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90 rue de Tolbiac, 75634 Paris Cedex 13, France. hardouin@univ-paris1.fr

And Jian-Feng YAO
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Abstract

Motivated by the modelling of non Gaussian data or positively correlated data

on a lattice, extensions of Besag’s Markov random fields auto-models to exponen-

tial families with multi-dimensional parameters have been proposed recently. In this

paper, we provide a multiple-parameter analog of Besag’s one-dimensional result

that gives the necessary form of the exponential families for the Markov random

field’s conditional distributions. We propose estimation of parameters by maximum

pseudo-likelihood and give a proof for the consistency of the estimators for the multi-

parameter auto-model. The methodology is illustrated with some examples, partic-

ularly the building of a cooperative system with beta conditional distributions.
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1 Introduction

We consider a random fieldX = {Xi, i ∈ S} on a finite set of sites S = {1, . . . , n}. For a site

i, let pi(xi|x
(i)) = pi(xi|xj , j 6= i) be the full conditional distribution, that is the conditional

density ofXi given the values of all theXj ’s other thanXi, where we have used the notation

x(i) = {xj : j 6= i}. An important approach in stochastic modelling consists of specifying

the family of these conditional distributions {pi(xi|·) : i ∈ S}, and then determining a joint

distribution P of the random field that is compatible with this family (i.e., the pi’s are

exactly the conditional distributions associated with P ). The investigation of this problem

dates back to the 1960’s; see Whittle (1963) and Bartlett (1968). Let us recall that if the

joint probability distribution P is positive wherever the marginal distributions are positive,

the Hammersley-Clifford Theorem characterizes logP as being proportional to a sum of

potentials deduced from a set of cliques. The milestone paper of Besag (1974) provides

several key steps for the development of the subject, including a proof of the Hammersley-

Clifford theorem, the introduction of auto-models, and popular estimation methods such as

maximum pseudo-likelihood estimation. Related developments on conditionally specified

models include a series of works by Arnold, Castillo, and Sarabia; see Arnold et al. (1999),

Arnold et al. (2001) for complete references, even though their approach is not specifically

suited to the Markov random-field framework.

In this paper, we focus on auto-models introduced by Besag (1974). This class of spa-

tial models is constructed under two assumptions: first, the dependence between sites is

pairwise and, secondly, the full conditionals belong to some exponential family. Special

instances of auto-models include the so-called auto-logistic, auto-binomial, auto-Poisson,

auto-exponential, auto-gamma and auto-normal schemes. However, these schemes have

a major limitation: the sufficient statistic as well as the canonical parameter are one-

dimensional. More precisely, the exponential families can involve more than one parame-

ter, but both the sufficient statistic and the canonical parameter are one-dimensional: for

instance, in the so-called auto-normal scheme, the conditional mean at each site i is ex-

pressed as a linear combination of the values at its neighbouring sites {xj , j 6= i}, and the

conditional variance is constant or depends only on the site i. Furthermore, integrability

conditions have to be satisfied for the model to be well defined. As noticed by the author

himself, several auto-models like the Poisson, exponential, and gamma schemes are of little

practical interest, since the integrability condition ensures that only spatial competition

between neighbouring sites can occur. However, mostly one would like to model spatial

cooperation.

To overcome these drawbacks, significant effort has been put in by a number of au-
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thors. An extension of the first condition is proposed in Lee et al. (2001), where the

pairwise dependence is replaced with a multiway dependence, but still with one parameter

exponential families. Recently, a Markovian approach is proposed in Kaiser and Cressie

(2000), where the commonly used positivity condition on the joint distribution is relaxed.

To the best of our knowledge, the first attempt to extend the one-parameter exponential

family set-up to a multi-parameter one was made by Cressie and Lele (1992), where the

term multi-parameter exponential family Markov random field models was coined. Later,

improvements were proposed in Kaiser and Cressie (2000), where a spatial model using

beta conditional distributions, an exponential family with two-parameters, is analysed in

detail. In Kaiser et al. (2002), Equation (7), the authors introduce a class of spatial mod-

els with general multi-parameter exponential family conditional distributions and raise the

question of ensuring their compatibility with a joint distribution. A general answer to this

question is the subject of this paper.

