−Γ−(ξ)δu=ξ and the second inequality by e−Γ+(ξ)+Γ−(ξ)δu=ξ to obtain
(still after formal computations)

∂te
−Γ+(ξ)χu − div(e−Γ+(ξ)σδu=ξ) ≤ e−Γ+(ξ)(χu0

⊗ δt=0 + fδu=ξ) − e−Γ+(ξ)σ · ∇δu=ξ,

∂te
−Γ−(ξ)χu − div(e−Γ−(ξ)a(∇u)δu=ξ) ≥ e−Γ−(ξ)(χu0

⊗ δt=0 + fδu=ξ) − e−Γ−(ξ)σ · ∇δu=ξ.

At last, use the identity e−Γ±(ξ)σ · ∇δu=ξ = −∂ξ(e
−Γ±(ξ)ν), where

ν := σ · ∇uδu=ξ

(this is also a very formal identity) to obtain

∂te
−Γ+(ξ)χu − div(e−Γ+(ξ)σδu=ξ) ≤ e−Γ+(ξ)(χu0

⊗ δt=0 + fδu=ξ) + ∂ξ(e
−Γ+(ξ)ν), (46)

∂te
−Γ−(ξ)χu − div(e−Γ−(ξ)a(∇u)δu=ξ) ≥ e−Γ−(ξ)(χu0

⊗ δt=0 + fδu=ξ) + ∂ξ(e
−Γ−(ξ)ν). (47)

Come back to the starting point (42)-(43) to deduce the inequalities

∂ξ(e
−Γ+(ξ)µ) ≤ ∂ξ(e

−Γ+(ξ)ν), ∂ξ(e
−Γ−(ξ)ν) ≤ ∂ξ(e

−Γ−(ξ)µ). (48)

Assume for the moment that (48) is satisfied in D′(UT ). A test-function ϕ ∈ D+(QT ) being fixed, we
consider the distributions on R defined by

µϕ : ψ 7→ 〈µ, ϕ⊗ ψ〉, νϕ : ψ 7→ 〈ν, ϕ⊗ ψ〉.

They satisfy the inequalities

∂ξ(e
−Γ+(ξ)µϕ) ≤ ∂ξ(e

−Γ+(ξ)νϕ), ∂ξ(e
−Γ−(ξ)νϕ) ≤ ∂ξ(e

−Γ−(ξ)µϕ)

in D′(R). Consider the first of these inequalities. Using the condition at infinity (39) for k → −∞ and
classical tools of the theory of distributions, it is easy to see that we have e−Γ+(ξ)µϕ ≤ e−Γ+(ξ)νϕ in
D′(R). But similarly, using the condition at infinity (39) for k → +∞, we obtain the converse inequality
e−Γ+(ξ)µϕ ≥ e−Γ+(ξ)νϕ. We deduce µϕ = νϕ and, this being true for every ϕ ∈ D+(QT ), we conclude to
the identity

µ = ν.

Step 4. Strong convergence of the gradient. The identity µ = ν is the key point in the proof of the
strong convergence of the gradient. Once this has been proved, we proceed as in Section 2.3.3. We prove
in particular that ∇Tk(un) → ∇Tk(u) in Lp

loc(QT ), and this allows to pass to the limit in Eq. (38) to
obtain

∂tχu − div(a(∇u)δu=ξ) + γ(ξ)|∇u|pδu=ξ = χu0
⊗ δt=0 + fδu=ξ + ∂ξ(a(∇u) · ∇uδu=ξ),

i.e. the fact that u is a renormalized solution.

Step 5. Rigorous proof of (48). This is a variation on the proof of Theorem 2 given in Section 3.2. Let
us explain the main arguments. Introduce αk := ρk ∗ (1[k,k+1] + 1[−k−1,−k]), and define

rk = rk(u) =

∫ ∞

|u|

αk, vk :=

∫

R

e−Γ+(ξ)χu(ξ)rk(ξ)dξ, vk
0 :=

∫

R

e−Γ+(ξ)χu0
(ξ)rk(ξ)dξ.

Set also

vk :=

∫

R

e−Γ+(ξ)χu(ξ)dξ, vk
0 :=

∫

R

e−Γ+(ξ)χu0
(ξ)dξ, r̃k = e−Γ+(u)rk.

We have vk ∈ Lp(−1, T ;W 1,p
0 (Ω)) ∩ L∞(QT ), vk

0 ∈ L∞(Ω) and vk → v, vk
0 → v0, r

k → 1 when k tends
to +∞. Test Eq. (42) against ϕ(t, x)rk(ξ) (with ϕ ∈ D+(QT )), to obtain

−

∫ T

0

∫

Ω

(vk − vk
0 )ϕt +

∫ T

0

∫

Ω

σ · ∇ϕr̃k −

∫ T

0

∫

Ω

fϕr̃k ≤

∫ T

0

∫

Ω

∫

R

ϕe−Γ+(ξ)αkdµ.
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We deduce the inequality

∫

QT

ϕt(v
k − vk

0 ) −

∫ T

0

〈Gk, ϕ〉dt ≤ ‖ϕ‖L∞εk,

where Gk := −(div(σr̃k(u)) + fr̃k(u)) ∈ Lp′

(0, T ;W−1,p′

(Ω)) + L1(Q) and εk := µ̃∗((k − 1, k + 2)) +
µ̃∗((−k − 2,−k + 1)) → 0 when k → +∞. The analogue of Lemma 1 then shows that, for every
h ∈W 1,∞(R), vk satisfies the following inequality:

∫

QT

ϕt

∫ vk

vk
0

h(ζ)dζ −

∫ T

0

〈Gk, ϕh(vk)〉dt ≤ ‖ϕ‖L∞‖h‖L∞εk.

Taking h with compact support, we obtain at the limit k → +∞ the inequality

∫

QT

ϕt

∫ v

v0

h(ζ)dζ −

∫ T

0

〈G,ϕh(v)〉dt ≤ 0,

i.e. ∫

QT

ϕt

∫ v

v0

h(ζ)dζ −

∫

QT

e−Γ+(u)σ · ∇(ϕh(v))dt+

∫

QT

e−Γ+(u)fϕh(v) ≤ 0. (49)

We then fix θ ∈ D(R) and apply (49) with

h(ζ) := e−(Γ−−Γ+)(φ−1(ζ))θ(φ−1(ζ)), φ(ξ) :=

∫ ξ

0

e−Γ+ ,

in such a way that

∫ v

v0

h(ζ)dζ =

∫ u

u0

e−Γ−(ξ)θ(ξ)dξ, h(v) = e−(Γ−−Γ+)(u)θ(u),

to obtain the weak form of (46). Similarly, we prove (47). As explained in Step 3., these two inequalities
combined with (42) and (43) imply (48).
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[BG92a] L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right-hand side measures,
Comm. Partial Differential Equations 17 (1992), no. 3-4, 641–655.

[BG92b] , Strongly nonlinear elliptic equations having natural growth terms and L1 data,
Nonlinear Anal. 19 (1992), no. 6, 573–579.
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