
HAL Id: hal-00154478
https://hal.science/hal-00154478

Submitted on 13 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dependent choice, ‘quote’ and the clock
Jean-Louis Krivine

To cite this version:
Jean-Louis Krivine. Dependent choice, ‘quote’ and the clock. Theoretical Computer Science, 2003,
308 (1-3), pp.259-276. �10.1016/S0304-3975(02)00776-4�. �hal-00154478�

https://hal.science/hal-00154478
https://hal.archives-ouvertes.fr

Dependent choice, ‘quote’ and the clock

Jean-Louis Krivine
University Paris VII, C.N.R.S.

Equipe Preuves, programmes et systèmes

2 Place Jussieu 75251 Paris cedex 05, France

e-mail krivine@pps.jussieu.fr

September 29, 2002

Introduction

When using the Curry-Howard correspondence in order to obtain executable programs
from mathematical proofs, we are faced with a difficult problem : to interpret each axiom
of our axiom system for mathematics (which may be, for example, second order classical
logic, or classical set theory) as an instruction of our programming language. This problem
has been solved for the axiom of excluded middle by T. Griffin[5], who found that it can
be interpreted by means of control instructions like call-with-current-continuation
in SCHEME, catch and throw in LISP or try ... with ... in CAML. The solu-
tion for the comprehension axiom scheme for second order logic was essentially given by
G. Takeuti[14], who gave a formulation of this scheme by means of an elimination rule of
the second order universal quantifier, and J.Y. Girard who showed in [4] that this rule
can be interpreted by the identity instruction λxx.
In [11], this problem is solved for the axioms of classical Zermelo-Fraenkel set theory, with
the axiom of foundation, but without the axiom of choice.

Indeed the problem remains for the axiom of choice, which is essential in many proofs.
In most cases, we know how to avoid it, but at the price of much longer proofs. The
weaker axiom of countable choice is fundamental in calculus, measure theory, . . . (this
very important part of mathematics which can be formalized in second order classical
logic). It is certainly unavoidable.

In this paper, we give an interpretation of the axiom of countable choice (and even the
slightly stronger axiom of dependent choice) in classical second order logic, as a program-
ming instruction. Using the results of [11], the same method applies indeed in ZF set
theory. Our solution is to introduce a new instruction in λ-calculus, which uses an enu-
meration of λ-terms. We give two different computational interpretations and in fact
implementations, for this instruction : the first is similar to the quote instruction of LISP
and the second is given in terms of a clock.
Such an instruction is rather difficult to handle, because it is incompatible with β-
reduction. Therefore, we must set very precisely our framework in order to be able to

1

give it a type.
This is done in the next section ; we use essentially the same framework as in [11]. Then
we give the interpretation of the axioms of countable and dependent choice in terms of
the new instruction. In the last section, we apply this method to first order arithmetical
formulas which are provable in classical analysis with choice, in the spirit of the no-
counter-example interpretation of G. Kreisel. We use the ideas about game semantics for
proofs of such formulas which have been developed in [3].

Other computational interpretations of the countable axiom of choice have been given
in [1], and recently in [2]. It would be interesting to understand the relation with the
present paper.

I want to thank Thierry Coquand and the referee for their very pertinent observations ;
and Vincent Danos for an uncountable number of helpful and stimulating discussions.

We now define our programming langage : the λc-calculus, an extension of the λ-calculus
with a control instruction and continuations, which is suitable for classical logic.

The λc-calculus

We have countably many λ-variables x, y, . . . and stack constants π0,π1, . . ., and we define
recursively and simultaneously the set Λc of λc-terms and the set Π of stacks. A stack
is a finite sequence t1 . . . tn.ρ of closed λc-terms t1, . . . , tn, ended with a stack constant ρ
which is called the bottom of the stack. The λc-term t1 is called the top of the stack, n is
its length.
The λc-terms are built according to the following rules :
1) A λ-variable is a λc-term.
2) If t, u are λc-terms (t)u (also denoted by tu) is a λc-term.
3) If t is a λc-term and x a λ-variable, λx t is a λc-term.
4) The constant cc is a (closed) λc-term.
5) Each stack π gives, in an injective way, a λ-constant denoted by kπ, which is a

(closed) λc-term. It is called the continuation associated with π.

The set of closed λc-terms will be denoted by Λ
0
c . Given a stack π = t1 . . . tn.ρ and a

closed λc-term t, we denote by t.π the stack t.t1 . . . tn.ρ obtained by pushing t on the top
of π.

Given the λc-terms t, u1, . . . , un, we denote by (t)u1 . . . un or even by tu1 . . . un the λc-term
(. . . ((t)u1)u2 . . .)un, obtained by giving to t the arguments u1, . . . , un.

Execution of processes

Λ0c×Π is called the set of processes. Thus, a process is a pair, denoted by t ? π, where t is
a closed λc-term and π is a stack ; t is called the head of the process.
A process can be performed, a λc-term alone cannot. At each time, the head is the active
part of the process, i.e. the part which is executed. Thus, there are four rules of execution,
because the head of the process may have one of the forms (2), (3), (4) or (5). The rules
are the following, with π, π0 ∈ Π and t, u ∈ Λ0c :

2

tu ? π Â t ? u.π (push) cc ? t.π Â t ? kπ.π (store the stack)

λx t ? u.π Â t[u/x] ? π (pop) kπ ? t.π
0 Â t ? π (restore the stack)

Remark. For example, when t is an ordinary closed λ-term and π is a stack constant,
then the reduction of the process t ? π is essentially the weak head reduction of t.

Now, let ⊥⊥ be a fixed cc-saturated set of processes, i.e. with the property :
If t ? π ∈ ⊥⊥ and t0 ? π0 Â t ? π then t0 ? π0 ∈ ⊥⊥.

A truth value is a subset of Λ0c of the form P⊥ for any P ⊂ Π, where :
P⊥ = {t ∈ Λ0c ; (∀π ∈ P) t ? π ∈ ⊥⊥}.

The set of truth values is denoted by <⊥⊥ or simply < if there is no ambiguity. The truth
value of a formula, defined below, will be the set of λc-terms which realize this formula.

Typing in classical second order logic

Types are usual formulas of second order logic, written with the only logical symbols
→, ∀ and some fixed function symbols on individuals, taken in a set L (the language).
First order (also called individual) variables are denoted by lower case letters x, y, . . . and
second order (also called predicate) variables by upper case letters X,Y, . . . Each second
order variable has an arity in N. Variables of arity 0 are also called propositional variables.
Notations : F0 → (F1 → . . .→ (Fn → G) . . .) is denoted by F0, F1, . . . , Fn → G.
⊥ is defined as ∀XX ; ¬F as F → ⊥ ;
F ∨G as ∀X[(F → X), (G→ X)→ X] ;
F ∧G as ∀X[(F,G→ X)→ X] ;
∃X F [X] as ∀Y {∀X(F [X]→ Y)→ Y } ; ∃xF [x] as ∀Y {∀x(F [x]→ Y)→ Y } ;
(Y is a propositional variable, X has an arbitrary arity).
x = y as ∀X(Xx→ Xy).
We shall use the notation ∃X{F1[X], . . . , Fk[X]} for the formula :
∀Y {∀X(F1[X], . . . , Fk[X]→ Y)→ Y } and the same for the first order quantifier.
Let x1, . . . , xk be individual variables and X a k-ary predicate variable. For any formulas
A and F we define A[F/Xx1 . . . xk] by induction on A :

If X is not free in A, then A[F/Xx1 . . . xk] is A.
If A is X(t1, . . . , tk) then A[F/Xx1 . . . xk] is F [t1/x1, . . . , tk/xk].
(A→ B)[F/Xx1 . . . xk] is A[F/Xx1 . . . xk]→ B[F/Xx1 . . . xk].
(∀y A)[F/Xx1 . . . xk] is ∀y A[F/Xx1 . . . xk].
(∀Y A)[F/Xx1 . . . xk] is ∀Y A[F/Xx1 . . . xk] if Y is a predicate variable 6= X
(as usual, y and Y are assumed not to be free in F).