We give here the general parametrisation of multi-parameter auto-models, which is a

new result. The main result of this paper, Theorem 1 in Section 2, determines the necessary

form for multi-parameter exponential families in terms of the full conditionals. We provide

a directly analogous result to that of Eq. (4.4) in Besag (1974).

Having established the general result, we examine several related problems. We begin

with a simple illustration of an auto-model on two sites, which is interesting because we

consider different state spaces. Then, in Section 3, we address the problem of building

cooperative spatial models. In particular, we discuss auto-models with full conditionals

that are beta distributed and we give explicit conditions on the parameters to ensure the

integrability condition. These auto-models have the advantage of being able to exhibit

spatial cooperation as well as spatial competition according to suitable choices of their

parameter values. The results are more general than those of Kaiser and Cressie (2000)

and Kaiser et al. (2002).

Next, in Section 4, the consistency of the pseudo-likelihood estimator in multi-parameter

auto-models is established under quite general conditions. To give more insight into the ef-

fectiveness of this estimator, several simulation experiments are conducted for auto-models

with beta conditional distributions and two different neighbourhood systems.

In Section 5, we give a discussion of our findings. Proofs of the theoretical results are

gathered together in Section 6.
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2 Multi-parameter auto-models

Recall the set of sites S = {1, . . . , n}, and consider a measurable state space (E, E , m)

(often a subset of R). We let the configuration space Ω = ES be equipped with the σ-

algebra E⊗S and the product measure ν := m⊗S. Although we consider Ω = ES, all the

following results hold equally with a more general configuration space Ω =
∏

i∈S Ei, where

each individual space (Ei, Ei) is equipped with some measure mi (we give such an example

at the end of this section). A random field is specified by a probability distribution µ on

Ω, and we will assume throughout the paper the positivity condition, namely, µ has an

everywhere positive density P with respect to ν. Consequently we can write

µ(dx) = P (x)ν(dx) , P (x) = Z−1 expQ(x) , (2·1)

where Z is a normalisation constant. From the Hammersley-Clifford Theorem, the energy

function Q(x) is a sum of potentials G defined on the set of underlying cliques. Moreover,

the positivity condition implies that at each site i, the conditional distribution of (Xi|Xj =

xj , j 6= i) has a density pi(xi|x
(i)) with respect to m(dxi) that is itself everywhere positive.

The two basic assumptions are as follows.

[B1] The dependence between the sites is pairwise-only, that is,

Q(x) =
∑

i∈S

Gi(xi) +
∑

{i,j}

Gij(xi, xj) .

We fix a reference configuration τ = (τi) ∈ Ω. In most cases, τ = (0, . . . , 0), but

the choice of this reference configuration is arbitrary (Guyon (1995), Kaiser and Cressie

(2000)). In the case of the beta conditional distributions in Section 3, E = (0, 1) and we

take τ = (1
2
, . . . , 1

2
). The following notation is useful. If x ∈ Ω, for each i we denote τix to

be the realisation deduced from x replacing xi with τi.

Next, the potential functions are uniquely determined if we assume for all i, j, and

x ∈ Ω that

Gij(τi, xj) = Gij(xi, τj) = Gi(τi) = 0 . (2·2)

Note that if this condition were not naturally satisfied, we may substitute for Gij(xi, xj),

Gij(xi, xj) −Gij(τi, xj) −Gij(xi, τj) +Gij(τi, τj) ,

and make a similar adjustment for Gi(xi). Thus, from (2·1), we have Q(τ) = 0 and

Z−1 = P (τ).
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The second assumption generalises Besag’s auto-models schemes of one-parameter ex-

ponential families to multi-parameter exponential families:

[B2] : log pi(xi|x
(i)) = 〈Ai(x

(i)), Bi(xi)〉+Ci(xi)+Di(x
(i)) , Ai(x

(i)) ∈ R
l, Bi(xi) ∈ R

l.

The main result of the paper is the following theorem, which determines the necessary

form of the local natural parameters {Ai(.)} to ensure the compatibility of the family of

full conditional distributions.

