
HAL Id: hal-00154500
https://hal.science/hal-00154500

Submitted on 13 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Realizability in classical logic
Jean-Louis Krivine

To cite this version:
Jean-Louis Krivine. Realizability in classical logic. Panoramas et synthèses, 2009, 27, pp.197-229.
�hal-00154500�

https://hal.science/hal-00154500
https://hal.archives-ouvertes.fr

Realizability in classical logic

Jean-Louis Krivine
University Paris VII, C.N.R.S.

P.P.S. Team

krivine@pps.jussieu.fr

Lessons in Marseille-Luminy, may 2004

(last revision : june 27, 2005)

Introduction

The essential aim is to explore the Curry-Howard correspondence : we want to associate a
program with each mathematical proof and to consider each theorem as a specification, i.e. to
find the common behavior of the programs associated with every proof of this theorem. It is a
very difficult and very interesting problem, which I call the ‘‘ specification problem ’’ in what
follows.

In the first place, we must give the programming language in which we write these programs,
and also explain in which way they are executed. This is done in the first section, it is the
‘‘ program side ’’ of the correspondence. As we shall see, this programming frame is very similar
to usual imperative programming. As the theory develops, many usual and important notions of
imperative and system programming will naturally appear, such as : storage and call-by-value
for datas, pointers, signature of files, system clock, boot, . . .

Then we must give a computational content to each logical rule and each axiom. We do this by
means of elementary instructions. The instructions for the rules of intuitionistic propositional
logic have been found long time ago, at the very discovery of the Curry-Howard correspondence ;
the programming language was Church’s lambda-calculus. Then the instructions for intuition-
istic second order logic were obtained and the programming language was still the same.
But mathematical proofs are not done in intuitionistic logic, not even in pure classical logic. We
need axioms and the usual axiom systems are :

1. Second order classical Peano arithmetic with the axiom of dependent choice ; this system
is also called ‘‘ Analysis ’’.

2. Zermelo-Frænkel set theory with the axiom of choice.

In this paper, we consider the first case. We shall give new elementary instructions for the lacking
axioms, which are : the excluded middle, the axiom of recurrence and the axiom of dependent
choice. It is necessary, for that, to define an extension of lambda-calculus. We notice that
some of these instructions are incompatible with β-reduction. Therefore the execution strategy
is deterministic and is given in the form of a weak head reduction machine.
The same machine is used for Zermelo-Frænkel set theory. The instructions associated with

1

the axioms of ZF are given in [4]. The full axiom of choice remained an open problem until
recently (may 2005). The new instructions necessary for this axiom and also for the continuum
hypothesis will be given in a forthcoming paper.

Terms, stacks, processes, execution

We denote by PL the set of closed λ-terms built with some set of constants which are called
instructions ; one of these instructions is denoted by cc. We shall denote the application of t
to u by (t)u or tu ; the application of t to n arguments u1,. . . ,un is denoted by (t)u1 . . . un or
tu1 . . . un. Therefore, we have tuv = (t)uv = (tu)v with this notation.
Elements of PL are called proof-like terms.
Let L ⊃ PL be the set of closed λ-terms built with a new constant k and a set Π0 6= ∅ of new
constants called stack constants.
A closed λ-term of L of the form kt1 . . . tnπ0 with n ∈ N, t1, . . . , tn ∈ L and π0 ∈ Π0 is called
a continuation.
A λc-term is, by definition, a closed λ-term τ ∈ L with the following properties :
- each occurrence of k in τ appears at the beginning of a subterm of τ which is a continuation ;
- each occurrence of a stack constant in τ appears at the end of a subterm of τ which is a
continuation.

Remark. Proof-like terms are therefore λc-terms which do not contain the symbol k or, which amounts

to the same thing, which do not contain any stack constant.

The set of λc-terms is denoted by Λc. In what follows, we almost always consider only λc-terms ;
so, they will be called simply ‘‘ terms ’’ or ‘‘ closed terms ’’.

Lemma 1. i) PL ⊂ Λc ;
ii) If tu ∈ Λc and u /∈ Π0, then t ∈ Λc and u ∈ Λc ;
iii) If tu ∈ Λc and u ∈ Π0, then tu is a continuation ;
iv) If λx t, u ∈ Λc, then t[u/x] ∈ Λc ;
v) If t1, . . . , tn ∈ Λc (n ∈ N) and π0 ∈ Π0, then (k t1 . . . tn)π0 ∈ Λc.

i) Trivial.
ii) Consider an occurrence of k (resp. of a stack constant π0) in t or u ; it is therefore in
tu. Since tu ∈ Λc, this occurrence is at the beginning (resp. at the end) of a continuation
kt1 . . . tnπ0 = (kt1 . . . tn)π0 which is a subterm of tu. Now u 6= π0, so that this subterm is not
tu itself ; thus, kt1 . . . tnπ0 is a subterm of t or u.
iii) We have u = π0 ∈ Π0 and this occurrence of π0 is at the end of a subterm of tπ0 which is
a continuation (kt1 . . . tn)π0. Therefore, this subterm is tπ0 itself.
iv) Consider an occurrence of k (resp. π0) in t[u/x] ; thus, it is in λx t or u. But λx t, u ∈ Λc, so
that this occurrence is at the beginning (resp. at the end) of a continuation kt1 . . . tnπ0 which
is a subterm of λx t or u. If this continuation is a subterm of u, it is also a subterm of t[u/x]. If
it is a subterm of λx t, then this occurrence of k (resp. π0) in t[u/x] is at the beginning (resp.
at the end) of the subterm kt1[u/x] . . . tn[u/x]π0, which is a continuation.
v) Trivial.

Q.E.D.

2

If t1, . . . , tn ∈ Λc (n ∈ N) and π0 ∈ Π0, the sequence π = (t1, . . . , tn,π0) is called a stack and
is denoted by t1.t2 . . . tn.π0 ; the set of stacks is denoted by Π. The continuation kt1 . . . tnπ0 is
denoted by kπ. If t ∈ Λc and π = t1.t2 . . . tn.π0 ∈ Π, then the stack t.t1.t2 . . . tn.π0 is denoted
by t.π. Thus, the dot is an application of Λc×Π in Π.

Every term τ ∈ Λc is either an application, or an abstraction, or a constant which is an instruction
(indeed, this term can be neither k, nor a stack constant, by definition of λc-terms). From
lemma 1, it follows that, for every τ ∈ Λc, we are in one and only one of the following cases :
i) τ is an application tu with u /∈ Π0 (and therefore t, u ∈ Λc) ;
ii) τ is an abstraction λx t ;
iii) τ is an instruction (particular case : τ = cc) ;
iv) τ is an application tu with u ∈ Π0, i.e. τ = kπ for some stack π.

A process is an ordered pair (τ, π) with τ ∈ Λc, π ∈ Π. It is denoted by τ ? π ; τ is called the
head or the active part of the process. The set of all processes will be denoted by Λc ? Π.
We describe now the execution of processes, which is denoted byÂ. We give the rule to perform
one execution step of the process τ ? π. It depends on the form (i), . . . , (iv) of τ given above. In
the four rules that follow, t, u,λx v denote elements of Λc ; π, ρ denote stacks.

i) tu ? π Â t ? u.π (push) ;
ii) λx v ? u.π Â v[u/x] ? π (pop) ;
iii) cc ? t.π Â t ? kπ.π (store the stack) ;
the rule for other instructions will be given in due time ;
iv) kπ ? t.ρ Â t ? π (restore the stack).

We say that the process t ?π reduce to t0 ?π0 (notation t ?π Â t0 ?π0) if we get t0 ?π0 from t ?π
by means of a finite (possibly null) number of execution steps.

Remark. By lemma 1, we can check that the four execution rules give processes when applied to processes.

Truth values and types

Consider an arbitrary set of processes, which is denoted by ⊥⊥ and which we suppose cc-
saturated ; it means that :

t ? π ∈ ⊥⊥, t0 ? π0 Â t ? π ⇒ t0 ? π0 ∈ ⊥⊥.
P(Π) is called the set of truth values. If U ⊂ Π is a truth value and t ∈ Λc, we say that t realizes
U (notation t k−U) if (∀π ∈ U) t ? π ∈ ⊥⊥. The set {t ∈ Λc; t k−U} will be denoted by |U |.
Thus, we have |Si∈I Ui| =

T
i∈I |Ui|.

The truth value ∅ (resp. Π) is called true (resp. false) and denoted by > (resp. ⊥). Thus, we
have |>| = Λc ; t ∈ |⊥|⇔ t ? π ∈ ⊥⊥ for every stack π ∈ Π.
Whenever U, V are truth values, we define the truth value :
(U → V) = {t.π; t k−U, π ∈ V } ; we put ¬U = (U → ⊥).
We shall sometimes use the following notation, when V is a truth value and A ⊂ Λc :
(A→ V) = {t.π; t ∈ A, π ∈ V }.
For example, {t}→ V is the truth value {t.π; π ∈ V } if t ∈ Λc and V ⊂ Π.
With this notation, U → V is the same as |U |→ V , for U, V ⊂ Π.
Remarks. If ⊥⊥ = ∅, then either |U | = |>| = Λc or |U | = |⊥| = ∅ for every truth value U .

|⊥| = ∅ is equivalent to ⊥⊥ = ∅. Indeed, the implication ⇐ is obvious. Conversely, if ⊥⊥ 6= ∅, let

t ? π ∈ ⊥⊥ ; then kπt ? ρ Â t ? π ∈ ⊥⊥ for every stack ρ, and therefore kπt ∈ |⊥|.

3

Types are usual formulas of second order logic, written in the following language : the only
logical symbols are → and ∀ ; we have function symbols of arity k which are functions from
Nk into N and predicate symbols of arity k which are applications from Nk into P(Π) (k is any
integer ≥ 0). First order variables (also called individual variables) are denoted by x, y, . . . ;
second order variables (also called predicate variables) are denoted by X,Y, . . . Each second
order variable has an arity which is an integer. Predicate variables of arity 0 are also called
propositional variables.

Notations.
The formula F0 → (F1 → . . .→ (Fn → G) . . .) is denoted by F0, F1, . . . , Fn → G.
⊥ is defined by ∀XX ; ¬F by F → ⊥ ;
F ∨G by ∀X[(F → X), (G→ X)→ X] ;
F ∧G by ∀X[(F,G→ X)→ X] ;
∃Y F [Y] by ∀X{∀Y (F [Y]→ X)→ X} ; ∃y F [y] by ∀X{∀y(F [y]→ X)→ X} ;
We use the notation ∃Y {F1[Y], . . . , Fk[Y]} for the formula :
∀X{∀Y (F1[Y], . . . , Fk[Y]→ X)→ X} ;
we have the same notation for the first order existential quantifier.
(In all these formulas, X is a propositional variable and Y has an arbitrary arity).
x = y is defined by ∀X(Xx→ Xy) (where X has arity 1).

Let x1, . . . , xk be individual variables, X a predicate variable of arity k, A and F arbitrary
formulas. Then, we define A[F/Xx1 . . . xk] by induction on (the length of) A :

If X is not free in A, then A[F/Xx1 . . . xk] is A.
If A is X(t1, . . . , tk), then A[F/Xx1 . . . xk] is F [t1/x1, . . . , tk/xk].
(A→ B)[F/Xx1 . . . xk] is A[F/Xx1 . . . xk]→ B[F/Xx1 . . . xk].
(∀y A)[F/Xx1 . . . xk] is ∀y A[F/Xx1 . . . xk].
(∀Y A)[F/Xx1 . . . xk] is ∀Y A[F/Xx1 . . . xk] if Y is a predicate variable which is 6= X

(as usual, we assume that y et Y are not free in F).

When F is an atomic formula of the form R(x1, . . . , xk), where R is either a second order vari-
able of arity k, or a parameter (R ∈ P(Π)Nk), we write alsoA[R/X] instead ofA[F/Xx1 . . . xk].

We now give the deduction rules for classical second order logic and, at the same time, the
typing rules for λcc-terms, which are the usual λ-terms (possibly not closed) written with the
constant cc ; in such an expresssion as ‘‘ t : A ’’, t is a λcc-term and A is a type, i.e. a second
order formula.
Let Γ be a context, i.e. an expression of the form x1 : A1, . . . , xn : An.