If F is atomic of the form R(x1, . . . , xk), where R is either a k-ary second order variable
or a parameter (R ∈ P(Π)Mk

), we shall also write A[R/X] instead of A[F/Xx1 . . . xk].

The deduction rules for classical second order logic are given below, together with the
typing rules for λc-terms ; in an expression like ‘ t : A ’, t is a λc-term and A a type, that
is a second order formula. Let Γ denote x1 : A1, . . . , xn : An (a context).

1. Γ ` xi : Ai (1 ≤ i ≤ n)
2. Γ ` t : A→ B, Γ ` u : A ⇒ Γ ` tu : B.
3. Γ, x : A ` t : B ⇒ Γ ` λx t : A→ B.

3

4. Γ ` t : (A→ B)→ A ⇒ Γ ` cc t : A.
5. Γ ` t : A ⇒ Γ ` t : ∀xA (resp. ∀X A) if x (resp. X) is not free in Γ.
6. Γ ` t : ∀xA ⇒ Γ ` t : A[τ/x] for every term τ of L.
7. Γ ` t : ∀X A ⇒ Γ ` t : A[F/Xx1 . . . xk] for any formula F .
Rule 4 uses Griffin’s interpretation of the law of Peirce.
Rule 7 uses the Takeuti-Girard interpretation of the comprehension scheme.

A λc-term is called proof-like if it contains no continuation. Clearly, every λc-term which
is typed in this system is proof-like.

Models and realizability

A model M is a set M of individuals (the domain of variation of first order variables),
together with an interpretation fM :Mk →M for each k-ary function symbol f of L. It
is also given a set ⊥⊥ of processes, which is cc-saturated.
The domain of variation of k-ary second order variables is P(Π)Mk

(Π is the set of stacks).
Let A be a closed second order formula with parameters inM (first order parameters) and
in P(Π)Mk

(second order k-ary parameters). Its truth value, defined below, is denoted by
|A|. Indeed, we have |A| = kAk⊥ for a certain set of stacks kAk (intuitively, kAk is an
interpretation of the negation of A). Now, what we must really define is kAk, which is
done by induction on A :

If A is atomic, i.e. R(t1, . . . , tk), then t1, . . . , tk are closed terms with parameters in
M and R ∈ P(Π)Mk

is a second order k-ary parameter. Let ai ∈ M be the value of ti ;
then we set kR(t1, . . . , tk)k = R(a1, . . . , ak) ⊂ Π.
The other steps of the induction are :

kA→ Bk = {t.π ; t ∈ |A|, π ∈ kBk} ;
k∀xAk =

[
a∈M

kA[a/x]k ; (it follows that |∀xA| =
\
a∈M

|A[a/x]|) ;

k∀X Ak =
[
{kA[R/X]k; R ∈ P(Π)Mk} if X is a k-ary predicate variable

(it follows that |∀X A| =
\
{|A[R/X]|; R ∈ P(Π)Mk}).

We have k⊥k = Π, and thus |⊥| is the least truth value. There is a greatest truth value,
denoted by > which is ∅⊥ = Λ0c (the set of all closed λc-terms). We can consider > as a
propositional constant with k>k = ∅.
Remark. We have |⊥| = ∅ ⇔ ⊥⊥ = ∅.
Indeed, if ⊥⊥ = ∅, then |⊥| = {t ∈ Λ0c ; (∀π ∈ Π) t ? π ∈ ⊥⊥} = ∅. Conversely, if ⊥⊥ 6= ∅,
take t ? π ∈ ⊥⊥. Then kπt ∈ |⊥| since kπt ? π0 Â t ? π.
Notice that, if ⊥⊥ = ∅, the set of truth values is < = {∅,Λ0c} = {⊥,>} and we have the
ordinary notion of model.

We say that t realizes A (notation : t k−A) if t ∈ |A| i.e. (∀π ∈ kAk) t ? π ∈ ⊥⊥.
The next theorem says that realizability is compatible with classical deduction. It will be
used repeatedly in the following.

Theorem 1 (Adequation lemma). Let A1,. . . , Ak, A be closed formulas such that
x1 : A1, . . . , xk : Ak ` t : A is obtained with the above rules of deduction. If ti k−Ai for
1 ≤ i ≤ k, then t[t1/x1, . . . , tk/xk] k−A.

4

In particular, if A is a closed formula and if we can deduce ` t : A, then t k−A.
We state as a lemma a somewhat stronger and more complicated form of this theorem,
which is suitable for an inductive proof.

Lemma 2.
Let A1, . . . , Ak, A be formulas, the free variables of which are among y1, . . . , ym, Y1, . . . , Yn.

Let bi ∈ M (1 ≤ i ≤ m) and Pj ∈ P(Π)Mkj
(1 ≤ j ≤ n), where kj is the arity of Yj.

Suppose that x1 : A1, . . . , xk : Ak ` t : A is obtained with the above rules of deduction.
If ti k−Ai[b1/y1, . . . , bm/ym, P1/Y1, . . . , Pn/Yn] for 1 ≤ i ≤ k, then
t[t1/x1, . . . , tk/xk] k−A[b1/y1, . . . , bm/ym, P1/Y1, . . . , Pn/Yn].
We prove this lemma by induction on the length of the derivation of Γ ` t : A (Γ being
the context x1 : A1, . . . , xk : Ak). We shall use the notations t

0 for t[t1/x1, . . . , tk/xk], and
A0 for A[b1/y1, . . . , bm/ym, P1/Y1, . . . , Pn/Yn]. We consider the last rule used (the case of
rule 1 is trivial) :