Theorem 1 Assume that the two conditions [B1] and [B2] are satisfied with the normal-

isation Bi(τi) = Ci(τi) = 0 in [B2] . Furthermore, assume the following condition

[C]: For all i ∈ S, Span{Bi(xi) : xi ∈ E} = R
l.

Then, necessarily, the functions Ai take the form:

Ai(x
(i)) = αi +

∑

j 6=i

βijBj(xj) ; i ∈ S, (2·3)

where {αi : i ∈ S} is a family of l-dimensional vectors, and {βij : i, j ∈ S, i 6= j} a

family of l × l matrices {βij} satisfying βT
ij = βji. Moreover, the potentials are given by

Gi(xi) = 〈αi, Bi(xi)〉 + Ci(xi) , (2·4)

Gij(xi, xj) = BT
i (xi)βijBj(xj) . (2·5)

A model satisfying the assumptions of the theorem is called a multi-parameter auto-

model. The additional condition [C] is not present in the one-parameter case, since it is

automatically satisfied, because the Bi’s are not identically zero. We shall see below that

this condition is not restrictive and is easily satisfied in most examples.

Another important property of the model is that of symmetry. The general formulation

given above does not impose any symmetry, and hence it can be useful for modelling random

fields on arbitrary or oriented graphs. As an illustration, a simple auto-model is given at

the end of this section on two sites that play an asymmetrical role. On the other hand,

in the case of a spatially symmetrical random field, it is necessary that all the potentials

Gij(xi, xj) are symmetric functions or, equivalently, that all the matrices βij are symmetric.

It is interesting at this point to compare the necessary form (2·3) and several existing

forms proposed in Kaiser et al. (2002). It is not difficult to see that their three proposed

forms, Eqs. (10), (11), and (12) of Kaiser et al. (2002), correspond respectively to the
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cases,

βij = ηij




1 · · · 1

1
... 1

1 · · · 1



 ; ηij = ηji ∈ R , (2·6)

βij =




ηij1 · · · 0

0
. . . 0

0 · · · ηijl



 ; ηijk = ηjik ∈ R, 1 ≤ k ≤ l , (2·7)

and

βij = ηij

(
0 1

1 0

)
; ηij = ηji ∈ R. (2·8)

Even though these specific forms are useful in practice, the general result is given by Eqs.

(2·4) and (2·5).

The following proposition is useful, giving a converse to Theorem 1. It also provides

a practical way to choose the parameters for a well defined multi-parameter auto-model.

Indeed, the only additional condition one must check in practice is that the energy function

Q is admissible in the sense of the integrability condition:

∫

Ω

eQ(x)ν(dx) <∞ . (2·9)

Proposition 1 Assume that the energy function Q is defined by [B1] with potentials

Gi, Gij given in (2·4) and (2·5). Assume further that the integrability condition (2·9)

holds. Then the family of conditional distributions pi(xi|x
(i)) belong to a multi-parameter

exponential family given by [B2] whose natural parameters Ai(x
(i)) satisfy (2·3).

We now give a simple example illustrating Theorem 1. Consider just two variables

(X1, X2) such that the conditional distribution of X1 given X2 = x2 is a gamma distribu-

tion, and X2 given X1 = x1 is a Gaussian distribution. This example with S = {1, 2} is

interesting since the two state spaces are different, and the model is not symmetric. The

reference configuration is τ = (1, 0). In other words, we have according to [B2]:

log p1(x1|x2) = log fθ1(x2)(x1) = 〈A1(x2), B1(x1)〉 −D1(x2) ,

log p2(x2|x1) = log gθ2(x1)(x2) = 〈A2(x1), B2(x2)〉 −D2(x1) .

Here l = 2 and Bi’s in [B2] are B1(x) = (−x+ 1, log x)T and B2(x) = (x, x2)T .
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Condition [C] is trivially satisfied here. Therefore, by Theorem 1, there exist two

vectors α1, α2 of R
2 and a 2 × 2 matrix β such that

A1(x2) = α1 + βB2(x2) , A2(x1) = α2 + βTB1(x1)

The joint density is P (x1, x2) = P (τ) expQ(x1, x2) withQ(x1, x2) = 〈α1, B1(x1)〉+〈α2, B2(x2)〉+

BT
1 (x1)βB2(x2) .