1. Γ ` xi : Ai (1 ≤ i ≤ n)
2. Γ ` t : A→ B, Γ ` u : A ⇒ Γ ` tu : B.
3. Γ, x : A ` t : B ⇒ Γ ` λx t : A→ B.
4. Γ ` t : (A→ B)→ A ⇒ Γ ` cc t : A.
5. Γ ` t : A ⇒ Γ ` t : ∀xA (resp. ∀X A) if x (resp. X) is not free in Γ.
6. Γ ` t : ∀xA⇒ Γ ` t : A[τ/x] for every term τ of L.
7. Γ ` t : ∀X A⇒ Γ ` t : A[F/Xx1 . . . xk] for every formula F .

Rule 4 uses the interpretation of Griffin [2] for the law of Peirce.
Rule 7 uses Takeuti’s interpretation for the comprehension scheme.

Let A be a closed second order formula with first order parameters in N and second order
parameters of arity k in P(Π)Nk for each integer k. We define below its truth value, which is

4

denoted by kAk. We denote by |A| the set of terms in Λc which realize A, i.e. |A| = {t ∈ Λc;
(∀π ∈ kAk) t ? π ∈ ⊥⊥}. We write t k−A (read ‘‘ t realizes A ’’) if t ∈ |A|.
The definition of kAk is given by induction on A :

If A is atomic, i.e. A ≡ R(t1, . . . , tk), then t1, . . . , tk are closed terms and R ∈ P(Π)Nk is a
second order parameter. Let ai ∈ N be the value of ti ; then, we put :
kR(t1, . . . , tk)k = R(a1, . . . , ak) ⊂ Π.

The other steps of induction are as follows :

kA→ Bk = {t.π ; t ∈ |A|, π ∈ kBk} ;

k∀xAk =
[
a∈N
kA[a/x]k ; (and therefore |∀xA| =

\
a∈N
|A[a/x]|) ;

k∀X Ak =
[
{kA[R/X]k; R ∈ P(Π)Nk} if X is a predicate variable of arity k

(and therefore |∀X A| =
\
{|A[R/X]|; R ∈ P(Π)Nk}).

We get k⊥k = Π and |⊥| is the least truth value. There is a greatest truth value, denoted by >,
which is ∅ ; thus, |>| = Λc.
The following theorem shows that realizability is compatible with deduction in classical second
order logic. It is an essential tool in this theory.

Theorem 2 (Adequation lemma). Let A1, . . . , Ak, A be closed formulas such that
x1 : A1, . . . , xk : Ak ` t : A is provable with the rules above.
If ti k−Ai for 1 ≤ i ≤ k, then t[t1/x1, . . . , tk/xk] k−A.

In particular, if A is a closed formula and ` t : A is provable, then t k−A.

The following lemma is a stronger, but more complicated, form of this theorem ; it is suitable
for a proof by induction.

Lemma 3.
Let A1, . . . , Ak, A be formulas, free variables of which are amongst y1, . . . , ym, Y1, . . . , Yn. Let

bi ∈ N (1 ≤ i ≤ m) and Pj ∈ P(Π)N
kj
(1 ≤ j ≤ n), where kj is the arity of Yj . Suppose that

x1 : A1, . . . , xk : Ak ` t : A is provable with the above rules.
If ti k−Ai[b1/y1, . . . , bm/ym, P1/Y1, . . . , Pn/Yn] for 1 ≤ i ≤ k, then
t[t1/x1, . . . , tk/xk] k−A[b1/y1, . . . , bm/ym, P1/Y1, . . . , Pn/Yn].

We make an induction on the length of the proof of Γ ` t : A
where Γ is the context x1 : A1, . . . , xk : Ak. We shall use the notation t0 for t[t1/x1, . . . , tk/xk]
and A0 for A[b1/y1, . . . , bm/ym, P1/Y1, . . . , Pn/Yn]. Consider the rule used in the last step of
the proof :

If it is rule 1 the result is trivial ;

If it is rule 2, we have t = uv and Γ ` u : A → B, v : A. We must show that t0 ∈ |B0|, that
is u0v0 ? π ∈ ⊥⊥ for every stack π ∈ kB0k. But u0v0 ? π Â u0 ? v0.π, hence the result since, by
induction hypothesis, we have u0 ∈ |A0 → B0|, v0 ∈ |A0| and thus v0.π ∈ kA0 → B0k.

If it is rule 3, we have t = λxu, A = (B → C) and Γ, x : B ` u : C. We must show that
λxu0 ∈ |B0 → C 0|, that is λxu0 ? π ∈ ⊥⊥ for every π ∈ kB0 → C 0k. Now, we have π = v.$
with v ∈ |B0| and $ ∈ kC 0k. By induction hypothesis, we have u0[v/x] k−C 0 and therefore
u0[v/x] ? $ ∈ ⊥⊥. Thus λxu0 ? v.$ ∈ ⊥⊥, because ⊥⊥ is cc-saturated.

5

If it is rule 4, we have t = ccu and Γ ` u : (A → B) → A. We must show that t0 ∈ |A0|,
that is ccu0 ? π ∈ ⊥⊥ for every π ∈ kA0k. Since ⊥⊥ is cc-saturated, it is sufficient to show that
u0 ? kπ.π ∈ ⊥⊥. We first show that kπ ∈ |A0 → B0| : indeed, if v ∈ |A0| et ρ ∈ kB0k, then
kπ ? v.ρ Â v ? π ∈ ⊥⊥.
Now, by induction hypothesis, we know that u0 ∈ |(A0 → B0)→ A0|, hence the result.

If it is rule 5 for a first order x, we have A = ∀xB and Γ ` t : B. By induction hypothesis, we
get t0 ∈ |B0[a/x]| for each a ∈ N. Thus t0 ∈ Ta∈N |B0[a/x]| = |∀xB0| = |A0|.
If it is rule 5 for a second order variable X of arity k, we have A = ∀X B and Γ ` t : B. By
induction hypothesis, we have t0 ∈ |B0[R/X]| for every R ∈ P(Π)Nk .
Thus t0 ∈ |∀X B0| = |A0|.
If it is rule 6, we have A = B[τ/x] and Γ ` t : ∀xB. By induction hypothesis, we get
t0 ∈ |∀xB0|. But, if a ∈ N is the value of τ , we have |B0[τ/x]| = |B0[a/x]| ⊃ |∀xB0| and
therefore t ∈ |B0[τ/x]| = |A0|.
If it is rule 7, we have A = B[Φ(z1, . . . , zp)/Xz1 . . . zp] and therefore :
A0 = B0[Φ0(z1, . . . , zp)/Xz1 . . . zp]. We have Γ ` t : ∀X B and we must show that t0 ∈ |A0|.
By induction hypothesis, we know that t0 ∈ |∀X B0| and the result follows from lemma 4.

Q.E.D.

Lemma 4. Let Φ (resp. A) be a formula with parameters, with the only free variables z1, . . . , zp
(resp. X of arity p). Define R ∈ P(Π)Np by :
R(a1, . . . , ap) = kΦ[a1/z1, . . . , ap/zp]k for a1, . . . , ap ∈ N.
Then kA[Φ/Xz1 . . . zp]k = kA[R/X]k and therefore :
kA[Φ/Xz1 . . . zp]k ⊂ k∀X Ak and |∀X A| ⊂ |A[Φ/Xz1 . . . zp]|.
We show kA[Φ/Xz1 . . . zp]k = kA[R/X]k by induction on the length of A.
The result is trivial if X is not free in A, if A is atomic, or if A = (B → C).

If A = ∀xB, then kA[Φ/Xz1 . . . zp]k =
S
a∈N kB[Φ/Xz1 . . . zp][a/x]k

=
S
a∈N kB[a/x][Φ/Xz1 . . . zp]k =

S
a∈N kB[a/x][R/X]k by induction hypothesis

=
S
a∈N kB[R/X][a/x]k = k∀xB[R/X]k = kA[R/X]k.

If A = ∀Y B, with Y of arity q and Y 6= X , then :
kA[Φ/Xz1 . . . zp]k =

S{kB[Φ/Xz1 . . . zp][S/Y]k; S ∈ P(Π)Nq}
=
S{kB[S/Y][Φ/Xz1 . . . zp]k; S ∈ P(Π)Nq}

=
S{kB[S/Y][R/X]k; S ∈ P(Π)Nq} by induction hypothesis

=
S{kB[R/X][S/Y]k; S ∈ P(Π)Nq} = k∀Y B[R/X]k = kA[R/X]k.

Q.E.D.

Remark. The terms we obtain by means of proofs in classical second order logic are λcc-terms, that

is λ-terms with the constant cc, not necessarily closed. On the other hand, the terms which appear in

processes are in Λc (i.e. closed terms with instructions and continuations). The common elements are

proof-like terms with the only instruction cc (hence the name ‘‘ proof-like ’’).

Theorem 5. For U, V ∈ P(Π), we put U ≤ V ⇔ (∃θ ∈ PL) θ k−U → V .
Suppose that ⊥⊥ is coherent, which means that (∀θ ∈ PL) θ 6k−⊥. Then ≤ is a preorder (i.e.
reflexive and transitive) and (P(Π),≤) is a Boolean algebra.

Proof that ≤ is a preorder : if U ≤ V and V ≤ W , then there are ξ, η ∈ PL such that
ξ k−U → V , η k−V →W . Therefore η◦ξ k−U →W , hence U ≤ W .

6

Proof that (P(Π),≤) is a Boolean algebra : we have U ∧ V ≤ U and U ∧ V ≤ V (the proofs
of U ∧ V → U and U ∧ V → V give the requested terms). Moreover, if Z ≤ U, V , then
ξ k−Z → U , η k−Z → V thus λzλf((f)(ξ)z)(η)z k−Z → U ∧ V . Therefore we have
Z ≤ U ∧ V and U ∧ V = inf(U, V). In the same way, we get U ∨ V = sup(U, V).
We have I k−⊥ → U and I k−U → >. Therefore ⊥ is the least element and > is the greatest.
We have ¬U ∧ U ≤ ⊥ and > ≤ ¬U ∨ U since ¬U ∧ U → ⊥ and >→ ¬U ∨ U are provable.
Thus ¬U is the complement of U .
It remains to show that > 6≤ ⊥. This clearly follows from the hypothesis that ⊥⊥ is coherent.

Q.E.D.

As soon as we choose a coherent set ⊥⊥, each closed formula with parameters is given a value in
this Boolean algebra. The set T⊥⊥ of formulas with value 1, i.e. formulas which are realized by a
proof-like term, is a consistent theory which contains second order logic. We are interested in
the models of this theory ; we call them generic models.
The case when ⊥⊥ = ∅ is trivial : the Boolean algebra is {0, 1} and we get back the standard
model we started with.
We say that a closed formula F , with parameters, is realized if there exists a proof-like term θ
such that θ k−F for any choice of the cc-saturated set ⊥⊥.
All axioms of second order logic are realized. Thus, generic models satisfy second order logic.

The tools we have built up to now are sufficient in order to solve the specification problem for
some very simple valid formulas.

Theorem 6. If ` θ : ∀X(X → X), then θ ? t.π Â t ? π for every t ∈ Λc and π ∈ Π.

Given t and π, we put ⊥⊥ = {p ∈ Λc ? Π; p Â t ? π} and kXk = {π}. Thus, we have t k−X .
But, by theorem 2, we have θ k−X → X , hence θ ? t.π ∈ ⊥⊥. It is exactly what we wanted to
show.

Q.E.D.

We denote by Bool(x) the formula ∀X(X1, X0→ Xx), which is equivalent to x = 0 ∨ x = 1
in classical secod order logic.

Theorem 7. If ` θ : Bool(1) (resp. Bool(0)), then θ ? t.u.π Â t ? π (resp. u ? π) for every
t, u ∈ Λc and π ∈ Π.

Given t and π, we put ⊥⊥ = {p ∈ Λc ? Π; p Â t ? π} and we define a unary parameter X by
putting kX1k = {π}, kXnk = ∅ for n 6= 1. Thus, we have t k−X1 and u k−X0.
If ` θ : Bool(1), by theorem 2, we have θ k−X1, X0 → X1, hence θ ? t.u.π ∈ ⊥⊥, which is
the result.

Q.E.D.

Remark. The meaning of these theorems is that the terms of type ∀X(X → X) (resp. Bool(1), Bool(0))

behave essentially like I = λxx (resp. λxλy x, λxλy y).

Axiom of recurrence and call by value

We should now realize the axiom of recurrence, which is : ∀x Int(x)where Int(x) is the formula
∀X[∀y(Xy → Xsy), X0 → Xx] that says that the individual x is an integer. Unfortunately,
this axiom is not realized. It means that, in a generic model, there may be individuals which

7

are not integers. Moreover, we shall see later that, in general, there may be also non standard
integers in generic models.
In order to solve this problem, we introduce now some simple tools, which will appear essential
in what follows.