If it is rule 2, we have t = uv and Γ ` u : A→ B, v : A. We want to show that t0 ∈ |B0|,
that is u0v0 ? π ∈ ⊥⊥ for every π ∈ kB0k. But u0v0 ? π Â u0 ? v0.π and the result follows
since, by the induction hypothesis, we have u0 ∈ |A0 → B0| and v0 ∈ |A0| and therefore
v0.π ∈ kA0 → B0k.
If it is rule 3, we have t = λxu, A = B → C and Γ, x : B ` u : C. We want to show
that λxu0 ∈ |B0 → C 0|, that is λxu0 ? π ∈ ⊥⊥ for any π ∈ kB0 → C 0k. Now, we have
π = v.$ with v ∈ |B0| and $ ∈ kC 0k. By the induction hypothesis, u0[v/x] k−C 0 and
thus u0[v/x] ? $ ∈ ⊥⊥. Therefore, λxu0 ? v.$ ∈ ⊥⊥, since ⊥⊥ is cc-saturated.
If it is rule 4, we have t = (cc)u and Γ ` u : (A → B) → A. We want to show that
t0 ∈ |A0|, that is (cc)u0 ? π ∈ ⊥⊥ for any π ∈ kA0k. Since ⊥⊥ is cc-saturated, it suffices to
show that u0 ? kπ.π ∈ ⊥⊥. Now, we prove that kπ ∈ |A0 → B0| : indeed, if v ∈ |A0| and
ρ ∈ kB0k, then kπ ? v.ρ Â v ? π ∈ ⊥⊥.
By the induction hypothesis, we know that u0 ∈ |(A0 → B0)→ A0|, so the result follows.
If it is rule 5 with a first order variable x, we have A = ∀xB and Γ ` t : B. By the
induction hypothesis, we have t0 ∈ |B0[a/x]| for every a ∈M . Thus t0 ∈ Ta∈M |B0[a/x]| =
|∀xB0| = |A0|.
If it is rule 5 with a second order variable X of arity p, we have A = ∀X B and Γ ` t : B.
By the induction hypothesis, we have t0 ∈ |B0[R/X]| for every R ∈ P(Π)Mp

. Thus
t0 ∈ |∀X B0| = |A0|.
If it is rule 6, we have A = B[τ/x] and Γ ` t : ∀xB. By the induction hypothesis, we get
t0 ∈ |∀xB0|. Now, if a is the value of τ in M , then |B0[τ/x]| = |B0[a/x]| ⊃ |∀xB0| and
thus t ∈ |B0[τ/x]| = |A0|.
If it is rule 7, we have A = B[Φ(z1, . . . , zp)/Xz1 . . . zp] so that :
A0 = B0[Φ0(z1, . . . , zp)/Xz1 . . . zp]. We have Γ ` t : ∀X B and we must show that t0 ∈ |A0|.
By the induction hypothesis, we know that t0 ∈ |∀X B0| and the result follows from
lemma 3.
q.e.d.

Lemma 3. Let Φ (resp. A) be a formula with parameters with the only free variables
z1, . . . , zp (resp. X of arity p). Define R ∈ P(Π)Mp

by :

5

R(a1, . . . , ap) = kΦ[a1/z1, . . . , ap/zp]k for every a1, . . . , ap ∈M .
Then kA[Φ/Xz1 . . . zp]k = kA[R/X]k and therefore :
kA[Φ/Xz1 . . . zp]k ⊂ k∀X Ak and |∀X A| ⊂ |A[Φ/Xz1 . . . zp]|.
We prove kA[Φ/Xz1 . . . zp]k = kA[R/X]k by induction on the length of A.
It is trivial if X is not free in A, if A is atomic, or if A = B → C.

If A = ∀xB then kA[Φ/Xz1 . . . zp]k =
S
a∈M kB[Φ/Xz1 . . . zp][a/x]k

=
S
a∈M kB[a/x][Φ/Xz1 . . . zp]k =

S
a∈M kB[a/x][R/X]k by induction hypothesis

=
S
a∈M kB[R/X][a/x]k = k∀xB[R/X]k = kA[R/X]k.

If A = ∀Y B, with Y of arity q and Y 6= X, then :
kA[Φ/Xz1 . . . zp]k =

S{kB[Φ/Xz1 . . . zp][S/Y]k; S ∈ P(Π)Mq}
=
S{kB[S/Y][Φ/Xz1 . . . zp]k; S ∈ P(Π)Mq}

=
S{kB[S/Y][R/X]k; S ∈ P(Π)Mq} by induction hypothesis

=
S{kB[R/X][S/Y]k; S ∈ P(Π)Mq} = k∀Y B[R/X]k = kA[R/X]k.
q.e.d.

Second order arithmetic

From now on, the set of individuals is N and we suppose that, for each recursive function
φ : Nk → N, there is a k-ary function symbol fφ in the language L, which is, of course,
interpreted by φ in the model. We shall write φ instead of fφ, which will cause no problem.
There is no other function symbol and therefore, the model is completely defined as soon
as we have chosen the set ⊥⊥.
Let F be a closed formula. We say that F is realized if there is a proof-like λc-term t such
that t k−F for every choice of ⊥⊥. By theorem 1 :
The set of realized formulas is closed under deduction in classical second order logic.

Theorem 4. i) Let a, b ∈ N. Then :
ka = bk = {t.π; t ∈ Λ0c ,π ∈ Π} = k>→ ⊥k if a 6= b
ka = bk = {t.π; t ∈ Λ0c ,π ∈ Π, t ? π ∈ ⊥⊥} = k∀X(X → X)k if a = b.
ii) Every equational formula : ∀x1 . . . ∀xk[τ(x1, . . . , xk) = τ 0(x1, . . . , xk)] where τ and τ 0

are terms of L, which is true in N, is realized by the λ-term I = λxx.

i) Trivial, by definition of the formula a = b which is ∀X(Xa→ Xb).
ii) Easy consequence of (i).
q.e.d.

The axioms of second order Peano arithmetic (denoted by PA2) can be given in the
following way in L, with a constant symbol 0, two unary function symbols s (the successor
function) and p (the predecessor function), and two binary symbols +, ∗ :
1. s0 6= 0 ; p0 = 0 ; ∀x(psx = x) ; ∀x(x+ 0 = x) ; ∀x(x ∗ 0 = 0) ;
∀x∀y(x+ sy) = s(x+ y) ; ∀x∀y(x ∗ sy) = x ∗ y + x ;
2. ∀x Int[x] where Int[x] ≡ ∀X{∀y(Xy → Xsy), X0→ Xx}.
Formula 2 is the axiom of recurrence ; Int[x] reads as “ x is an integer ”.
It is easy to check that axioms 1 are realized ; indeed :

6

by theorem 4(i) we get |s0 6= 0| = |(>→ ⊥)→ ⊥| and therefore λx(x)t k− s0 6= 0 for any
t ∈ Λ0c . Other axioms 1 are equational formulas, and are realized by I, by theorem 4(ii).

Strangely enough, axiom 2 is not realized in general : indeed, it is generally impossible to
find a proof-like λc-term which realizes simultaneously Int[0] and Int[s0], not to speak of
∀x Int[x]. Moreover, in most interesting models, the negation of axiom 2 is realized by a
proof-like λc-term.
But our aim is, given a theorem Θ of PA2, i.e. a consequence of axioms 1 and 2, to
find properties of any λc-term t built with a proof of Θ. In order to use realizability, we
want to get rid of the axiom of recurrence. This can be done by the following well known
property :

Any proof of Θ in second order classical logic, using axioms 1 and 2, and any set E of
equational formulas of L true in N, can be transformed into a proof of ΘInt using axioms 1,
E and the following :
3. ∀x1 . . .∀xk{Int[x1], . . . , Int[xk]→ Int[f(x1, . . . , xk)]} for each function symbol f of L.
ΘInt is the formula obtained by restricting to Int all first order quantifiers of Θ. It is
inductively defined as follows :

If A is atomic, AInt ≡ A ; (A→ B)Int ≡ AInt → BInt ;
(∀X A)Int ≡ ∀X AInt ; (∀xA)Int ≡ ∀x(Int[x]→ AInt).