If we do not consider the matrix β to be symmetric, and it does not have to be, the

model contains 8 parameters. Explicit conditions on these parameters can be obtained

straightforwardly from (2·9) to ensure admissibility of the energy function Q. In fact, this

is a known result presented in Arnold et al. (1999), §4.8, but our derivation is simpler.

3 A special class of auto-models with beta conditionals

As pointed out in Besag (1974), several one-parameter auto-models necessarily imply spa-

tial competition but not spatial cooperation between neighbouring sites. For instance, this

is the case for the auto-exponential, the auto-Poisson and the auto-gamma schemes. This

competitive behaviour is clearly inadequate for many spatial systems where neighbouring

sites are indeed cooperative. A common way to get rid of this drawback is to transform the

variables onto a bounded range. For instance a truncation or projection procedure could

be used.

Another possible way to get cooperative auto-models is by using multi-parameter auto-

models such as beta conditional distributions. Notice that the family of beta distributions

offers a large variety of densities on a bounded interval [a, b], which makes the auto-beta

models a potentially important class of spatial models.

Consider the univariate beta density on (0, 1) with parameters p, q > 0 :

fθ(x) = κ(p, q)xp−1(1 − x)q−1 = exp {〈θ, B(x)〉 − ψ(θ)} , 0 < x < 1,

where θ = (p−1, q−1)T , B(x) = [log(2x), log(2(1−x))]T , ψ(θ) = (p+q−2) log 2+logκ(p, q),

and κ(p, q) = Γ(p+q)/[Γ(p)Γ(q)]. Throughout this section, we denote the two components

of B(x) by u(x) = log(2x) and v(x) = log[2(1 − x)]. Notice that u(1
2
) = v(1

2
) = 0.

We now consider a random field X with such beta conditional distributions and refer-

ence configuration τ = (1
2
, 1

2
, ..., 1

2
). Clearly, Condition [C] is satisfied. From Theorem 1, for

i, j ∈ S and i 6= j, there exist vectors αi = (ai, bi)
T ∈ R

2 and 2×2 matrices βij =

(
cij dij

fij eij

)
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satisfying βij = βT
ji, such that

Ai(x
(i)) = αi +

∑

j 6=i

βijB(xj) = αi +
∑

j 6=i

βij

(
u(xj)

v(xj)

)

.

Furthermore, the energy function Q can be written as

Q(x1, . . . , xn) =
∑

i∈S

〈αi, B(xi)〉 +
∑

{i,j}

BT (xi)βijB(xj) ,

and the reference configuration, τ = (1
2
, . . . , 1

2
), satisfies Q(τ) = 0.

This model is well defined if its energy function Q satisfies the integrability condition

(2·9), something we now examine in detail. We first note that the natural parameters of

the conditional beta distributions are given by

Ai(x
(i)) =

(
Ai,1(x

(i))

Ai,2(x
(i))

)
=

(
ai +

∑
j 6=i {ciju(xj) + dijv(xj)}

bi +
∑

j 6=i {fiju(xj) + eijv(xj)}

)
. (3·1)

Since p > 0 and q > 0 defines the natural parameter space for the univariate beta distri-

bution, it follows that for all i and all configurations x(i) ∈ (0, 1)n−1,

1 + ai +
∑

j 6=i

{ciju(xj) + dijv(xj)} > 0 , (3·2)

and

1 + bi +
∑

j 6=i

{fiju(xj) + eijv(xj)} > 0 . (3·3)

We first consider the inequality (3·2) . If xj tends to 0+ or 1−, it follows necessarily that

cij ≤ 0 and dij ≤ 0. Consequently,

ciju(xj) + dijv(xj) = (cij + dij) log 2 + cij log(xj) + dij log(1 − xj) ≥ (cij + dij) log 2.