We define a binary predicate constant, denoted by 6=, by putting km 6= nk = ∅ if m 6= n and
km 6= nk = Π if m = n. The following theorem shows that we can profitably use the formula
x 6= y instead of x = y → ⊥.

Theorem 8. The formula ∀x∀y[x 6= y ↔ (x = y → ⊥)] is realized. Indeed :
λxxI k−∀x∀y[(x = y → ⊥)→ x 6= y] and λxλy yx k−∀x∀y[x 6= y → (x = y → ⊥)].
We first check that |m = n| = |∀X(X → X)| if m = n and |m = n| = |>→ ⊥| if m 6= n. It
is immediate, since m = n is the formula ∀X(Xm→ Xn).
We have to show that λxxI k− (m = n→ ⊥)→ m 6= n and λxλy yx k−m 6= n,m = n→ ⊥
for every m,n ∈ N. In the first case, we only need to check that :
λxxI k− (m = m→ ⊥)→ ⊥, which is obvious since I k−m = m.
In the second case, we must check that :
λxλy yx k−>,m = n→ ⊥ if m 6= n and λxλy yx k−⊥,m = n→ ⊥ if m = n
which is immediate, using the above computation of |m = n|.

Q.E.D.

Theorem 9. Suppose that θ ? kπ.ρ ∈ ⊥⊥ for any stack π ∈ kXk and ρ ∈ kY k. Then :
V θ k−¬X → Y with V = λxλy(cc)λh(y)(cc)λk(h)(x)k.

Let t k−¬X et ρ ∈ kY k. We must show that V θ ? t.ρ ∈ ⊥⊥ ; but V θ ? t.ρ Â V ? θ.t.ρ Â
(cc)λh(t)(cc)λk(h)(θ)k ?ρ Â t? (cc)λk(kρ)(θ)k.ρ. Since t k−X → ⊥, it is therefore sufficient
to prove that (cc)λk(kρ)(θ)k k−X , in other words (cc)λk(kρ)(θ)k?π ∈ ⊥⊥ for every π ∈ kXk.
This is true because this process reduces into θ ? kπ.ρ.

Q.E.D.

Remark. With the notation introduced page 3, the hypothesis of theorem 9 is : θ k− {kπ; π ∈ kXk}→ Y .

Theorem 9 says that the set |¬X| behaves, in some sense, like its subset {kπ; π ∈ kXk} ; and it gives a

simple way to check that X ∨ Y is realized.

Theorem 10 (Storage of integers). We put T = λfλn(nλg g◦s)f0, where s is a λ-term for the
successor (for instance s = λnλfλx(f)(n)fx).
If φ ∈ Λc is such that φ ? sn0.π ∈ ⊥⊥ for every π ∈ kXk, then Tφ k− Int[sn0]→ X .

Remarks.

1. With the notation introduced page 3, the hypothesis of theorem 10 is : φ k− {sn0}→ X .

Theorem 10 says that the set |Int[sn0]| behaves, in some sense, like its subset {sn0}.

2. T is called a storage operator [3]. We understand intuitively its behavior by comparing the weak head

reductions of φν and Tφν, where φ and ν are λ-terms, ν 'β λfλx(f)nx (Church integer). We get

Tφν Â (φ)(s)n0, which means that the integer argument ν of φ is computed first. In other words, T

simulate call by value in a weak head reduction, that is a call by name execution.

Note that we use the same symbol s for a λ-term and a function symbol of L.

Proof. Let ν k− Int[sn0] and π ∈ kXk ; we must show that Tφ ? ν.π ∈ ⊥⊥.
We define a unary predicate P by putting :

8

kP (j)k = {sn−j0.π} for 0 ≤ j ≤ n and kP (j)k = ∅ for j > n.
We have φ k−P0 by hypothesis on φ.
Let us show that λg g◦s k−∀x(Px → Psx), which means that λg g◦s ∈ |P (j) → P (j + 1)|
for every j ∈ N. It is trivial for j ≥ n.
If j < n, let ξ ∈ |P (j)| ; we must show that λg g◦s ? ξ.sn−j−10.π ∈ ⊥⊥. But we have :
λg g◦s ? ξ.sn−j−10.π Â ξ◦s ? sn−j−10.π Â ξ ? sn−j0.π ∈ ⊥⊥ by hypothesis on ξ.

Now, we have Tφ ? ν.π Â ν ? λg g◦s.φ.0.π which is in ⊥⊥ because :
ν k−∀x(Px→ Psx), P0→ Psn0 by hypothesis, φ k−P0 and 0.π ∈ kPsn0k.

Q.E.D.

We are interested in the theory called Analysis or Second order Peano arithmetic, which is
classical second order logic with the following supplementary axioms :

1. A set of equational formulas, i.e. formulas of the form :
∀x1 . . . ∀xk[t(x1, . . . , xk) = u(x1, . . . , xk)], where t, u are terms which represent functions
from Nk into N. Of course, all these formulas are supposed to be true in N. For instance,
we can take the following equational formulas, where 0, s, p,+, . are function symbols that
represent respectively the integer 0, the successor function, the predecessor, the addition and
multiplication on integers :
p0 = 0 ; ∀x(psx = x) ; ∀x(x+ 0 = x) ; ∀x[x+ sy = s(x+ y)] ;
∀x(x.0 = 0) ; ∀x∀y[x.sy = x.y + x].
2. ∀x(0 6= sx).
3. The recurrence axiom ∀x Int(x).
4. The axiom of dependent choice.

All equational axioms 1 are realized by I = λxx. Axiom 2 is realized by any proof-like term.
But there is a problem with axiom 3, as is shown by the following theorem :

Theorem 11. There is no proof-like term and even no instruction which realizes ∀x Int(x).
Let ξ be such an instruction ; thus, we have ξ k− Int(0) and ξ k− Int(1) for every choice of
the set ⊥⊥. Let δ = λxxx, α0 = δδ0, α1 = δδ1 ; let π be some stack.
We first take ⊥⊥ = {p ∈ Λc ? Π; p Â α0 ? π} (recall that Λc ? Π is the set of processes).
We define a unary predicate X by putting kX0k = {π}, kX(i + 1)k = ∅ for every i ∈ N.
Thus, we have α0 k−X0 and t k−∀y(Xy → Xsy) for every t ∈ Λc. But ξ k− Int(0), thus
ξ k−∀y(Xy → Xsy), X0 → X0. It follows that ξ ? λxα1.α0.π ∈ ⊥⊥. In other words,
ξ ? λxα1.α0.π Â α0 ? π.
We now take ⊥⊥ = {p ∈ Λc ? Π; p Â α1 ? π} and we define the unary predicate X by putting
kX0k = ∅, kX(i + 1)k = {π} for every i ∈ N. Therefore, we have t k−X0 for every t ∈ Λc
and λxα1 k−∀y(Xy → Xsy). But ξ k− Int(1), thus ξ k−∀y(Xy → Xsy), X0 → X1. It
follows that ξ ? λxα1.α0.π ∈ ⊥⊥. In other words, ξ ? λxα1.α0.π Â α1 ? π. This is obviously
a contradiction with the preceding result, because no process can reduce both to α0 ? π and
α1 ? π.

Q.E.D.

A solution for axiom 3 (we shall give another method later) is simply to remove it by means of
the following well known property :

Every proof of a formula Θ in second order classical logic, using axioms 1, 2 and 3, can be
converted into a proof of ΘInt using axioms 1, 2 and the following axioms :

9

3’. ∀x1 . . .∀xk{Int[x1], . . . , Int[xk]→ Int[f(x1, . . . , xk)]} for each function symbol f of L.
ΘInt is the formula that we obtain by restricting to Int all first order quantifiers in Θ. It is
inductively defined as follows :

If A is atomic, then AInt ≡ A ; (A→ B)Int ≡ AInt → BInt ;
(∀X A)Int ≡ ∀X AInt ; (∀xA)Int ≡ ∀x(Int[x]→ AInt).

It remains to find for which functions from Nk into N the formulas 3’ are realised. The solution
is given by the following theorem :

Theorem 12. Let f be a function symbol of arity k, which represents a (total) recursive function.
Then the formula ∀x1 . . .∀xk{Int[x1], . . . , Int[xk]→ Int[f(x1, . . . , xk)]} is realised.

We first need a result about usual λ-calculus.

Notations.
Λ is the set of usual λ-terms.
If t, u ∈ Λ, then t 'β t

0 means that t is β-equivalent to t0 ;
t Â t0 means that t reduce to t0 by weak head reduction : a step of weak head reduction is
(λxu)vv1 . . . vn Â (u[v/x])v1 . . . vn.

The following lemma explains why we use the same symbol Â for weak head reduction of usual
λ-terms and for the execution des processes.

Lemma 13.
Let ξ, η, t1, . . . , tk ∈ Λ some usual closed λ-terms and let π ∈ Π. If η is not an application (in
other words, η is a λ-constant or η = λx η0) and if ξ Â (η)t1 . . . tk, then
ξ ? π Â η ? t1.tk.π.

The proof is by induction on the length of the weak head reduction ξ Â (η)t1 . . . tk. The first
step is ξ = (λy u)vv1 . . . vn Â (u[v/y])v1 . . . vn and, by induction hypothesis :
(u[v/y])v1 . . . vn ? π Â η ? t1.tk.π. Now, during the first n− 1 reduction steps of the left
hand side, the head of the process is an application ; since η is not, we did not reach yet the
right hand process after these steps. Thus, we have :
(u[v/y]) ? v1 . . . vn.π Â η ? t1.tk.π. It follows that :
ξ ? π = (λy u)vv1 . . . vn ? π Â (u[v/y]) ? v1 . . . vn.π Â η ? t1.tk.π.

Q.E.D.

Notations.
For t, u ∈ Λc, we define :
(t)nu pour n ∈ N by : (t)0u = u, (t)n+1u = (t)(t)nu.
t◦u by λx(t)(u)x, where x does appear in t, u.

Lemma 14. Let f, a be λ-constants and ξ ∈ Λ such that ξ 'β (f)
na.

Suppose that φ k−∀y(Xy → Xsy) and α k−X0. Then ξ[φ/f,α/a] k−Xsn0.

Proof by induction on n. If n = 0, then ξ 'β a and therefore ξ Â a. If π ∈ kX0k, then
ξ ? π Â a ? π, by lemma 13. Thus ξ[φ/f,α/a] ? π Â α ? π ∈ ⊥⊥.
If n > 0, then ξ Â (f)η with η 'β (f)

n−1a. Let π ∈ kXsn0k ; then ξ ? π Â f ? η.π, by
lemma 13 and therefore ξ[φ/f,α/a] ? π Â φ ? η[φ/f,α/a].π. Now, φ ∈ |Xsn−10 → Xsn0|
and, by induction hypothesis, η[φ/f,α/a] ∈ |Xsn−10|. Thus φ ? η[φ/f,α/a].π ∈ ⊥⊥.

Q.E.D.

10

Theorem 15. Let n ∈ N and ν ∈ Λ such that ν 'β λfλx(f)
nx. Then ν k− Int[sn0].

Let φ k−∀y(Xy → Xsy), α k−X0 and π ∈ kXsn0k ; we must show that ν ? φ.α.π ∈ ⊥⊥.
Since ν 'β λfλx(f)

nx, we have ν Â λf η, η Â λa ξ and ξ 'β (f)
na. By lemma 13, we have

ν ? φ.α.π Â λf η ? φ.α.π Â η[φ/f] ? α.π. Again by lemma 13, we have :
η ? α.π Â λa ξ ? α.π Â ξ[α/a] ? π and thus η[φ/f] ? α.π Â ξ[φ/f,α/a] ? π. Finally, we have
ν ? φ.α.π Â ξ[φ/f,α/a] ? π. But, by lemma 14, we have ξ[φ/f,α/a] k−Xsn0 and therefore
ν ? φ.α.π Â ξ[φ/f,α/a] ? π ∈ ⊥⊥.

Q.E.D.

We can now prove theorem 12. For simplicity, we suppose k = 1 ; thus, we have a recursive
function f : N → N. Let φ ∈ Λ be a λ-term which represents f : for each n ∈ N, we
have φsn0 'β λfλx(f)px with p = f(n). Thus φsn0 Â λf ξ and, by theorem 15, we have
λf ξ k− Int[sp0]. Let π ∈ kInt[sp0]k ; we have λf ξ ? π ∈ ⊥⊥. Now, by lemma 13, we
have φsn0 ? π Â λf ξ ? π ; but this reduction has necessarily at least one step, because
φsn0 6= λf ξ (φsn0 does not begin by λ). Therefore φ ? sn0.π Â λf ξ ? π ∈ ⊥⊥. Since this
holds for each π ∈ kInt[sp0]k, theorem 10 shows that Tφ k− Int[sn0] → Int[sp0], that is
Tφ k− Int[n]→ Int[f(n)]. Since this is true for every n ∈ N, it follows that
Tφ k−∀x(Int[x]→ Int[f(x)]).