Therefore, it now remains to prove the following :

Theorem 5. Let f be a k-ary function symbol of L (i.e. representing a recursive func-
tion). Then the formula ∀x1 . . .∀xk{Int[x1], . . . , Int[xk]→ Int[f(x1, . . . , xk)]} is realized.
We first need a result about usual λ-calculus. We will use the following :

Notations.
Λ is the set of usual λ-terms. If t, u ∈ Λ, then t 'β t

0 means that t is β-equivalent to t0 ;
t Â t0 means that t reduces to t0 by weak head reduction : one step of weak head reduction
is (λxu)vv1 . . . vn Â (u[v/x])v1 . . . vn.
The following lemma explains why we use the same symbol Â for weak head reduction of
ordinary λ-terms and execution of processes.

Lemma 6.
Let ξ, η, t1, . . . , tk ∈ Λ be closed ordinary λ-terms and π ∈ Π. If η is not an application
(i.e. η is a λ-constant or η = λx η0) and if ξ Â (η)t1 . . . tk, then ξ ? π Â η ? t1.tk.π.

The proof is by induction on the length of the weak head reduction ξ Â (η)t1 . . . tk. The
first step is ξ = (λy u)vv1 . . . vn Â (u[v/y])v1 . . . vn and, by induction hypothesis :
(u[v/y])v1 . . . vn ? π Â η ? t1.tk.π. Now, the first n − 1 steps of reduction from the
left-hand side concern some application ; since η is not an application, we have not yet
reached the right-hand side after these steps. Therefore, we have :
(u[v/y]) ? v1 . . . vn.π Â η ? t1.tk.π. Thus :
ξ ? π = (λy u)vv1 . . . vn ? π Â (u[v/y]) ? v1 . . . vn.π Â η ? t1.tk.π.
q.e.d.

Notations.
For t, u ∈ Λc we define :

7

(t)nu for n ∈ N by : (t)0u = u, (t)n+1u = (t)(t)nu.
t◦u by λx(t)(u)x, where x does not appear in t, u.

Lemma 7. Let f, a be λ-constants and ξ ∈ Λ such that ξ 'β (f)
na. Suppose that

φ k−∀y(Xy → Xsy) and α k−X0. Then ξ[φ/f,α/a] k−Xsn0.
Proof by induction on n. If n = 0, then ξ 'β a and therefore ξ Â a. If π ∈ kX0k, then
ξ ? π Â a ? π by lemma 6. Therefore ξ[φ/f,α/a] ? π Â α ? π ∈ ⊥⊥.
If n > 0, then ξ Â (f)η with η 'β (f)

n−1a. Let π ∈ kXsn0k ; then ξ ? π Â f ? η.π by
lemma 6 and ξ[φ/f,α/a] ? π Â φ ? η[φ/f,α/a].π. Now, φ ∈ |Xsn−10 → Xsn0| and, by
induction hypothesis, η[φ/f,α/a] ∈ |Xsn−10|. Therefore φ ? η[φ/f,α/a].π ∈ ⊥⊥.
q.e.d.

Theorem 8. Let n ∈ N and ν ∈ Λ such that ν 'β λfλx(f)
nx. Then ν k− Int[sn0].

Let φ k−∀y(Xy → Xsy), α k−X0 and π ∈ kXsn0k ; we must show that ν ? φ.α.π ∈ ⊥⊥.
Since ν 'β λfλx(f)nx, we have ν Â λf η, η Â λa ξ and ξ 'β (f)

na. By lemma 6, we
have ν ? φ.α.π Â λf η ? φ.α.π Â η[φ/f] ? α.π. Again by lemma 6, we have :
η ? α.π Â λa ξ ? α.π Â ξ[α/a] ? π and thus η[φ/f] ? α.π Â ξ[φ/f,α/a] ? π. Finally, we
get ν ? φ.α.π Â ξ[φ/f,α/a] ? π. But, by lemma 7, we have ξ[φ/f,α/a] ∈ |Xsn0| and thus
ν ? φ.α.π Â ξ[φ/f,α/a] ? π ∈ ⊥⊥.
q.e.d.

Theorem 9. Let T = (λfλn(n)λg g◦s)f0, where s is a λ-term for the successor (e.g.
s = λnλfλx(f)(n)fx). If φ ∈ Λ0c is such that φ ? s

n0.π ∈ ⊥⊥ for all π ∈ kXk, then
Tφ k− Int[sn0]→ X.

Remark. T is called a storage operator (cf. [10]). We can understand intuitively what it
does by comparing the weak head reductions of φν and Tφν, where φ and ν are ordinary
λ-terms, ν 'β λfλx(f)

nx (a Church integer). Then Tφν Â (φ)(s)n0, which means that
the computation of the integer argument ν of φ takes place first. In other words, T
emulates call-by-value inside weak head reduction, which is a call-by-name reduction.

Notice that we use the same symbol s for a λ-term and a function symbol in L.
proof. Let ν k− Int[sn0] and π ∈ kXk ; we have to show that Tφ ? ν.π ∈ ⊥⊥.
We define a unary second order parameter P by :
kP (j)k = {sn−j0.π} for 0 ≤ j ≤ n and kP (j)k = ∅ for j > n.
We have φ k−P0 by hypothesis on φ. We show that λg g◦s k−∀x(Px → Psx), which
means that λg g◦s ∈ |P (j)→ P (j + 1)| for all j ∈ N. This is trivial for j ≥ n.
If j < n, let ξ ∈ |P (j)| ; we must show λg g◦s ? ξ.sn−j−10.π ∈ ⊥⊥. But we have :
λg g◦s ? ξ.sn−j−10.π Â ξ◦s ? sn−j−10.π Â ξ ? sn−j0.π ∈ ⊥⊥ by hypothesis on ξ.
Now, we get Tφ ? ν.π Â ν ? λg g◦s.φ.0.π which is in ⊥⊥ because :
ν k−∀x(Px→ Psx), P0→ Psn0 by hypothesis, φ k−P0 and 0.π ∈ kPsn0k.
q.e.d.

We can now prove theorem 5. For simplicity, we suppose k = 1, so that we have a
recursive function f : N→ N. Let φ ∈ Λ be a λ-term which represents f : for n ∈ N, we
have φsn0 'β λfλx(f)

px with p = f(n). Therefore φsn0 Â λf ξ and, by theorem 8, we
have λf ξ k− Int[sp0]. Let π ∈ kInt[sp0]k ; we have λf ξ ? π ∈ ⊥⊥. Now, by lemma 6, we

8

have φsn0 ? π Â λf ξ ? π ; but this reduction has necessarily at least one step, because
φsn0 6= λf ξ (φsn0 does not begin by λ). Therefore φ? sn0.π Â λf ξ ?π ∈ ⊥⊥. Since this is
true for every π ∈ kInt[sp0]k, it follows from theorem 9 that Tφ k− Int[sn0] → Int[sp0],
i.e. Tφ k− Int[n]→ Int[f(n)]. Since this is true for each n ∈ N, we get :
Tφ k−∀x(Int[x]→ Int[f(x)]).
q.e.d.

The countable axiom of choice

The axioms of classical analysis are : second order arithmetic and the axiom of countable
choice. Thus, in order to get programs from proofs in classical analysis, it remains the
problem : is it possible to realize this axiom ? This section is devoted to a positive answer
to this problem.