Therefore, a sufficient condition for (3·2) is,

cij ≤ 0, dij ≤ 0, and 1 + ai > −(log 2)
∑

j 6=i

(cij + dij) . (3·4)

Similarly, a sufficient condition for the second inequality (3·3) is

fij ≤ 0, eij ≤ 0, and 1 + bi > −(log 2)
∑

j 6=i

(fij + eij) . (3·5)

Under these conditions, the family of beta conditional distributions {pi(xi|x
(i)) , i ∈ S} is

everywhere well defined.

As we now show in the following proposition, these conditions also ensure the admissi-

bility of the energy function Q.
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Proposition 2 Assume that for all i, j ∈ S, the conditions (3·4) and (3·5) are satisfied.

Then

1. The family of beta conditional distributions {pi(xi|x
(i)) , i ∈ S} is everywhere well

defined.

2. The energy function Q satisfies the integrability condition (2·9).

Consequently, the auto-model with beta conditional distributions is well defined by (3·1).

While the conditions (3·4) and (3·5) are already used in practice (see Kaiser and Cressie

(2000) and Kaiser et al. (2002)), we are not aware of any published proof that they

are sufficient for (2·9) and hence for the joint distribution to exist. Having well defined

conditional distributions does not necessarily imply well defined joint distribution.

3·1 Spatial cooperation versus spatial competition

We now examine the spatial-competition and spatial-cooperation behaviour of the auto-

beta model. At each site i, the mean of the conditional distribution pi(xi|x
(i)) is

E(Xi|x
(i)) =

1 + Ai,1(x
(i))

2 + Ai,1(x(i)) + Ai,2(x(i))
.

The model is said to be spatially cooperative (respectively competitive) if, at each i,

E(Xi|x
(i)) is non-decreasing (respectively non-increasing) in each neighbouring value xj ,

and is increasing (respectively decreasing) in at least one. Notice that E(Xi|x
(i)) increases

with Ai,1(x
(i)) and decreases with Ai,2(x

(i)).Therefore, the auto-beta model is spatially co-

operative if, for all i 6= j, cij = eij = 0; and it is spatially competitive if, for all i 6= j,

dij = fij = 0.

To conclude the discussion about the auto-beta models, we compare our results to those

of Kaiser and Cressie (2000), specifically their eq. (16). In our notation, their auto-beta

model corresponds to:

βij = −ηij

(
0 1

1 0

)
, ηij ≥ 0.

In other words, cij = eij = 0 and dij = fij = −ηij , where ηij ≥ 0. This provides an auto-

beta model with spatial cooperation as proved by Kaiser and Cressie (2000), but our results

are more general. For example, the constraint dij = fij is generally unnecessary, except in

the case of a spatially symmetrical random field (see the remark following Theorem 1).
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3·2 A spatially cooperative model with a scheme that has four or eight nearest neighbours

First consider the scheme with four nearest neighbours on a two-dimensional lattice, S =

[1,M ] × [1, N ]: each site i ∈ S has four neighbours denoted as {ie = i + (1, 0), iw =

i − (1, 0), in = i + (0, 1), is = i − (0, 1)} (with obvious neighbour adjustments near the

boundary). We assume translation invariance in the sense that the parameters are functions

of the displacement between sites; we assume spatial symmetry, which implies dij = fij ;

we allow possible anisotropy between the horizontal and vertical directions; and we assume

cij = eij = 0, in order to model spatial cooperation. Under all these conditions and from

the result above, there exists a vector α = (a, b) and two 2 × 2 matrices,

β(k) = dk

(
0 1

1 0

)

, k = 1, 2, (3·6)

such that for all i, vectors αi = α, and for all {i, j}, matrices βij = 0 unless i and j are

neighbours, in which case

βi,ie = βiw ,i = β(1), βi,in = βis,i = β(2).