Q.E.D.

Arithmetical formulas

We can now consider the specification problem for arithmetical theorems. We begin by two
simple forms : ∀x∃y[f(x, y) = 0] and ∃x∀y[f(x, y) = 0] where f is a recursive function. We
suppose that these formulas are proved in classical second order arithmetic, using equational
axioms written with total recursive function symbols (so that theorem 12 applies). In order to
remove the recurrence axiom, we write these theorems in this form :
∀x[Int(x)→ ∃y{Int(y), f(x, y) = 0}] and ∃x{Int(x),∀y[Int(y)→ f(x, y) = 0]}.

Theorem 16. If ` θ : ∀x[Int(x),∀y{Int(y) → f(x, y) 6= 0} → ⊥], then for every n ∈ N,
κ ∈ Λc and π ∈ Π, we have θ ? n.Tκ.π Â κ ? sp0.π0 with f(n, p) = 0 (T is defined in
theorem 10).

Remark. If we take for κ a ‘‘ stop ’’ instruction, we see that the program θ can compute, for each integer

n, an integer p such that f(n, p) = 0. A ‘‘ stop ’’ instruction has no reduction rule when it comes in

head position ; therefore, execution stops at this moment.

Of course, the theorem remains true if we use other axioms in the proof of the formula ∀x∃y[f(x, y) = 0],
provided that these axioms are realized by suitable instructions. For instance, as we shall see later, we

can use the axiom of dependent choice for this proof ; then, the program θ will contain a clock instruction

the reduction rule of which is :

? t.π Â t ? n.π, where n is an integer which is the current time.

Proof. We choose n ∈ N and we put ⊥⊥ = {p ∈ Λc ? Π; p Â κ ? sp0.ρ with ρ ∈ Π and
f(n, p) = 0}. By theorem 2 (adequation lemma), we have :
(∗) θ k− Int(n), ∀y{Int(y)→ f(n, y) 6= 0}→ ⊥.
We have n k− Int(n) by theorem 15. We show that Tκ k−∀y{Int(y)→ f(n, y) 6= 0}, in other
words that Tκ k− Int(p) → f(n, p) 6= 0 for every integer p. By theorem 10, it is sufficient to

11

prove that κ ? sp0.ρ ∈ ⊥⊥ for every ρ ∈ kf(n, p) 6= 0k. It is trivial if f(n, p) 6= 0 since
kf(n, p) 6= 0k = ∅. If f(n, p) = 0, it is again true by definition of ⊥⊥.
It follows from (∗) that θ ? Tκ.π ∈ ⊥⊥ for every π ∈ Π, which is the desired result.

Q.E.D.

We consider now an arithmetical theorem Φ of the form :
∃x{Int(x), ∀y[Int(y)→ f(x, y) = 0]}.
We define a game between two players called ∃ and ∀ : ∃ plays an integer m, ∀ answers by an
integer n ; the play stops as soon as f(m,n) = 0 and then ∃ won ; therefore ∀ wins if and only
if the play does not stop.
Intuitively, ∃ is the ‘‘ defender ’’ of the theorem and ∀ ‘‘ attacks ’’ this theorem, searching to
exhibit a counter-example. It is clear that ∃ has a winning strategy if and only if N |= Φ ;
moreover, in this case, there is an obvious strategy for ∃ : simply play successively 0, 1, 2, . . .

We shall show (theorem 17) that the program associated with a proof of Φ behaves exactly
as a winning strategy for ∃ in this game. For this, we need to add an instruction κ to our
programming language, in order to allow an interactive execution. The execution rule of κ is
the following :

κ ? sn0.ξ.π Â ξ ? sp0.κnp.π
0

for n, p ∈ N, ξ ∈ Λc, π, π0 ∈ Π ; s is a fixed λ-term for the successor in Church integers ; κnp
is a double sequence of ‘‘ stop ’’ instructions.
Observe that this execution rule is non deterministic, since the integer p and the stack π0 are
arbitrary. The intuitive meaning of this rule is as follows : in the left hand side, the program,
which is also the player ∃, plays the integer n ; in the right hand side, the attacker ∀ answers by
playing p and the execution goes on ; κnp keeps the trace of the ordered pair (n, p) of integers.

Theorem 17. If ` θ : [∃x∀y(f(x, y) = 0)]Int, then every reduction of θ ? Tκ.π ends up into
κnp ? π

0 with f(n, p) = 0. T is the storage operator defined in theorem 10.

We take for⊥⊥ the set of processes every reduction of which ends up into κnp?π
0 with f(n, p) = 0

and π0 ∈ Π. We must show that θ ? Tκ.π ∈ ⊥⊥ for every π ∈ Π.
By theorem 2, we have θ k−∀x[Int(x), ∀y(Int(y)→ f(x, y) = 0)→ ⊥]→ ⊥.
Therefore, by definition of k− , it is sufficient to show that :
Tκ k−∀x[Int(x), ∀y(Int(y)→ f(x, y) = 0)→ ⊥].
Let n ∈ N ; we must show that Tκ k− Int[sn0]→ [∀y(Int(y)→ f(n, y) = 0)→ ⊥].
By theorem 10, we only need to show that, if π ∈ Π and ξ k−∀y(Int(y)→ f(n, y) = 0) then
κ ? sn0.ξ.π ∈ ⊥⊥. By definition of ⊥⊥, it is sufficient to show that ξ ? sp0.κnp.π ∈ ⊥⊥ for every
p ∈ N and π ∈ Π. But, by hypothesis on ξ, for every p ∈ N and $ ∈ kf(n, p) = 0k, we have
ξ ? sp0.$ ∈ ⊥⊥. Therefore, it suffices to show that κnp.π ∈ kf(n, p) = 0k for every p ∈ N and
π ∈ Π.

If f(n, p) = 0, then kf(n, p) = 0k is k∀X(X → X)k that is to say :
{t.ρ; t ∈ Λc, ρ ∈ Π, t?ρ ∈ ⊥⊥}. But, by definition of⊥⊥, we have also κnp ?π ∈ ⊥⊥ and therefore
κnp.π ∈ kf(n, p) = 0k.
If f(n, p) 6= 0, then kf(n, p) = 0k = k> → ⊥k that is to say {t.ρ; t ∈ Λc, ρ ∈ Π} ; thus, we
have again κnp.π ∈ kf(n, p) = 0k.

Q.E.D.

It follows that every proof of Φ in classical analysis gives rise to an interactive program which
wins against any attacker.

12

Indeed, at each answer of the attacker ∀, the program, which is nobody else than the player ∃,
provides an object (sn0, ξ) constituted with an integer n (the ‘‘ provisional solution ’’) and an
exception handler ξ, which will be used in case of a pertinent answer of the opponent.
They are the two arguments of κ which can therefore be considered as a pointer towards this
object.

We can, without any supplementary effort, add a universal quantifier, which gives the

Theorem 18. If ` θ : [∀x∃y∀z(f(x, y, z) = 0)]Int, then every reduction of θ ?m.Tκ.π ends up
into κnp ? π

0 with f(m,n, p) = 0.

The generalization to the case of an arithmetical formula with an arbitrary number of alternating
quantifiers is given in [5].

We shall now prove that every arithmetical formula which is true in N is realized. We use for
this the trivial winning strategy of the player ∃, which we express by a program.

Theorem 19.
Let θ be a closed λ-term such that θti Â (ti)(θt)(s)i. If N |= ∀x∃y∀z[f(x, y, z) 6= g(x, y, z)],
then λx θx0 k−∀x∃y{Int(y), ∀z(f(x, y, z) 6= g(x, y, z))}.

Remark. This formula is obviously stronger than [∀x∃y∀z(f(x, y, z) 6= g(x, yz))]Int which is therefore

also realized.

Suppose that there exists an integer m such that :
λx θx0 6k−∀y[Int(y),∀z(f(m, y, z) 6= g(m, y, z)) → ⊥] → ⊥. Thus, there exists t ∈ Λc and
π0 ∈ Π such that t k−∀y[Int(y), ∀z(f(m, y, z) 6= g(m, y, z))→ ⊥] and θt0 ? π0 /∈ ⊥⊥.
Thus, we have t ? 0.θt1.π0 /∈ ⊥⊥ and therefore θt1 6k−∀z(f(m, 0, z) 6= g(m, 0, z)). This means
that there exists p0 ∈ N and π1 ∈ Π such that f(m, 0, p0) = g(m, 0, p0) and θt1 ? π1 /∈ ⊥⊥.
Therefore, we have t ? 1.θt2.π1 /∈ ⊥⊥ and so on. Therefore we build, in this way, a sequence of
integers pi(i ∈ N) such that f(m, i, pi) = g(m, i, pi). This is a contradiction with the hypothesis
that N |= ∀x∃y∀z[f(x, y, z) 6= g(x, y, z)].

Q.E.D.

This theorem generalizes to an arbitrary number of alternating quantifiers (see below the sub-
section ‘‘ Arbitrary arithmetical formulas ’’).

Axiom of foundation in generic models

We obviously have N |= ∀x∃y∀z(x 6= y + z) (take y = sx). Thus, by theorem 19, we have
λx θx0 k−∀x∃y{Int(y),∀z(x 6= y + z)}. We shall deduce that generic models are ‘‘ well
founded ’’ :

Theorem 20. The formula ∀x∃!n∃!y{Int(n), y ' 0, x = n+ y} is realized, where y ' 0 is the
formula ∀z(y 6= sz).
It is sufficient to show that this formula is a logical consequence of the above formula and of
identities ∀x∀y∀z(f(x, y, z) = g(x, y, z)) which are true in N.
Existence : let p be the least integer such that ∀z(x 6= z+p). Then p 6= 0 because ∀z(x 6= z+0)
is false, by z+0 = z. Threfore p = sn and, by definition of p, there exists y such that x = y+n.
We cannot have y = sz, otherwise x = sz + n = z + sn = z + p.

13

Unicity : suppose that x = y + n = y0 + n0, with Int(n), Int(n0) y, y0 ' 0. Suppose n ≤ n0,
thus n0 = n+ k with Int(k). Therefore, we have y+ n = y0 + n+ k, thus y = y0+ k ; since y
is not a successor, we have k = 0, thus n = n0 and y = y0.

Q.E.D.

With each individual of the model, we can therefore associate an integer (of the model) and only
one. In this way, we can consider integers as equivalence classes. It is another interpretation of
the recurrence scheme : instead of restricting individuals to integers, we keep individuals and
we restrict to predicates which are saturated for this equivalence relation. The two models of
second order arithmetic obtained in this way are obviously isomorphic.

The following theorem is also an expression of well foundedness. It will be used later.

Theorem 21. Let Y be the Turing combinator : Y = AA with A = λaλf(f)(a)af . Then

Y k−∀X{∀n(
\
m<n

|Xm|→ Xn)→ ∀nXn}.

Let X : N → P(Π), k ∈ N and t k−∀n(
\
m<n

|Xm| → Xn). We show, by induction on k,

that Y ? t.π ∈ ⊥⊥ for every π ∈ Xk. By induction hypothesis, we have Y ? t.ρ ∈ ⊥⊥ for every

ρ ∈ Sm<kXm and therefore Yt k−
\
m<n

|Xm|. Thus, by hypothesis on t, we have t ? Yt.π ∈ ⊥⊥

for every π ∈ Xk. But we have Y ? t.π Â t ? Yt.π hence the result.
Q.E.D.

We define the predicate x 6=X y (predicate of order 3, where X is a propositional variable) by
putting, for m,n ∈ N : km 6=X nk = ∅ if m 6= n and km 6=X nk = kXk if m = n.
Lemma 22 tells us that this predicate is equivalent to x = y → X .

Lemma 22. The formula ∀X∀x∀y{x 6=X y ↔ (x = y → X)} is realized. Indeed, we have :
λxxI k−∀X∀x∀y[(x = y → X)→ x 6=X y] and
λxλy yx k−∀X∀x∀y[x 6=X y → (x = y → X)].

Same proof as for theorem 8, which is the particular case X = ⊥.
Q.E.D.

The following theorem gives the specification associated with a formula of the form :
∀x∃y{Int(y),∀z[f(x, y, z) 6= g(x, y, z)]} when N |= ∀x∃y∀z[f(x, y, z) 6= g(x, y, z)].