The countable axiom of choice is the following axiom scheme :

∀~Y ∃Z∀x(∃X F [x,X, ~Y]→ F [x, Z(x, y)/Xy, ~Y]).

F is a second order formula in which the 2-ary variable Z does not appear ; X is of
arity 1 ; ~Y = (Y1, . . . , Yn) is a finite sequence of second order variables (which are, in fact,
parameters).

We will rather write this axiom scheme in the contrapositive form :

(CAC) ∀~Y ∃Z∀x(F [x, Z(x, y)/Xy, ~Y]→ ∀X F [x,X, ~Y]).
This means that Z(x, y) is some counterexample to ∀X F [x,X], whenever any exists.
In order to realize this scheme, we introduce in the λc-calculus a new constant denoted
by χ. We consider a fixed bijection n 7→ tn of N onto Λ0c (we do not even need that this
bijection be recursive) ; let φ 7→ nφ be the inverse function. For every n ∈ N, we denote
by n a fixed λ-term which is 'β λfλx(f)

nx, for example λfλx(f)nx itself, or sn0, where
s is a λ-term for the successor. We extend the rules of execution of processes by giving
the following rule for χ :

χ ? φ.π Â φ ? nφ.π for every φ ∈ Λ0c and π ∈ Π.
Remark. We shall give below our intuitive interpretations of such a reduction rule.

From now on, of course, when we consider a set ⊥⊥ of processes, it will be cc-saturated for
the extended notion of reduction.

Theorem 10.
Let F [x,X] be a formula with parameters (X being unary). There exists Φ : N3 → P(Π)
such that : χ k−∀x{∀n(Int[n]→ F [x,Φ(x, n, y)/Xy])→ ∀X F [x,X]}.
For each n ∈ N, define Pn(⊥⊥) = {π ∈ Π; tn ? n.π /∈ ⊥⊥}. Now, for every individual x,
we have k∀X F [x,X]k = S{kF [x,R/X]k; R ∈ P(Π)N}. Therefore, for every x, n ∈ N
such that Pn(⊥⊥) ∩ k∀X F [x,X]k 6= ∅, there is a function R : N → P(Π) such that
Pn(⊥⊥) ∩ kF [x,Ry/Xy]k 6= ∅. By the axiom of countable choice, we get a function
Φ : N3 → P(Π) which has the following property : if Pn(⊥⊥) ∩ k∀X F [x,X]k 6= ∅ then
Pn(⊥⊥) ∩ kF [x,Φ(x, n, y)/Xy]k 6= ∅.

9

Now, let x be fixed (in N, which is the set of individuals) and consider π ∈ k∀X F [x,X]k
and φ ∈ |∀n(Int[n]→ F [x,Φ(x, n, y)/Xy])|. We must show that χ ? φ.π ∈ ⊥⊥ and, by the
rule for χ, it is sufficient to show φ ? nφ.π ∈ ⊥⊥.
If it is not true, we put n = nφ, so that tn = φ and we have π ∈ Pn(⊥⊥) ∩ k∀X F [x,X]k.
By definition of Φ, there exists π0 ∈ Pn(⊥⊥)∩kF [x,Φ(x, n, y)/Xy]k. From π0 ∈ Pn(⊥⊥), we
get tn ? n.π

0 /∈ ⊥⊥. But, since π0 ∈ kF [x,Φ(x, n, y)/Xy]k, by the hypothesis on φ, we have
φ ? n.π0 ∈ ⊥⊥, because n k− Int[sn0] (theorem 8). This is a contradiction, because φ = tn.
q.e.d.

From this theorem, we can get a λc-term with χ which realizes the axiom of countable
choice as follows :

Lemma 11. There is a λc-term Ω such that :
` Ω : ∀Y ∃Z{Func(Z),∀x(∀n[Z(x, n)→ Y (x, n)]→ ∀n[Int(n)→ Y (x, n)])}
where Func(Z) is the formula ∀x∀n∀n0(Z(x, n), Z(x, n0)→ n = n0).

Remember that ∃Z{A,B} is a notation for ∀X{∀Z(A,B → X) → X}. It is equivalent
to ∃Z(A ∧ B).
proof. The lemma is trivial, because this formula is clearly provable in classical second
order logic : take simply for Z(x, n) the formula which says that n is the first integer such
that ¬Y (x, n) if there exists one ; i.e. Z(x, n) is :
Int[n] ∧ ¬Y (x, n) ∧ ∀p∀q[Int[p], Int[q], p+ q + 1 = n→ Y (x, p)].
q.e.d.

Now, by theorem 10, we know that :
χ k−∀x{∀n(Int[n]→ F [x,Φ(x, n, y)/Xy])→ ∀X F [x,X]}.
Take for Y (x, n) in lemma 11, the formula F [x,Φ(x, n, y)/Xy]. We get :
λx(Ω)λy(x)λaλb(χ)(y)ab

k−∃Z{Func(Z),∀x(∀n(Z(x, n)→ F [x,Φ(x, n, y)/Xy])→ ∀X F [x,X])}
for any formula F . Therefore, if we define the axiom scheme (CCA) as :

(CCA) ∃U∃Z{Func(Z), ∀x(∀n(Z(x, n)→ F [x, U(x, n, y)/Xy])→ ∀X F [x,X])}
we obtain :
(*) Θ k− (CCA) for every formula F .
with Θ = λz(z)λx(Ω)λy(x)λaλb(χ)(y)ab

The axiom scheme (CCA) is trivially equivalent to (CAC) and is realized by a λc-term
which is independent of F . However, in order to derive (CAC) from (CCA), we need the
“ theorem scheme of extensionality ” :

∀X∀Y {∀x(Xx↔ Y x)→ (F [X]↔ F [Y])}.
This theorem scheme is proved by (concrete) induction on F and therefore the associated
λc-term will eventually depend on F .
Now, we can add to our deduction rules 1, . . . , 7 the following one :

8. ` Θ : ∃U∃Z{Func(Z),∀x(∀n(Z(x, n)→ F [x, U(x, n, y)/Xy])→ ∀X F [x,X])}
Rules 1 to 8 form a deduction system for “ classical analysis ”, i.e. classical second order
logic with countable choice. It follows from (*) that the adequation lemma (theorem 1)
remains valid for these deduction rules.

10

Dependent choice

In this section, we show, by the same method, that the axiom scheme of dependent choice
can be realized. This axiom scheme is :

∀X∃Y H[X,Y]→ ∀X0∃Z{∀y(X0(y)↔ Z(0, y)),
∀k(Int[k]→ H[Z(k, y)/Xy, Z(k + 1, y)/Y y])}

for any formula H in which the variable Z does not appear.

Let <x, y> be a binary function symbol, which represents a bijection from N2 onto N.
We assume it to be recursive, so that theorem 5 applies.