The model involves 4 parameters (a, b, d1, d2). The integrability conditions (3·4) and (3·5)

become

d1 ≤ 0, d2 ≤ 0 ; (1 + a) ∧ (1 + b) > −2(d1 + d2) log 2 . (3·7)

The conditional distributions are beta-distributed with natural parameters,

Ai(x
(i)) =

(
a + d1[v(xie) + v(xiw)] + d2[v(xin) + v(xis)]

b+ d1[u(xie) + u(xiw)] + d2[u(xin) + u(xis)]

)

. (3·8)

We now enlarge the model to a scheme with eight nearest neighbours. Each site then has

four more neighbours {inw = i− (1, 1), ine = i+ (−1, 1), isw = i+ (1,−1), ise = i+ (1, 1)}

(with neighbour adjustments near the boundary). Note that in this case, some cliques

have three or four elements but we consider pairwise interactions only, as specified in the

condition [B1]. We again assume translation invariance, spatial symmetry, and spatial

anisotropy. We wish to model spatial cooperation. Consequently, there exists a vector α =

(a, b) and four 2×2 matrices
{
β(k)

}
of the form of (3·6) with constants {dk : k = 1, ..., 4} ,

such that for all i, vectors αi = α, and for all {i, j}, matrices βij = 0 unless i and j are

neighbours, in which case

βi,ie = βiw ,i = β(1), βi,in = βis,i = β(2), βi,inw
= βise,i = β(3), βi,ine

= βisw,i = β(4).

10



The model involves 6 parameters (a, b, d1, d2, d3, d4). The integrability conditions (3·4) and

(3·5) become

d1, . . . , d4 ≤ 0 ; (1 + a) ∧ (1 + b) > −2(log 2)

4∑

k=1

dk . (3·9)

The conditional distributions are beta-distributed with natural parameters,

Ai(x
(i)) = (3·10)(

a + d1[v(xie) + v(xiw)] + d2[v(xin) + v(xis)] + d3[v(xinw
) + v(xise

)] + d4[v(xine
) + v(xisw

)]

b+ d1[u(xie) + u(xiw)] + d2[u(xin) + u(xis)] + d3[u(xinw
) + u(xise

)] + d4[u(xine
) + u(xisw

)]

)

We propose the method of maximum pseudo-likelihood to estimate the parameters of

the multi-parameter auto-models.

4 Estimation for a multi-parameter auto-model

Parameter estimation for a Markov random field has been well studied. The method

of maximum likelihood unfortunately needs computer-intensive approximations, since the

likelihood function is known only up to a constant that involves the parameters. As a

remedy, Besag (1974, 1977) proposed the method of maximum pseudo-likelihood. We refer

the reader to Guyon (1995) for an account of theoretical investigations of the properties of

maximum pseudo-likelihood estimators. We give below a result for the consistency of the

maximum pseudo-likelihood estimator under assumptions of translation invariance, and

this is followed by a simulation study to investigate the behaviour of the estimators in

finite samples.

4·1 Consistency of the pseudo-likelihood estimator on a lattice

We now introduce specific notation for fields on the two-dimensional lattice Z
2. The

process is observed on a rectangle Λn = [−n1, n1] × [−n2, n2] where n = (n1, n2) and

n1 ∧ n2 → ∞. As is usual in asymptotic theory, we assume translation invariance: that is,

the neighbourhood relationship is defined through a bounded set V0 of neighbours of the

origin (0, 0), such that the set of neighbours of an arbitrary site i ∈ Z
2 is Vi = i+ V0, and

the interaction coefficients that appear in the matrices {βij} are possibly nonzero if and

only if j − i = u, for some u ∈ V0. Furthermore, translation invariance allows us to write

the parameters of the multi-parameter auto-model as:

θ = (α, βu, u ∈ V0) ∈ R
q,
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where q denotes the dimension of θ.

For any subset A ∈ Z
2, write xA = (xi, i ∈ A) as the restriction of x on A. To emphasize

the parameters θ, the family of local conditional distributions is written as:

log p(xi|x
(i), θ) = log p(xi|xVi

, θ) = 〈A(xVi
, θ), B(xi)〉 + C(xi) +D(xVi

, θ) , (4·1)

where

A(xVi
, θ) = α +

∑

u∈V0

βuB(xi+u) . (4·2)

To give the statement (and the proof) of the result, we need more notation and defini-

tions. We suppose that for each θ, there exists a Gibbs distribution µθ on EZ
2

such that

the conditional distributions 4·1 are those of µθ. Let the parameter space be

Θ = {θ ∈ R
q :

∫

E

exp [〈A(xV0
, θ), B(x0)〉 + C(x0)] dm(x0) <∞ for all xV0

∈ E|V0|}, (4·3)

and let θ0 be the true value of the parameter. Define Gs(θ0) to be the set of limiting

Gibbs measures on EZ
2

that are translation invariant and compatible with the family of

conditional distributions {p(xi|x
(i), θ0)}.