Theorem 23. Suppose that N |= ∀x∃y∀z[f(x, y, z) 6= g(x, y, z)] ; let θ be a proof-like term such
that θ k−∀x∃y{Int(y),∀z[f(x, y, z) 6= g(x, y, z)]} for every choice of ⊥⊥ (such a term exists, by
theorem 19). Then we have, for every stack π :
θ ?Tκ.π Â κ?n0.t0.π, t0 ?π Â κ?n1.t1.π, . . . , ti ?π Â κ?ni+1.ti+1.π, . . . and for every m ∈ N
there exists i such that N |= ∀z[f(m,ni, z) 6= g(m,ni, z)].

By lemma 22, the formula ∀X∀x{∀y[Int(y),∀z(f(x, y, z) 6=X g(x, y, z)) → X] → X} is
equivalent to ∀X∀x{∀y[Int(y)→ ∃z(f(x, y, z) = g(x, y, z)) ∨X]→ X}, and therefore to :
∀x∃y{Int(y),∀z[f(x, y, z) 6= g(x, y, z)]}. We can thus suppose :
θ k−∀X∀x{∀y[Int(y), ∀z(f(x, y, z) 6=X g(x, y, z))→ X]→ X}.
Consider an integer m and a stack π ; we put kXk = {π} and
⊥⊥ = {p ∈ Λc ? Π; p Â κ ? n0.t0.π, t0 ? π Â κ ? n1.t1.π, . . . , ti ? π Â κ ? ni+1.ti+1.π, . . . and

14

(∃i ∈ N)(∀z ∈ N) f(m,ni, z) 6= g(m,ni, z)}.
It is therefore sufficient to prove that Tκ k−∀y[Int(y),∀z(f(m, y, z) 6=X g(m, y, z))→ X for
every m ∈ N. By theorem 10, we have to show that κ ? n.t.π ∈ ⊥⊥ for every n ∈ N and every t
such that t k−∀z(f(m,n, z) 6=X g(m,n, z)). In other words, we must check :
i) (∀z ∈ N)(f(m,n, z) 6=X g(m,n, z))⇒ κ ? n.t.π ∈ ⊥⊥ ; it is clear, by definition of ⊥⊥.
ii) t k−X ⇒ κ ? n.t.π ∈ ⊥⊥, or else t ? π ∈ ⊥⊥ ⇒ κ ? n.t.π ∈ ⊥⊥ ; it is clear again by definition
of ⊥⊥.

Q.E.D.

For instance, the formula ∀x∃y{Int(y), ∀z(x 6= y + z)} is a specification for the ‘‘ streams of
integers ’’ which take arbitrarily high values. If we define e : N2 → {0, 1} by e(m,n) = 1 ⇔
m = n, the formula ∀x∃y{Int(y), e(x, y) 6= 0} is a specification for the ‘‘ streams of integers ’’
which take every possible value. It is the same for the formula (which is equivalent to the former
one) : ∀x∃y{Int(y), ∀z(x2 + y2 6= 2xy + sz)}.

Arbitrary arithmetical formulas

Remark. This subsection may be skipped at first reading.

Let us now consider a formula Φ of the form :
∃x1∀y1 . . . ∃xk∀yk(f(x1, y1, . . . , xk, yk) 6= 0) where f : N2k → N is an arbitrary function.
We define a game associated with Φ (players ∃ and ∀ are respectively the ‘‘ defender ’’ and the
‘‘ attacker ’’ of the formulaΦ) ; we also define the notion of reached position at a given moment :
A position of the game is a finite sequence of integers n1p1 . . . nipi (0 ≤ i ≤ k). The player
∃ chooses first an already reached position n1p1 . . . nipi with 0 ≤ i < k and an integer ni+1 ;
then, the player ∀ chooses an integer pi+1. The position n1p1 . . . ni+1pi+1 is then reached.
If i+ 1 = k and f(n1, p1, . . . , nk, pk) 6= 0, then the play stops and ∃ won. In every other case,
the play goes on. Therefore ∀ wins if and only if the play does not stop.

It is easy to see that N |= Φ if and only if the player ∃ has a winning strategy for this game.
Moreover, we can effectively (and very simply) describe such a strategy. It does not even depend
on the function f , but only on the number k of quantifiers :
The player ∃ uses an effective enumeration of Nk. When he reaches the k-uple n1 . . . nk , he
chooses the longest already reached position of the form n1p1 . . . nipi. We have i < k because
this position was reached for a k-uple of integers which is different from n1 . . . nk. Then, he
plays successively ni+1, . . . , nk without taking any account of the choices of player ∀. Then, he
continues with the next k-uple of integers.
If the play is infinite, we obtain k functions φi(x1, . . . , xi) such that :

N |= ∀x1 . . . ∀xk {f [x1,φ1(x1), x2,φ2(x1, x2), . . . , xk,φk(x1, . . . , xk)] = 0}
which is the Skolem form of ¬Φ ; thus N |= ¬Φ.

Conversely, if N |= ¬Φ, there exist k functions φi(x1, . . . , xi) such that the Skolem form of ¬Φ
is satisfied. They obviously provide a winning strategy for the opponent ∀.

Theorem 24. Suppose que N |= ∃x1∀y1 . . .∃xk∀yk(f(x1, y1, . . . , xk, yk) 6= 0)
where f : N2k → N is an arbitrary function. Then the formula :
∃x1{Int(x1), ∀y1∃x2{Int(x2), . . .∃xk{Int(xk), ∀yk(f(x1, y1, . . . , xk, yk) 6= 0)} . . .}
is realized by a proof-like term which is independent of f (it is, in fact, a usual closed λ-term).

15

Remarks.

This formula is obviously stronger than ΦInt, which is therefore also realized. Theorem 24 is a general-

ization of theorem 19.

The integers of a generic model give therefore a first order model which is elementarily equivalent to N.

The term which realizes Φ is obtain by means of a program for the winning strategy given above.

We shall only consider the case where N |= Φ ≡ ∃m∀n∃p(f(m,n, p) 6= 0).
We then write, in the following way, a proof-like term independent of f which realizes the
formula ∃m{Int(m),∀n∃p{Int(p), f(m,n, p) 6= 0)}} :

m, p are λ-variables, which represent Church integers ; s0 and s1 are closed usual λ-terms
such that the ordered pair (s0mp, s1mp) is the successor of the pair (m, p) in a fixed recursive
enumeration of N2 which begins with (0, 0).
σ is a variable which represents a finite sequence of ordered pairs (m0, η0), . . . , (mk, ηk) where
mi is a Church integer and ηi a λc-term. In other words, σ represents a λc-term of the form
λhλx(hm0η0) · · · (hmkηk)x.
H and Σ are closed usual λ-terms, defined as follows :
Hσηm Â ηi for the first i such that m = mi, if m is equal to one of the integers mi of the
sequence σ ; otherwise Hσηm Â η.
Σσηm Â σ if m is equal to one of the integers mi of the sequence σ ; otherwise Σσηm Â τ ,
where τ is the sequence obtained by adding the pair (m, η) at the end of the sequence σ.

Theorem 25. Let f : N3 → N be an arbitrary function such that N |= ∃m∀n∃p(f(m,n, p) 6= 0).
Define a closed usual λ-term θ by (θξ)σmp Â (ξm)λη(η0p)(θξ)σ0m0p0

with η0 = Hσηm, σ0 = Σσηm, m0 = s0mp, p0 = s1mp.
Then λx θx000 k−∀m{Int(m),∀n[∀p(Int(p)→ f(m,n, p) = 0)→ ⊥]→ ⊥}→ ⊥.

Let ξ k−∀m{Int(m),∀n[∀p(Int(p)→ f(m,n, p) = 0)→ ⊥]→ ⊥} ;
we have to show that θξ000 k−⊥.

Lemma 26. Let η0, . . . , ηk ∈ Λc and m, p,m0, n0, . . . ,mk, nk ∈ N, m0, . . . ,mk being distinct
integers ; suppose that ηi k−∀p{Int(p)→ f(mi, ni, p) = 0} for 0 ≤ i ≤ k. We put :
σ = λhλx(hm0η0) · · · (hmkηk)x. If θξσmp 6k−⊥, then there exist n ∈ N and η ∈ Λc such
that θξσ0m0p0 6k−⊥, η k−∀p{Int(p) → f(m,n, p) = 0} and f(m,n0, p) = 0 with n0 = n if
m 6= mi for 0 ≤ i ≤ k ; otherwise, n0 = ni for the (unique) integer i such that m = mi.

By definition of θ, we have ξmtσmp 6k−⊥ with tσmp = λη(η0p)(θ)ξσ0m0p0.
By hypothesis on ξ, it follows that tσmp 6k−∀n[∀p(Int(p)→ f(m,n, p) = 0)→ ⊥].
Thus, there exist n ∈ N and η ∈ Λc, η k−∀p{Int(p)→ f(m,n, p) = 0}, such that tmpση 6k−⊥.
We have η0 = Hσηm and therefore η0 k−∀p{Int(p)→ f(m,n0, p) = 0}, by definition of H .
Now, we have : tσmpη Â η0p.θξσ0m0p0.
If f(m,n0, p) 6= 0, then η0p k−>→ ⊥ ; therefore tσmpη k−⊥ which is a contradiction.
Therefore, we have f(m,n0, p) = 0 and it follows that η0p k− 0 = 0, that is η0p k−⊥ → ⊥ ;
if θξσ0m0p0 k−⊥, we get once more the contradiction tσmpη k−⊥.

Q.E.D.

Now suppose that θξ000 6k−⊥ ; applying iteratively lemma 26, we obtain a sequence
(mi, ni, pi, ηi)i∈N such that :
• (mi, pi)i∈N is the fixed enumeration of N2 which begins with (0, 0) ;

16

• if we put φ(m) = nj for the first j such that m = mj , then f(mi,φ(mi), pi) = 0 for
every i ∈ N.
It follows that N |= ∀m∀p[f(m,φ(m), p) = 0] and therefore N 6|= ∃m∀n∃p[f(m,n, p) = 1].

Q.E.D.

Without any supplementary effort, we can add two universal quantifiers : in head position, a
quantifier ∀l is justified because the λ-term which we got does not depend on f . The last
quantifier ∀q is justified, because the equation f(m,n, p) = 0 can be written f(m,n, p) 6= 0→
⊥, which only takes the truth values >→ ⊥ and ⊥ → ⊥. We replace it with :
∀q(f(l,m, n, p, q) 6= 0)→ ⊥ which has the same property. Therefore, we get :

Theorem 27. Let f : N5 → N be an arbitrary function such that
N |= ∀l∃m∀n∃p∀q(f(l,m, n, p, q) 6= 0) and let θ be the closed λ-term defined in theorem 25.
Then we have : λx θx000 k−∀l∃m{Int(m), ∀n∃p{Int(p), ∀q[f(l,m, n, p, q) 6= 0]}}
which is the formula :
∀l[∀m{Int(m), ∀n[∀p(Int(p),∀q(f(l,m, n, p, q) 6= 0)→ ⊥)→ ⊥]→ ⊥}→ ⊥].

The axiom of choice in analysis

In order to get programs from proofs in classical analysis, it remains to realize the axiom of
dependent choice or a slightly weaker form : the axiom of countable choice. This axiom is,
indeed, used very often in analysis.
We consider first the axiom of countable choice which is technically simpler to realize. It consists
of the following axiom scheme :

∀~Y ∃Z∀x(∃X F [x,X, ~Y]→ F [x, Z(x, y)/Xy, ~Y]).

F is a second order formula in which the binary predicate variable Z does not appear ; X is
of arity 1 ; ~Y = (Y1, . . . , Yn) is a finite sequence of second order variables (which are, in fact,
parameters).

We shall rather write this axiom in contrapositive form :

(CAC) ∀~Y ∃Z∀x(F [x, Z(x, y)/Xy, ~Y]→ ∀X F [x,X, ~Y]).
This means that Z(x, y) is a counter-example to ∀X F [x,X], if there is one.

In order to realize this axiom scheme, we add a new instruction, which is denoted by χ ; its
reduction rule is given as follows : consider a fixed bijection n 7→ πn from N onto Π (which we
do not even need to suppose recursive) ; let π 7→ nπ be the inverse function. For each n ∈ N,
we denote by n a fixed λ-term which is 'β λfλx(f)

nx, for instance λfλx(f)nx itself, or sn0,
where s is a λ-term for the successor. The reduction rule for χ is then the following :

χ ? t.π Â t ? nπ.π for every t ∈ Λc and π ∈ Π.