Theorem 12. Let F [X, Y] be a formula with parameters (X, Y being unary). For every
X0 : N → P(Π), there exists A : N3 → P(Π) such that A(0, x, y) = X0(y) and
χ k−∀x∀k(∀n{Int[n]→ F [A(k, x, y)/Xy,A(k + 1, <n, x>, y)/Y y]}

→ ∀Y F [A(k, x, y)/Xy, Y]).
We first prove :

Lemma 13. For every U : N2 → P(Π), there exists V : N2 → P(Π) such that :
χ k−∀n{Int[n]→ F [U(x, y)/Xy, V (<n, x>, y)/Y y]}→ ∀Y F [U(x, y)/Xy, Y].
The proof is the same as theorem 10. Let Pn(⊥⊥) = {π ∈ Π; tn ? n.π /∈ ⊥⊥} and define
V : N2 → P(Π) by the following condition : if Pn(⊥⊥) ∩ k∀Y F [U(x, y)/Xy, Y]k 6= ∅ then
Pn(⊥⊥) ∩ kF [U(x, y)/Xy, V (<n, x>, y)/Y y]k 6= ∅.
Now let x be fixed inN and consider φ ∈ |∀n{Int[n]→ F [U(x, y)/Xy, V (<n, x>, y)/Y y]}|
and π ∈ k∀Y F [U(x, y)/Xy, Y]k. We have to show that χ ? φ.π ∈ ⊥⊥, i.e. φ ? nφ.π ∈ ⊥⊥.
If it is not true, we put n = nφ, so that tn = φ and we have :
π ∈ Pn(⊥⊥) ∩ k∀Y F [U(x, y)/Xy, Y]k.
Thus, by definition of V , there exists π0 ∈ Pn(⊥⊥) ∩ kF [U(x, y)/Xy, V (<n, x>, y)/Y y]k.
Since π0 ∈ Pn(⊥⊥), we have tn ? n.π0 /∈ ⊥⊥. But π0 ∈ kF [U(x, y)/Xy, V (<n, x>, y)/Y y]k
and thus, by hypothesis on φ, we get φ?n.π0 ∈ ⊥⊥. This is a contradiction because φ = tn.
q.e.d.

By lemma 13, we have (∀U ∈ P(Π)N2)(∃V ∈ P(Π)N2)Φ(U, V) where Φ(U, V) is the
formula χ k−∀n{Int[n]→ F [U(x, y)/Xy, V (<n, x>, y)/Y y]}→ ∀Y F [U(x, y)/Xy, Y].
Therefore, we obtain theorem 12 by means of an application of the axiom of dependent
choice to the formula Φ(U, V).
q.e.d.

Now, by theorem 12, the following formula is realized by λx(x)IIχ (with I = λxx) :

(∗) ∀X0∃A{∀x∀y[A(0, x, y)→ X0(y)],∀x∀y[X0(y)→ A(0, x, y)],
∀x∀k(∀n{Int[n]→ F [A(k, x, y)/Xy,A(k + 1, <n, x>, y)/Y y]}

→ ∀Y F [A(k, x, y)/Xy, Y])}.
Therefore, in order to realize the axiom of dependent choice, it is sufficient to derive this
axiom from formula (∗), where F is ¬H, in classical second order logic. The derivation is as
follows : define inductively the sequence nk of integers by the conditions n0 = 0 and nk+1 =
<n, nk> for the first integer n such that H[A(k, nk, y)/Xy,A(k+1, <n, nk>, y)/Y y]. The
formula (∗) and the hypothesis ∀X∃Y H(X,Y) ensure that such an integer always exists.
Finally, if we define Z(k, y) by A(k, nk, y), we get :
∀k{Int[k]→ H[Z(k, y)/Xy,Z(k + 1, y)/Y y]} and ∀y(Z(0, y)↔ X0(y)).

11

Variant and interpretations

We can get the same results by using, instead of χ, a dual instruction χ which works on
stacks instead of terms. Consider now a bijection n 7→ πn of N onto Π, and let π 7→ nπ
be the inverse function. We introduce into the λc-calculus a new constant denoted by χ
and we extend the rules of execution of processes by giving the following rule for χ :

χ ? φ.π Â φ ? nπ.π for every φ ∈ Λ0c and π ∈ Π.
We have the analogue of theorem 10 and the proof is even simpler :

Theorem 14.
Let F [x,X] be a formula with parameters (X being unary). There exists Φ : N3 → P(Π)
such that : χ k−∀x{∀n(Int[n]→ F [x,Φ(x, n, y)/Xy])→ ∀X F [x,X]}.
For every individual x and every stack π, we have :

π ∈ k∀X F [x,X]k⇔ (∃R ∈ P(Π)N) π ∈ kF [x,R/X]k.
Therefore, by the axiom of countable choice, there exists a function Φ : N3 → P(Π) such
that π ∈ k∀X F [x,X]k ⇔ π ∈ kF [x,Φ(x, nπ, y)/Xy]k. We show that Φ has the desired
property : consider an individual x ∈ N, φ ∈ |∀n(Int[n] → F [x,Φ(x, n, y)/Xy])| and
π ∈ k∀X F [x,X]k. We must show that χ ? φ.π ∈ ⊥⊥ and, by the rule for χ, it is sufficient
to show φ ? nπ.π ∈ ⊥⊥. But this is clear because :
- by hypothesis on φ, we have φ k− Int(snπ0)→ F [x,Φ(x, nπ, y)/Xy] ;
- by theorem 8, we have nπ k− Int(snπ0) ;
- and by hypothesis on π and the definition of Φ, we have π ∈ kF [x,Φ(x, nπ, y)/Xy]k.
q.e.d.

We get in the same way an analogue of lemma 13. Now, by exactly the same reasoning as
above, we realize the axioms of countable choice and of dependent choice, using χ instead
of χ.

The ‘quote’ interpretation

The rule of reduction for the instruction χ is :
χ ? φ.π Â φ ? nφ.π.

This rule makes χ very similar to the quote instruction of LISP. Indeed nφ may be used
in the same way as (quote φ), if we assume that φ 7→ nφ is a recursive bijection from
Λ0c onto N. For example, since nu is then a recursive function of ntu, we can define, using
χ, an instruction χ0 such that χ0 ? φ.ψ.π Â φ ? nψ.π : let p be a closed λ-term such
that (p)ntu 'β nu and let χ

0 = λxλy(χ)(λd x◦p)y. As we can see in this example, the
instruction χ is not compatible with β-reduction : indeed, we cannot replace (λd x◦p)y
with x◦p.
As observed by the referee, in the program associated with the axiom of countable choice,
the instruction χ is not used in the same way as the ‘quote’ instruction is habitually used
in LISP. In fact, the only operation which is performed on the integers nφ is to compare
them, and φ is never retrieved from nφ. In other words, there is no use of the ‘unquote’
or ‘eval’ instruction which, in LISP, is the inseparable companion of ‘quote’.
Nevertheless, it is a fact that the instruction χ can be implemented by means of the

12

‘quote’ instruction. Moreover, it is quite possible that, in future work, trying to interpret
some other axioms or theorems, someone will use the program ‘eval’ in interaction with χ.

The clock interpretation

We give now another interpretation for the instruction χ (which is also valid for χ).
We observe that the application n 7→ tn may be any surjective map from N onto Λ0c . The
reduction rule for χ is then :

χ ? φ.π Â φ ? n.π.
where n is any integer such that tn = φ. This suggests the following interpretation :
χ is an input instruction and, when it comes in head position, the process χ?φ.π waits for
some integer n which is provided by some human operator or some external process. Then
we have the reduction χ ?φ.π Â φ ?n.π and the execution goes on. The only constraint is
that “ φ must be retrievable from n ”, i.e. the integers provided to the processes χ ? φ.π
and χ ? φ0.π0 with φ 6= φ0, must be different.
A very simple and natural way to obtain this behaviour is to provide the integer n by
means of a clock, since two different λc-terms cannot appear at the same time. In other
words, we may suppose there is a second process running aside the main one, which simply
increments an integer at each step of reduction. This process provides the integer n when
needed, that is when χ comes in head position in the main process.
This method gives a completely different way of implementing the instruction χ. I think
that the behaviour of the program associated with the axioms of countable or dependent
choice is easier to understand with this implementation.

Arithmetical theorems

In this section, we apply the above results to study the behaviour of programs associated
with proofs of arithmetical theorems in PA2+ CAC. As an example, we consider first a
Σ02 formula Φ of the form ∃x∀y[φ(x, y) = 0] where φ is a recursive function.
Consider the following game between two players named ∃ and ∀ : ∃ plays an integer m,
∀ reply with an integer n ; the game stops at the first moment when φ(m,n) = 0 and
then ∃ wins ; thus, ∀ wins if and only if the game lasts infinitely long.
The following is trivial :
∃ has a winning strategy if and only if N |= Φ ; moreover, in this case, there is an obvious
winning strategy for ∃ : to play successively 0, 1, 2, . . .
We will show (theorem 15) that the program associated with a proof of Φ in PA2+ CAC
acts as a winning strategy for the above game. We first get rid of the axiom of recurrence
as explained above and thus, we consider a proof in “ classical analysis ” of the formula :

ΦInt ≡ ∀x[Int(x),∀y(Int(y)→ φ(x, y) = 0)→ ⊥]→ ⊥.
Now we add the following constants to λc-calculus : κnp (n, p ∈ N) and κ which is an input
instruction. Thus the λc-terms become interactive programs. Once again, we extend the
rules of execution of processes by giving the following rule for κ :

κ ? sn0.ξ.π ÂÂ ξ ? sp0.κnp.π
0

for n, p ∈ N, ξ ∈ Λ0, π,π0 ∈ Π ; s is is a fixed λ-term for the successor in Church integers.
This rule is non-deterministic, since the integer p and the stack π0 are arbitrary.

13

The intuitive meaning of this rule is as follows : in the left-hand member the program,
which stands for the player ∃, proposes the integer n ; then, in the right-hand member,
the opponent ∀ replies with p and the execution goes on ; κnp keeps a trace of the ordered
pair (n, p).

Theorem 15. Suppose that ` θ : [∃x∀y(φ(x, y) = 0)]Int in classical second order logic
with choice. Then every reduction of θ ? Tκ.π following ÂÂ ends up into κnp ? π

0 with
φ(n, p) = 0. T is the storage operator of theorem 9.

We define ⊥⊥ as the set of processes all reductions of which end up into κnp ? π
0 with

φ(n, p) = 0 for some stack π0. We must show that θ ? Tκ.π ∈ ⊥⊥ for every π ∈ Π.
By theorem 1, we have θ k−∀x[Int(x),∀y(Int(y)→ φ(x, y) = 0)→ ⊥]→ ⊥.
Therefore, by definition of k− , it is sufficient to prove that :
Tκ k−∀x[Int(x), ∀y(Int(y)→ φ(x, y) = 0)→ ⊥].
Let n ∈ N ; we have to show Tκ k− Int[sn0]→ [∀y(Int(y)→ φ(n, y) = 0)→ ⊥].
By theorem 9, this amounts to show that if π ∈ Π and ξ k−∀y(Int(y)→ φ(n, y) = 0) then
κ?sn0.ξ.π ∈ ⊥⊥. By the very definition of ⊥⊥, it is sufficient to show that ξ ?sp0.κnp.π ∈ ⊥⊥
for every p ∈ N and π ∈ Π. But, by hypothesis on ξ, for any p ∈ N and $ ∈ kφ(n, p) = 0k,
we have ξ ? sp0.$ ∈ ⊥⊥. Therefore, it is sufficient to show that κnp.π ∈ kφ(n, p) = 0k for
any p ∈ N and π ∈ Π.
If φ(n, p) = 0 then, by theorem 4(i), kφ(n, p) = 0k is k∀X(X → X)k that is :
{t.ρ; t ∈ Λ0c , ρ ∈ Π, t ? ρ ∈ ⊥⊥}. But, by definition of ⊥⊥, we have also κnp ? π ∈ ⊥⊥, so that
κnp.π ∈ kφ(n, p) = 0k.
If φ(n, p) 6= 0, again by theorem 4(i), we have kφ(n, p) = 0k = k>→ ⊥k that is :
{t.ρ; t ∈ Λ0c , ρ ∈ Π} ; therefore, we have again κnp.π ∈ kφ(n, p) = 0k.
q.e.d.

It follows that any proof of Φ in classical second order arithmetic with countable axiom
of choice provides an interactive program which can stand in for the player ∃ and which
wins against every opponent.

Indeed, after each reply of the opponent, the program provides an object (sn0, ξ) made
up with an integer n (the provisional solution) and an exception handler ξ which is used
in case of a relevant reply from the opponent.
These are the two arguments of κ which can therefore be seen as a pointer to this object.

The general case

Consider now an arithmetical theorem Φ of the form :
∃x1∀y1 . . . ∃xk∀yk(φ(x1, y1, . . . , xk, yk) = 0) where φ is recursive.
The game associated with Φ is now the following :
A position of the game is an integer sequence n1p1 . . . nipi (0 ≤ i ≤ k). The player ∃
chooses first an already reached position n1p1 . . . nipi, with 0 ≤ i < k, and an integer
ni+1 ; then ∀ chooses an integer pi+1. The position n1p1 . . . ni+1pi+1 is then reached.
If i+ 1 = k and φ(n1, p1, . . . , nk, pk) = 0, then the game stops and ∃ won. In every other
case, the play goes on. Thus ∀ wins if and only if the game lasts infinitely long.
It is easily seen that N |= Φ if and only if the player ∃ has a winning strategy for this
game. Moreover, we can effectively (and easily) describe such a winning strategy, which

14

does not even depend on Φ, but only on the number k of quantifiers :
The player ∃ uses an effective enumeration of Nk. When he comes to the k-uple n1 . . . nk ,
he chooses the longest already reached position of the form n1p1 . . . nipi. We know that
i < k because this position was reached for a k-uple of integers different from n1 . . . nk.
Then he successively plays ni+1, . . . , nk regardless of the choices of ∀. Then he takes the
next k-uple of integers.
If this play is infinite, we get k functions fi(x1, . . . , xi) such that :

N |= ∀x1 . . . ∀xk {φ[x1, f1(x1), x2, f2(x1, x2), . . . , xk, fk(x1, . . . , xk)] 6= 0}
which is the Skolem form of ¬Φ ; thus N |= ¬Φ.
Conversely, if N |= ¬Φ, there exists k functions fi(x1, . . . , xi) such that the Skolem form
of ¬Φ is satisfied. Of course, they provide a winning strategy to the opponent ∀.
Let us now introduce into the λc-calculus the constants κn1p1...nipi for 0 ≤ i ≤ k (one for
each position of the game). Their rule of reduction is as follows :

For 0 ≤ i ≤ k − 2 : κn1p1...nipi ? s
ni+10.ξ.π ÂÂ ξ ? spi+10.Tκn1p1...ni+1pi+1.π

0

(T is the storage operator of theorem 9).