Remark. We shall examine later the intuitive meaning of this reduction rule.

Of course, from now on, the set ⊥⊥ of processes is supposed to be cc-saturated for this new
notion of reduction.

Theorem 28.
Let F [x,X] be a formula with parameters, X being a unary predicate variable. There exists a
function U : N3 → P(Π) such that :
χ k−∀x{∀n(Int[n]→ F [x, U(x, n, y)/Xy])→ ∀X F [x,X]}.

17

For each individual x and each stack π, we have :
π ∈ k∀X F [x,X]k⇔ (∃R ∈ P(Π)N) π ∈ kF [x,R/X]k.

By the axiom of countable choice, there exists a function U : N3 → P(Π) such that :
π ∈ k∀X F [x,X]k ⇔ π ∈ kF [x, U(x, nπ, y)/Xy]k. Let us show that U has the desired
property : we consider an individual x ∈ N, t ∈ |∀n(Int[n] → F [x, U(x, n, y)/Xy])| and
π ∈ k∀X F [x,X]k. We have to show that χ ? t.π ∈ ⊥⊥. By the reduction rule of χ, it is
sufficient to prove that t ? nπ.π ∈ ⊥⊥. But this follows immediately from :
• t k− Int(snπ0)→ F [x, U(x, nπ, y)/Xy] which is true by hypothesis on t ;
• nπ k− Int(snπ0) by theorem 15 ;
• π ∈ kF [x, U(x, nπ, y)/Xy]k by hypothesis on π and by definition of U .

Q.E.D.

The formula ∃U∀x{∀n(Int[n] → F [x, U(x, n, y)/Xy]) → ∀X F [x,X]} is therefore realized
by λxxχ. But this formula implies, in classical second order logic, the countable axiom of
choice (CAC), that is ∃Z∀x{F [x, Z(x, y)/Xy])→ ∀X F [x,X]}.
The proof is easy : it is sufficient, by means of the comprehension scheme, to define Z(x, y)
by the following formula : ‘‘ U(x, n, y) for the first integer n such that ¬F [x, U(x, n, y)/Xy] if
there is one ’’. Notice that this proof uses the excluded middle ; therefore, the λc-term we get
to realize CAC contains the instructions χ and cc.

However, a careless formalization of this proof will give a complicated and not very comprehen-
sible term. It is therefore interesting to give an explicit and more refined method, in order to
obtain a simple term. This is done below in the section ‘‘ A program for the countable choice
axiom ’’.

The axiom of dependent choice

It is the following axiom scheme :

∀X∃Y H[X,Y]→ ∃Z∀k(Int[k]→ H[Z(k, y)/Xy, Z(k + 1, y)/Y y])
for every formula H which does not contain the variable Z.
We write this scheme in the following form :

(DC) ∃Z∀k(Int(k), F [Z(k, y)/Xy,Z(k + 1, y)/Y y]→ ∀Y F [Z(k, y)/Xy, Y])
for every formula F which does not contain the variable Z.
The first form follows immediately from this one, by setting F ≡ ¬H . Conversely, we get
the second form if we set H(X, Y) ≡ [F (X, Y) → ∀Y F (X,Y)] in the first one : indeed,
∀X∃Y H[X,Y] is then provable.

Let <x, y> be a symbol of binary function, which represents a bijection of N2 onto N. We
suppose it to be recursive so that theorem 12 applies.

Lemma 29. For every U : N2 → P(Π), there exists V : N2 → P(Π) such that :
χ k−∀n{Int[n]→ F [U(x, y)/Xy, V (<n, x>, y)/Y y]}→ ∀Y F [U(x, y)/Xy, Y].
Same proof as for theorem 28. For each individual x and each stack π, we have :

π ∈ k∀Y F [U(x, y)/Xy, Y]k⇔ (∃R ∈ P(Π)N) π ∈ kF [U(x, y)/Xy,R/Y]k.
It follows, by the countable choice axiom, that there exists a function V : N2 → P(Π) such
that π ∈ k∀Y F [U(x, y)/Xy, Y]k⇔ π ∈ kF [U(x, y)/Xy, V (<nπ, x>, y)/Y y]k.
We now show that V has the desired property : consider π ∈ k∀Y F [U(x, y)/Xy, Y]k and

18

t ∈ |∀n{Int[n] → F [U(x, y)/Xy, V (<n, x>, y)/Y y]}|. We have to show that χ ? t.π ∈ ⊥⊥,
that is t ? nπ.π ∈ ⊥⊥. But this follows immediately from :
• t k− Int(snπ0)→ F [U(x, y)/Xy, V (<nπ, x>, y)/Y y] by hypothesis on t ;
• nπ k− Int(snπ0) by theorem 15 ;
• π ∈ kF [U(x, y)/Xy, V (<nπ, x>, y)/Y y]k by hypothesis on π and by definition of V .

Q.E.D.

Theorem 30. Let F [X,Y] be a formula with parameters, X, Y being unary predicate variables.
Then, there exists A : N3 → P(Π) such that :
χ k−∀x∀k(∀n{Int[n]→ F [A(k, x, y)/Xy,A(k + 1, <n, x>, y)/Y y]}

→ ∀Y F [A(k, x, y)/Xy, Y]).

By lemma 29, we have (∀U ∈ P(Π)N2)(∃V ∈ P(Π)N2)Φ(U, V) where Φ(U, V) is the formula
χ k−∀n{Int[n]→ F [U(x, y)/Xy, V (<n, x>, y)/Y y]}→ ∀Y F [U(x, y)/Xy, Y].
Therefore, we get the result by application of the axiom of dependent choice (in the usual form,
i.e. the first one) to the formula Φ(U, V).

Q.E.D.

By theorem 30, in order to realize the axiom scheme (DC), it is sufficient to derive it, in classical
second order logic, from the formula :bF [A] ≡ ∀x∀k(∀n{Int[n]→ F [A(k, x, y)/Xy,A(k + 1, <n, x>, y)/Y y]}

→ ∀Y F [A(k, x, y)/Xy, Y]).
But the formula bF [A] is trivially equivalent to ∀x∀k∃n{Int[n], G[x, k, n,A]} with :
G[x, k, n, A] ≡ F [A(k, x, y)/Xy,A(k + 1, <n, x>, y)/Y y]→ ∀Y F [A(k, x, y)/Xy, Y].
Thus, we can define inductively a sequence of integers nk, by the conditions n0 = 0 and
nk+1 = <n, nk> for the first integer n such that G[nk, k, n, A]. Now, if we define Z(k, y)
by A(k, nk, y), we get F [Z(k, y)/Xy, Z(k + 1, y)/Y y] → ∀Y F [Z(k, y)/Xy, Y] for each
integer k, that is (DC).

Variants and interpretations

We get the same results using, instead of χ, a dual instruction χ∗, which operates on terms
instead of stacks. Consider a bijection n 7→ τn from N onto Λc and let t 7→ nt be the inverse
function. Then the reduction rule for χ∗ is the following :

χ∗ ? t.π Â t ? nt.π for every t ∈ Λc and π ∈ Π.

We have the analogue of theorem 28, the proof being a little more complicated.

Theorem 31.
Let F [x,X] be a formula with parameters, X being a unary predicate variable. There exists
U : N3 → P(Π) such that : χ∗ k−∀x{∀n(Int[n]→ F [x, U(x, n, y)/Xy])→ ∀X F [x,X]}.

For each n ∈ N we put Pn(⊥⊥) = {π ∈ Π; τn ? n.π /∈ ⊥⊥}. For each individual x, we have
k∀X F [x,X]k = S{kF [x,R/X]k; R ∈ P(Π)N}. It follows that, given x, n ∈ N such that
Pn(⊥⊥) ∩ k∀X F [x,X]k 6= ∅, there exists a function R : N→ P(Π) such that :
Pn(⊥⊥) ∩ kF [x,Ry/Xy]k 6= ∅. By the axiom of countable choice, there exists a function
U : N3 → P(Π) which has the following property :
if Pn(⊥⊥) ∩ k∀X F [x,X]k 6= ∅ then Pn(⊥⊥) ∩ kF [x, U(x, n, y)/Xy]k 6= ∅.

19

Now, let x ∈ N, π ∈ k∀X F [x,X]k and t ∈ |∀n(Int[n]→ F [x, U(x, n, y)/Xy])|. We have to
show that χ∗ ? t.π ∈ ⊥⊥ and, by the reduction rule of χ∗, it is sufficient to show that :
t ? nt.π ∈ ⊥⊥. If it is not true, we put n = nt, and therefore τn = t ; we have then :
π ∈ Pn(⊥⊥) ∩ k∀X F [x,X]k.
By definition of U , there exists π0 ∈ Pn(⊥⊥) ∩ kF [x, U(x, n, y)/Xy]k. From π0 ∈ Pn(⊥⊥), we
deduce τn ? n.π

0 /∈ ⊥⊥. But, since π0 ∈ kF [x, U(x, n, y)/Xy]k, it follows, by hypothesis on t,
that t ? n.π0 ∈ ⊥⊥, because n k− Int[sn0] (theorem 15). It is a contradiction, because t = τn.

Q.E.D.

We show, in the same way, the analogue of lemma 29. We can then realize the axioms of
denumerable and dependent choice, by a pure repetition of the above arguments, using χ∗

instead of χ.

We now remark that instructions analogous to χ and χ∗ are very common in programmation :

The ‘quote’ instruction

The reduction rule of instruction χ∗, which is :

(∗) χ∗ ? t.π Â t ? nt.π
shows that χ is very similar to the instruction quote of LISP. Indeed, nt can be used in the
same way that (quote t), if we assume that t 7→ nt is a recursive bijection from Λc onto
N. For instance, since nu is, in this case, a recursive function of ntu, we can define, by means
of χ∗, an instruction χ0 such that χ0 ? φ.ψ.π Â φ ? nψ.π : let a be a closed λ-term such that
(a)ntu 'β nu and let χ0 = λxλy(χ∗)(λd x◦a)y. As this example shows, the instruction χ∗ is
not compatible with β-reduction : in fact, we cannot replace (λd x◦a)y with x◦a.

The signature

An objection to the interpretation above is that quote is a reversible instruction, which is
almost always used with its reverse unquote or eval. On the contrary, even if we suppose
that χ (resp. χ∗) is one-to-one from Π (resp. Λc) onto N, we do not make use of the inverse
function. It is therefore more relevant (and much easier to implement) to interpret nt, in the
reduction rule (∗) above, as the signature of t : it is an integer which is computed from the
text of t and which is supposed to characterize it. Examples of well known usual programs for
signature are MD-5 (for ‘‘ Message Digest ’’) or SHA-1 (for ‘‘ Secure Hash Algorithm ’’).
Since these programs give integers of fixed length (128 bits for MD-5 and 160 bits for SHA-1),
they clearly do not provide an injective function from Λc into N. But, during the execution of
a given process, it is extremely improbable that two different terms with the same signature
occur ; therefore, we consider such an event as impossible. And it is all we need in order to
realize the axiom of dependent choice.

The clock

Here is another possible interpretation for the instructions χ and χ∗.
We observe that the application n 7→ τn may be any surjective function from N onto Λc. Then
the reduction rule of χ∗ is :

χ∗ ? t.π Â t ? n.π.

20

where n is any integer such that τn = t. This suggests the following interpretation :
χ∗ is an input instruction ; when it comes in head position, the process χ∗ ? t.π waits for an
integer n which is provided by a human operator or some external process. Then the reduction
χ∗ ? t.π Â t ? n.π takes place and the execution goes on. The only condition is that we must
be able to retrieve t from n ; in other words, the integers which are provided to the processes
χ∗ ? t.π and χ∗ ? t0.π0 with t 6= t0 must be different.
A very simple and natural way to obtain this behavior is by providing the integer n by means
of a clock, since two different λc-terms cannot appear at the same time. In other words, let us
be given a second process, which is executed in parallel with the principal process, and which
only increments an integer at each reduction step. It is this process which provides the integer
n when necessary, that is when χ∗ arrives in head position in the principal process.
For an example of a model with a clock, look at the section below : ‘‘ The standard generic
model ’’.

A program for the countable choice axiom

We give here an explicit λc-term, containing the instruction χ, which realizes the axiom of
countable choice and we explain its behaviour.

In the proof of theorem 28, we defined a function U : N3 → P(Π) (ternary predicate).
We define now the binary predicate V (x, y) by putting :

V (x, y) ≡ ∀n{
\
m<n

|{m}→ FU(x,m)|, {n}, ¬FU(x, n)→ U(x, n, y)}.

We use the notations FU(x, n) for F [x, U(x, n, y)/Xy] and FV (x) for F [x, V (x, y)/Xy] ; the
notation {m}→ FV (x,m) is defined page 3.
We propose to realize the formula FV (x) → ∀X F [x,X], which is the axiom of denumerable
choice. Now, we have :

Theorem 32 (Extensionality scheme).
i) For every formula G[X], the formula : Ext[G] ≡ ∀X{G[X] → G∗[X]} is provable in
intuitionistic second order logic, with :
G∗[X] ≡ ∀U{∀y(Xy → Uy), ∀y(Uy → Xy)→ G[Uy/Xy]}.
ii) ` λgλuλu0λvλv0((g)v◦u)u0◦v0 : Ext[G∗].

i) This is immediate, by recurrence on G.
ii) We have g : G∗[X], u : ∀y(Xy → Uy), u0 : ∀y(Uy → Xy),
v : ∀y(Uy → V y), v0 : ∀y(V y → Uy) ` v◦u : ∀y(Xy → V y), u0◦v0 : ∀y(V y → Xy),
and therefore ((g)v◦u)u0◦v0 : G[V y/Xy].

Q.E.D.

Remark. Ext[G] tells us that the formulas G and G∗ are equivalent. The λ-term which is associated

to the proof of this equivalence depends, in general, on G. It does not depend on it for formulas of the

form G∗.

Therefore we shall, in fact, realize the denumerable axiom of choice in the form :
F ∗V (x)→ ∀X F [x,X]

where F ∗V (x) is the formula F ∗[x, V (x, y)/Xy] that is to say :
∀X{∀y(V (x, y)→ Xy),∀y(Xy → V (x, y))→ F [x,X]}.

21

A trivial variant of theorem 28 gives :

χ k−∀x{∀n|{n}→ FU(x, n)|→ ∀X F [x,X]}
(we replaced Int[n] with {n}, which has the advantage to avoid the introduction of a storage
operator).
Therefore, we have now to realize : F ∗V (x)→ ∀n|{n}→ FU(x, n)|.
We have seen (theorem 21) that, if Y is the fixed point combinator of Turing, then :

Y k−∀X{∀n(
\
m<n

|Xm|→ Xn)→ ∀nXn}.

It follows that, by replacing Xn with |{n}→ FU(x, n)|, we have :

Y k−∀n(
\
m<n

|{m}→ FU(x,m)|, {n}→ FU(x, n))→ ∀n|{n}→ FU(x, n)|.

So, we must now realize : F ∗V (x),
\
m<n

|{m}→ FU(x,m)|, {n}→ FU(x, n).

By the law of Peirce, it is sufficient to realize :

F ∗V (x),
\
m<n

|{m}→ FU(x,m)|, {n},¬FU(x, n)→ FU(x, n) which is :

∀X{∀y(V (x, y)→ Xy),∀y(Xy → V (x, y))→ F [x,X]},\
m<n

|{m}→ FU(x,m)|, {n},¬FU(x, n)→ FU(x, n).

But n is now a fixed integer, so that we can put Xy ≡ U(x, n, y) ; our goal is now :
{∀y(V (x, y)→ U(x, n, y)), ∀y(U(x, n, y)→ V (x, y))→ FU(x, n)},\

m<n

|{m}→ FU(x,m)|, {n},¬FU(x, n)→ FU(x, n).

It is clearly a consequence of the two following formulas, that we have therefore to realize :\
m<n

|{m}→ FU(x,m)|, {n},¬FU(x, n)→ (V (x, y)→ U(x, n, y))\
m<n

|{m}→ FU(x,m)|, {n},¬FU(x, n)→ (U(x, n, y)→ V (x, y)).

By definition of V , it is immediate that the first formula is realized by λxλnλkλv vxnk.

Lemma 33. There exists a closed usual λ-term, denoted by Comp, such that, for every n, n0 ∈ N :
Comp nn0xyz Â x if n < n0 ; Comp nn0xyz Â y if n0 < n ; Comp nn0xyz Â z if n = n0.

Trivial.
Q.E.D.

It follows that, if we put α = (k)(x0)n and α0 = (k0)(x)n0, we have :
λxλnλkλx0λn0λk0 Compnn0αα0

k−
\
m<n

|{m}→ Xm|, {n}, ¬Xn,
\
m0<n0

|{m0}→ Xm0|, {n0}, ¬Xn0 → (Y n→ Y n0).

By replacing Xn with FU(x, n) and Y n with U(x, n, y), we see that we have realized :\
m<n

|{m}→ FU(x,m)|, {n}, ¬FU(x, n),
\
m0<n0

|{m0}→ FU(x,m
0)|, {n0}, ¬FU(x, n0)
→ (U(x, n, y)→ U(x, n0, y))

which, by the definition of V , can also be written as :

λxλnλkλuλx0λn0λk0 Compnn0αα0u
k−

\
m<n

|{m}→ FU(x,m)|, {n}, ¬FU(x, n)→ (U(x, n, y)→ V (x, y)).

22

This is exactly the desired result and we obtain finally the following term which realizes the
axiom of denumerable choice :

Theorem 34. There exists a binary predicate V : N2 → P(Π) such that :
λf(χ)(Y)λxλn(cc)λk fτ0τ1 k−∀X{∀y(V (x, y)↔ Xy)→ F [x,X]}→ ∀X F [x,X]
with τ0 = λv vxnk, τ1 = λuλx0λn0λk0 Compnn0αα0u, α = (k)(x0)n and α0 = (k0)(x)n0.

Let us look at the behaviour of the term γ = λf(χ)(Y)λxλn(cc)λk fτ0τ1. Consider a process
γ ? f.π in which γ is in head position. We have :
γ ? f.π Â χ ? Yξ.π (where ξ = λxλn(cc)λk fτ0τ1 depends only on f)
Â Yξ ? nπ.π Â ξ ? η.nπ.π (with η = Yξ). Therefore

γ ? f.π Â f ? τ fπ0 .τ fπ1 .π
with τ fπi = τi[η/x, nπ/n, kπ/k].
Now τ fπ0 is simply the triple <η, nπ, kπ>. In other words τ fπ0 stores the current state f.π at the
present execution of γ.
τ fπ1 performs the real job : it looks at two such states f.π and f 0.π0 and compare their indexes
n and n0. If n = n0 it does nothing.
If n < n0 (resp. n0 < n) it restarts with γ ? f 0.π (resp. γ ? f.π0) :
the second file with the first stack.
Thus, the main function of this program is to update files (if χ is a clock)
or to choose a good version of a file (if χ is a signature).

Non standard integers

We give here sufficient conditions in order that every generic model contains non standard
individuals. Let us define a unary predicate G by putting kGnk = {πn} (n 7→ πn is here a
one-to-one recursive function from N onto Π).

Theorem 35.
i) We suppose that :
(H⊥⊥) For each stack constant $, there exists a proof-like term ξ such that ξ ? $ ∈ ⊥⊥.
Then I k−∀xGx→ ⊥ and (∀n ∈ N)(∃ξ ∈ PL) ξ k−Gn.
ii) χ k−∀x[Int(x)→ Gx]→ ⊥.

i) We have immediately k∀xGxk = {πn; n ∈ N} = Π and therefore I k−∀xGx→ ⊥.
We are looking at some ξ ∈ PL such that ξ ? πn ∈ ⊥⊥. Now, we have πn = t0 . . . tk.$, $ being
a stack constant. By (H⊥⊥), we have some η ∈ PL such that η ? $ ∈ ⊥⊥. Il is sufficient to set
ξ = λx0 . . .λxk η.
ii) Let t k−∀x[Int(x) → Gx] and π ∈ Π, π = πn. We must show that χ ? t.π ∈ ⊥⊥ that is
t ? n.π ∈ ⊥⊥, by the reduction rule of χ. It is immediate, by hypothesis on t, since n k− Int(n)
and π ∈ kGnk.

Q.E.D.

Thus, with hypothesis (H⊥⊥), a generic model satisfies Gn for each standard integer n and also
∃x¬Gx. It contains therefore necessarily a non standard individual. If, moreover, the instruction
χ is present, it satisfies ∃x{Int(x),¬Gx}. Then, it contains necessarily non standard integers.

23

The standard generic model

Consider a fixed one-to-one recursive function ξ 7→ πξ from PL (the set of proof-like terms)
onto the set of stack constants. Every set ⊥⊥ such that (∀ξ ∈ PL) ξ ? πξ /∈ ⊥⊥ is clearly coherent,
which means that (∀ξ ∈ PL) ξ 6k−⊥.
In this section, we take for ⊥⊥ the greatest saturated set of processes which has this property. In
fact, it is simpler to consider the complement ⊥⊥c of ⊥⊥ in the set Λc ?Π of processes. Therefore,
we set :
⊥⊥c = the least subset U of Λc ? Π such that (∀ξ ∈ PL) ξ ? πξ ∈ U and
(∀p ∈ U)(∀p0 ∈ Λc ? Π)(p Â p0 ⇒ p0 ∈ U) ;

For each ξ ∈ PL, the set of processes which are obtained by reduction of ξ ? πξ will be called
the thread generated by ξ ; ⊥⊥c is thus the union of all threads. We have :

Lemma 36. A process is in ⊥⊥ if and only if it does not appear in any thread.
A term t ∈ Λc realizes ⊥ if and only if it does not come in head position in any thread.

Trivial.
Q.E.D.

Remember that T⊥⊥ is the set of closed formulas with parameters which are realized by some
proof-like term. The models of this theory (which is coherent if and only if ⊥⊥ is) are called
generic models . With this particular choice of ⊥⊥, we shall call them standard generic models.
We now show some properties of these models, with the following assumptions :
1. There is no instruction which changes the current stack constant. In other words, in the
thread generated by ξ ∈ PL, the only stack constant which appears is πξ.
2. Every instruction is deterministic, that is to say that each process has at most one successor.
We then say that execution is sequential.

Theorem 37. Let a0 = δδ0 and a1 = δδ1, with δ = λxxx. Then :
λx(cc)λk((x)(k)a0)(k)a1 k−∀x(x 6= 1, x 6= 0→ x2 6= x)→ ⊥.

There are three possible values for kn 6= 1, n 6= 0→ n2 6= nk :
if n = 0, it is k>,⊥ → ⊥k ; if n = 1, it is k⊥,>→ ⊥k ; if n 6= 0, 1, it is k>k = ∅.
It follows that |∀x(x 6= 1, x 6= 0→ x2 6= x)| = |>,⊥ → ⊥| ∩ |⊥,>→ ⊥|.
Let t ∈ |>,⊥ → ⊥| ∩ |⊥,>→ ⊥| and π ∈ Π. We must show that :
λx(cc)λk((x)(k)a0)(k)a1 ? t.π ∈ ⊥⊥ that is t ? kπa0.kπa1.π ∈ ⊥⊥. If it is not true, by hypothesis
on t, we have kπa0, kπa1 6k−⊥. Therefore, both terms appear in head position in some thread ;
since they both contain the stack constant at the bottom of π, these thread are the same one
(by hypothesis 1 above). But then a0 and a1 appear in head position in the same thread. Now,
by hypothesis 2, one of them appears in head position before the other, for instance a0. But it
is clear that a1 can never come in head position after that.

Q.E.D.

The formula ∃x∃y{x2 = x, x 6= 0, x 6= 1} is therefore satisfied in the generic model. Thus,
there are individuals which are not integers and the axiom of recurrence is not satisfied. We
shall see later that there are also non standard integers.
Let B be the set of individuals x such that x2 = x. Since all equational formulas which are true
in N are also true in generic models, it is clear that B is a Boolean algebra, which is therefore
6= {0, 1}. We now show that B is, indeed, infinite and even atomless.

24

Theorem 38. Let Θ = λxλyccλk((x)(k)y0)((x)(k)y1)(k)y2. Then we have :
Θ k−∀x[∀y(xy 6= 0, xy 6= x→ y2 6= y), x 6= 0→ x2 6= x]
(This formula says that the Boolean algebra B is atomless).