For i = k − 1 : κn1p1...nk−1pk−1 ? s
nk0.ξ.π ÂÂ ξ ? spk0.κn1p1...nkpk .π

0.

For i = k no reduction is possible.

It is a non-deterministic rule, since pi+1 and π
0 are arbitrary.

The intuitive meaning of these rules is the following : in the left-hand side, the program,
which stands for the player ∃, chooses the previously reached position n1p1 . . . nipi and
proposes the integer ni+1 ; then, in the right-hand side, the opponent ∀ replies with
pi+1 and the execution goes on ; κn1p1...ni+1pi+1 keeps a trace of the fact that the position
n1p1 . . . ni+1pi+1 has been reached.

Theorem 16. Suppose that ` θ : [∃x1∀y1 . . . ∃xk∀yk(φ(x1, y1, . . . , xk, yk) = 0)]Int in clas-
sical second order logic with choice. Then every reduction of θ ? Tκ.π following ÂÂ ends
up into κn1p1...nkpk ? π

0 with φ(n1, p1, . . . , nk, pk) = 0.

Remark. κ is the constant associated with the empty position of the game.

The meaning of the theorem is that each proof of ΦInt in classical second order logic with
axiom of choice gives an interactive program, which wins against every strategy of the
opponent, in the game associated with the formula :

Φ ≡ ∃x1∀y1 . . . ∃xk∀yk(φ(x1, y1, . . . , xk, yk) = 0).
This theorem is closely related to the no-counter-example interpretation of G. Kreisel[7, 8]
(see also [3, 6, 13]) : Kreisel has shown that, if Φ is a theorem of first order Peano
arithmetic, then there exists type recursive functionals in the sense of [13] Fi(f1, . . . , fk)
(1 ≤ i ≤ k) such that :

φ[ξ1, f1(ξ1), ξ2, f2(ξ1, ξ2), . . . , ξk, fk(ξ1, . . . , ξk)] = 0 with ξi = Fi(f1, . . . , fk)
for any functions fi : Ni → N (1 ≤ i ≤ k), i.e. for any strategy of the opponent.
Theorem 16 associates such a functional to each proof of Φ in classical analysis (with
axiom of choice) and gives it as an explicit program which is a winning strategy for the
player ∃.
proof.
We define ⊥⊥ as the set of processes all reductions of which end up into κn1p1...nkpk ? π0

15

with φ(n1, p1, . . . , nk, pk) = 0. We have to show that θ ? Tκ.π ∈ ⊥⊥ for every π ∈ Π.
For 0 ≤ i ≤ k, we set :
Ai(x1, y1, . . . , xi, yi) ≡ [∃xi+1∀yi+1 . . .∃xk∀yk(φ(x1, y1, . . . , xk, yk) = 0)]Int.

By theorem 1, it is sufficient to show that Tκ.π ∈ kA0k for every stack π. In fact, we
shall show, by decreasing induction from k, that for every stack π :
Kn1p1...nipi .π ∈ kAi(n1, p1, . . . , ni, pi)k for 0 ≤ i ≤ k where
Kn1p1...nipi is Tκn1p1...nipi for 0 ≤ i < k and κn1p1...nkpk for i = k.
We show this first for i = k ; we have to show that :
κn1p1...nkpk .π ∈ kφ(n1, p1, . . . , nk, pk) = 0k.
If φ(n1, p1, . . . , nk, pk) 6= 0 then, by theorem 4(i), we have :
kφ(n1, p1, . . . , nk, pk) = 0k = k>→ ⊥k, hence the result.
If φ(n1, p1, . . . , nk, pk) = 0, then, by theorem 4(i), we have :
kφ(n1, p1, . . . , nk, pk) = 0k = {t.π; t ∈ Λ0c , π ∈ Π, t ? π ∈ ⊥⊥}.
But κn1p1...nkpk ? π ∈ ⊥⊥ by definition of ⊥⊥ ; hence the result.
Assuming the property for i+ 1, we have to show that :
Tκn1p1...nipi k−

∀xi+1{Int(xi+1),∀yi+1[Int(yi+1)→ Ai+1(n1, p1, . . . , ni, pi, xi+1, yi+1)]→ ⊥}.
That is, for every ni+1 ∈ N :
Tκn1p1...nipi k− Int(ni+1)→ {∀yi+1[Int(yi+1)→ Ai+1(n1, p1, . . . , ni, pi, ni+1, yi+1)]→ ⊥}.
By theorem 9, it is sufficient to show that κn1p1...nipi ?s

ni+10.ξ.π ∈ ⊥⊥ for every stack π and
every ξ ∈ |∀yi+1[Int(yi+1)→ Ai+1(n1, p1, . . . , ni, pi, ni+1, yi+1)]|. Now, by definition of ÂÂ,
this amounts to show that ξ ? spi+10.Kn1p1...ni+1pi+1 .π ∈ ⊥⊥ for every pi+1 ∈ N and π ∈ Π.
But this is clear, by hypothesis on ξ since, by the induction hypothesis, we have for every
stack π : Kn1p1...ni+1pi+1.π ∈ kAi+1(n1, p1, . . . , ni, pi, ni+1, pi+1)k ; and spi+10 ∈ |Int[spi+10]|
by theorem 8.
q.e.d.

References

[1] S. Berardi, M. Bezem, T. Coquand. On the computational content of the axiom of
choice. J. Symbolic Logic 63, pp. 600-622 (1998).

[2] U. Berger, P. Oliva. Modified bar recursion and classical dependent choice (preprint).

[3] T. Coquand. A semantics of evidence for classical arithmetic. J. Symbolic Logic 60,
pp. 325-337 (1995).

[4] J.-Y. Girard. Une extension de l’interprétation de Gödel à l’analyse. In: Proc. 2nd
Scand. Logic Symp. p. 63-92. North Holland Pub. Co. (1971).

[5] T. Griffin. A formulæ-as-type notion of control. In Conference Record of the 17th
A.C.M. Symposium on Principles of Programming Languages (1990).

[6] U. Kohlenbach. On the no-counter-example interpretation. J. Symbolic Logic 64, pp.
1491-1511 (1999).

16

[7] G. Kreisel. On the interpretation of non-finitist proofs, part I. J. Symbolic Logic 16,
pp. 241-267 (1951).

[8] G. Kreisel. On the interpretation of non-finitist proofs, part II: Interpretation of
number theory, applications. J. Symbolic Logic 17, pp. 43-58 (1952).

[9] G. Kreisel. Mathematical significance of consistency proofs. J. Symbolic Logic 23,
pp. 155-182 (1958).

[10] J.-L. Krivine. A general storage theorem for integers in call-by-name λ-calculus.
Theor. Comp. Sc. 129, p. 79-94 (1994).

[11] J.-L. Krivine. Typed lambda-calculus in classical Zermelo-Fraenkel set theory. Arch.
Math. Logic 40 (2001) 3, 189-205.

[12] M. Parigot. λµ-calculus: an algorithmic interpretation of classical natural deduction.
Proc. Logic Progr. and Autom. Reasoning, St Petersbourg. L.N.C.S. 624, p. 190-201
(1992).

[13] J.R. Shoenfield. Mathematical logic. Addison Wesley (1967).

[14] G. Takeuti. Proof Theory. Studies in Logic and Foundations of Mathematics, North-
Holland (1987).

17