By a simple computation, we see that we must show the following two properties :
i) Θ k− (⊥,⊥ → ⊥),⊥ → ⊥.
ii) Θ k− |>,⊥ → ⊥| ∩ |⊥,>→ ⊥|,>→ ⊥.
Proof of (i) : let t ∈ |⊥,⊥ → ⊥| and u ∈ |⊥|. We have to show that Θ ? t.u.π ∈ ⊥⊥ that
is, by reduction, t ? kπu0.((t)(kπ)u1)(kπ)u2.π ∈ ⊥⊥. But, from u k−⊥, we easily deduce that
kπuξ k−⊥ for every ξ ∈ Λc. Since t k−⊥,⊥ → ⊥, it follows that ((t)(kπ)u1)(kπ)u2 k−⊥ and
therefore t ? kπu0.((t)(kπ)u1)(kπ)u2.π ∈ ⊥⊥.
Proof of (ii) : let t ∈ |>,⊥ → ⊥| ∩ |⊥,> → ⊥| and u ∈ Λc. Again, we have to show that
t ? kπu0.((t)(kπ)u1)(kπ)u2.π ∈ ⊥⊥. If it is not true, we have :
kπu0 6k−⊥ (because t k−⊥,> → ⊥) and ((t)(kπ)u1)(kπ)u2 6k−⊥ (because t k−>,⊥ → ⊥).
But, since t k−⊥,>→ ⊥ (resp. >,⊥ → ⊥), we deduce kπu1 6k−⊥ (resp. kπu2 6k−⊥).
It follows that kπu0, kπu1, kπu2 appear all in head position in some thread. Since they contain
kπ, these threads are the same (their stack constant is the one of π). Suppose, for example, that
kπu0 appears first in head position, then kπu1, and then kπu2. We have thus :
kπu0 ? π0 Â u ? π Â · · · Â kπu1 ? π1 Â u ? π Â · · · Â kπu2 ? π2 Â u ? π Â · · ·
But such an execution is clearly impossible because, at the second appearance of the process
u ? π, we enter in a loop and can never arrive at kπu2 ? π2.

Q.E.D.

The generic thread

Consider a fixed one-to-one recursive function n 7→ ξn from N onto PL. We define a unary
predicate P by taking for kPnk the set of stacks the bottom constant of which is πξn .

Theorem 39. In the generic model, ¬P contains exactly one individual and it is not a standard
integer. In other words, the following formulas are realized :
i) Pn for each n ∈ N ;
ii) ∀xPx→ ⊥ ;
iii) ∀x∀y[¬Px, x 6= y → Py].

i) Let n ∈ N be such that δδ0 6k−Pn and δδ1 6k−Pn. Thus, there exist ρ0, ρ1 ∈ Π which have
the same stack constant πξn , such that δδ0 ? ρ0 /∈ ⊥⊥ and δδ1 ? ρ1 /∈ ⊥⊥. We have therefore
ξn ? πξn Â δδ0 ? ρ0 and ξn ? πξn Â δδ1 ? ρ1, which is clearly impossible.
ii) We have k∀xPxk = Sn∈N kPnk = Π. Therefore I k−∀xPx→ ⊥.
iii) We show, by means of theorem 9, that V λxλy y k−∀x∀y[¬Px, x 6= y → Py] that is to
say V λxλy y k−¬Pm,m 6= n → Pn for m,n ∈ N. So, let π ∈ kPmk, t k−m 6= n and
π0 ∈ kPnk ; we must show that λxλy y ? kπ.t.π0 ∈ ⊥⊥. It is obvious if m 6= n, since then the
stacks π and π0, which have different stack constants, cannot appear both in the same thread.
If m = n, we have t k−⊥, which give the desired result, because λxλy y ? kπ.t.π0 Â t ? π0.

Q.E.D.

We now add to λc-calculus an instruction σ with the following reduction rule :
σ ? t.π Â t ? n.π

where n is the number of the stack constant of π (this constant is therefore πξn).

25

Theorem 40. σ k−∀x[Int(x)→ Px]→ ⊥.

In the generic model, the unique individual which satisfies ¬Px is therefore an integer. By
theorem 39, it is a non standard integer.
Proof. Let t k−∀x[Int(x)→ Px] and π ∈ Π. We must show that σ ? t.π ∈ ⊥⊥ ; it is sufficient
to prove that t ? n.π ∈ ⊥⊥, n being the number of the stack constant of π. Therefore, we have
π ∈ kPnk and t k− Int(n)→ Pn. Hence the result, since n k− Int(n).

Q.E.D.

We can therefore add to our second order language a symbol of constant g (for generic), with
the following axioms :
Int(g), ∀x[x 6= g↔ Px], g 6= n for each integer n.
The predicate Px will be denoted by x 6= g ; thus kn 6= gk is, for each integer n, the set of
stacks which have πξn as their stack constant.
It is interesting to study the properties of the (non standard) proof-like λc-term ξg and of the
thread ξg ? πξg , which will be, rather naturally, called the generic thread.

Remark. With the help of the instruction σ, we can therefore prove the existence of a non standard
integer. By means of the second fixed point theorem of λ-calculus, we can do without this instruction,
but we have a somewhat weaker result :

Theorem 41. (∀θ ∈ PL) θ 6k−∀x[Int(x)→ Px].

Let∆ : N→ N be the recursive function defined by∆m = n⇔ ξn = ξmm and let δ be a closed λ-term
which represents this function. We define the integers p, q by setting ξp = λx(θ)(δ)x and q = ∆p. We
have therefore ξq ? πξq = ξpp ? πξq Â θ ? δp.πξq , which shows that θ ? δp.πξq /∈ ⊥⊥.
Now, we have πξq ∈ kPqk and, by theorem 15, δp k− Int(q). It follows that θ 6k− Int(q)→ Pq.

Q.E.D.

The clock

With the present definition of ⊥⊥, in order to add a new instruction ι, it is sufficient to give its
reduction rule only when it comes in head position in a thread. Indeed, ⊥⊥ is the complement
of the union of all threads and the only condition it has to satisfy is to be cc-saturated (see
the section ‘‘ Truth values and types ’’). It is therefore sufficient to define each thread, i.e. the
sequence of processes obtained by the execution of ξ ? πξ , for each proof-like term ξ (possibly
containing the instruction ι).
It is in this way that we define the clock instruction . Its reduction rule is
?t.π Â t?n.π where n ∈ N is obtained in the following way : let ξ ?πξ be the (unique) thread

in which the process ?t.π appears. Then n is the number of reduction steps from ξ ?πξ (‘‘ the
boot ’’) to ? t.π (if ? t.π appears more than once in the thread ξ ? πξ, we consider its first
appearance ; notice that, in this case, the execution ends in a loop).

Definition. A proof-like term θ will be called strongly solvable iff θ k−⊥ → ⊥. In other words :
for every t ∈ Λc \ PL, if θ ? t comes in head position in a thread, then t also comes in head
position in this thread.
When θ is a closed usual λ-term, this means that it has a head normal form which is λxxt1 . . . tn
(hence the terminology ‘‘ strongly solvable ’’).

The following theorem shows that every standard strongly solvable proof-like term comes in head
position in the generic thread.

26

Theorem 42. Let θ be a strongly solvable proof-like term and φθ : N2 → {0, 1} the recursive
function such that : φθ(n, p) = 1 ⇔ θ comes in head position in the thread ξp ? πξp at the
(n+ 4)-th step. Then λxλy(θ)(y)x k−∀p{∀n[Int(n)→ φθ(n, p) 6= 1]→ p 6= g}
(in other words, ∃n{Int(n),φθ(n, g) = 1}).

Let p ∈ N, π ∈ kp 6= gk and t k−∀n[Int(n) → φθ(n, p) 6= 1]. We prove the result by
contradiction : suppose that λxλy(θ)(y)x ? t.π /∈ ⊥⊥. Therefore, this process appears in a
thread, which is certainly ξp ? πξp since π ∈ kp 6= gk. We have thus :
ξp ? πξp Â λxλy(θ)(y)x ? t.π Â θ ? tn.π, where the integer n, which is provided by , is
the number of steps in the reduction of ξp ? πξp until λxλy(θ)(y)x ? t.π. Thus, we obtain
θ ? tn.π at the (n+4)-th step of reduction. Since θ is in head position at this moment, we have
φθ(n, p) = 1. By hypothesis on t, it follows that tn k−⊥. Now, by hypothesis, θ k−⊥ → ⊥
and therefore θ ?tn.π ∈ ⊥⊥. It is a contradiction, because θ ?tn.π appears in the thread ξp ?πξp .

Q.E.D.

Corollary 43. Let θ be a proof-like term such that θm̂ is strongly solvable for each integer m
(with m̂ = sm0) and let ψθ : N3 → {0, 1} be the recursive function defined by ψθ(m,n, p) = 1
iff θm̂ comes in head position at the (n+ 4)-th step in the thread ξp ? πξp . Then we have :
Tλm λxλy(θm)(y)x k−∀p∀m{Int(m), ∀n[Int(n)→ ψθ(m,n, p) 6= 1]→ p 6= g}
(in other words ∀m(Int(m)→ ∃n{Int(n),ψθ(m,n, g) = 1})).
It means that the following formula is realized : ‘‘ for every integerm, θm̂ comes in head position
in the generic thread ξg ? πξg ’’. Therefore also the formula : ‘‘ the generic thread neither stops
nor loops ’’ (take, for instance, θ = λxλy y).

Proof. By theorem 10, it is sufficient to prove that, for every integers m, p and every stack
ρ ∈ k∀n[Int(n)→ ψθ(m,n, p) 6= 1]→ p 6= gk, we have :
λm λxλy(θm)(y)x ? m̂.ρ ∈ ⊥⊥, that is λxλy(θm̂)(y)x ? ρ ∈ ⊥⊥. But this results from
theorem 42 and from the fact that ψθ(m,n, p) = φθm̂(n, p).

Q.E.D.

The denumerable axiom of choice

Here we check that, by means of the clock instruction , we can realize the axiom of denumerable
choice.

Theorem 44. Let F [x,X] be a formula with parameters, X being a unary predicate variable.
There exists Φ : N4 → P(Π) such that :
k−∀x∀p∀X{∀n(Int[n], F [x,Φ(n, p, x, y)/Xy]→ ⊥), F [x,X]→ p 6= g}.

We define v : N2 → Λc by putting : v(n, p) = the λc-term u which is in second position in the
stack, at the n-th execution step in the thread ξp ? πξp . At the n-th step of this execution, we
have therefore a process of the form τ ? t.u.π.
We define now Φ(n, p, x, y), by means of the denumerable axiom of choice, in such a way that :

If there exists X : N→ P(Π) such that v(n, p) k−F [x,X]
then v(n, p) k−F [x,Φ(n, p, x, y)/Xy].

We show that Φ has the desired property : consider x, p ∈ N, an application X : N → P(Π),
λc-terms t, u such that t k−∀n(Int[n], F [x,Φ(n, p, x, y)/Xy]→ ⊥), u k−F [x,X] and a stack

27

π ∈ kp 6= gk. Then, we have to show that ? t.u.π ∈ ⊥⊥ ; suppose, on the contrary, that
? t.u.π appears in a thread, at the n-th step. By hypothesis on π, this thread is ξp ? πξp ;

we have therefore u = v(n, p), by definition of v, hence v(n, p) k−F [x,X]. By definition of
Φ, we have then u = v(n, p) k−F [x,Φ(n, p, x, y)/Xy]. But, since n k− Int[n], it follows that
t ? n.u.π ∈ ⊥⊥, by hypothesis on t. It is a contradiction, because this process appears at the
(n+ 1)-th step in the thread ξp ? πξp .

Q.E.D.

It follows that the generic model satisfies the formula :
∀x∀X(F [x,X]→ ∃n{Int[n], F [x,Φ(n, g, x, y)/Xy]}). We can then define the binary predi-
cate Ψ(x, y) by the formula :
‘‘ Φ(n, g, x, y) for the first integer n such that F [x,Φ(n, g, x, y)/Xy], or ⊥ if there is no such
integer ’’. Then, we have, in the generic model :
∀x∀X(F [x,X]→ F [x,Ψ(x, y)/Xy]), which gives the denumerable axiom of choice.
By the same methods as above, we can also easily get the axiom of dependent choice.

References

[1] T. Coquand. A semantics of evidence for classical arithmetic.
J. Symb. Log. 60, p. 325-337, 1995.
[2] T. Griffin. A formulæ-as-type notion of control.
Conf. Record of the 17th A.C.M. Symp. on Principles of Programming Languages, 1990.
[3] J.-L. Krivine. A general storage theorem for integers in call-by-name λ-calculus.
Th. Comp. Sc. 129, p. 79-94, 1994.
[4] J.-L. Krivine. Typed lambda-calculus in classical Zermelo-Fraenkel set theory.
Arch. Math. Log. 40, 3, p. 189-205, 2001.
[5] J.-L. Krivine. Dependent choice, ‘quote’ and the clock.
Th. Comp. Sc. 308, p. 259-276, 2003.

My papers are at http://www.pps.jussieu.fr/~krivine/

28