Denote Wi = i ∪ Vi and define

R(xWi
, θ) = log[p(xi|xVi

; θ)/p(xi|xVi
; θ0)] , i ∈ Λn, θ ∈ Θ. (4·4)

Then the maximum pseudo-likelihood estimator introduced by Besag(1974, 1977) is defined

by

θ̂n = arg min
θ∈Θ

Un(θ) ,

where

Un(θ) = −
1

|Λn|

∑

i∈Λn

R(xWi
, θ), θ ∈ Θ. (4·5)

and |Λn| = card(Λn). Notice that the computation of θ̂n does not need the value of θ0

appeared in (4·4). We now show that θ̂n is a consistent estimator under mild regularity

conditions.

Theorem 2 Assume:

1. The true (limiting) distribution belongs to Gs(θ0).

12



2. For all θ, R(xW0
, θ) is an integrable random variable in L1(µθ0

).

3. The following identifiability condition holds: for any θ ∈ Θ, if R(xW0
, θ) = 0 for

almost all xW0
(with respect to µθ0

), then necessarily θ = θ0.

Then, the pseudo-likelihood estimator θ̂n converges to θ0 almost surely (µθ0
), as n1 ∧ n2 →

∞.

The assumptions made in Theorem 2 are natural. In particular, Assumption 3 ensures

that the parametrisation θ 7→ p(x0|xV0
; θ) is proper. For Assumption 1, as the dependence

set V0 is finite, it is well-known (see Sinai (1982)) that if the state space E is compact and

the reference measure m finite, the set Gs(θ0) is not empty.

We give an application of this general theorem to the beta auto-models defined in

Section 3·2 while assuming translation invariance, spatial symmetry, anisotropy and spatial

cooperation. In relation to Equations (3·7) and (3·9), let us define

A4 = {(a, b, d1, d2) : d1, d2 ≤ 0; a ∧ b ≥ −2(log 2)(d1 + d2)}, (4·6)

in the scheme with four nearest neighbours, and

A8 = {(a, b, d1, d2, d3, d4) : d1, . . . , d4 ≤ 0; a ∧ b ≥ −2(log 2)

4∑

k=1

dk}, (4·7)

in the eight nearest neighbours system case.

Proposition 3 Consider the auto-beta model of Section 3·2. Assume:

1. The parameter space Θ is a compact subset of A4 or A8 accordingly to the associated

neighbours system.

2. The (true) limiting distribution µθ0
of the observations, defined on EZ

2

, is translation

invariant.

3. The following identifiability condition holds: for any θ ∈ Θ, if R(xW0
, θ) = 0 for

almost all xW0
(with respect to µθ0

), then necessarily θ = θ0.

Then, the pseudo-likelihood estimator θ̂n converges to θ0 almost surely (µθ0
) as n1∧n2 → ∞.

13



4·2 Simulation experiments

We propose several simulation experiments to assess further the properties of the maximum

pseudo-likelihood estimator. We consider the auto-models of Section 3·2, where we assumed

translation invariance, anisotropy, spatial symmetry and spatial cooperation. Both the

eight and the four nearest neighbours systems are examined with various lattice sizes.

For each simulation, we ran a Gibbs sampler on a square lattice, in order to generate a

sample from the auto-model (600 sweeps). Empirical estimates are computed from 1600

independent simulations: systematic errors from simulations are then of order 1600−
1

2 =

0.025.

4·2.1 Experiment with the eight nearest neighbours system

First we consider the model with eight nearest neighbours described by (3·9) and (3·10). We

choose a set of parameter values that satisfy the integrability conditions (3·9) and allow spa-

tial anisotropy between the four directions: (a, b, d1, d2, d3, d4) = (12, 16,−1,−3,−0.5,−2).

The lattice size is 64 × 64. Table 1 gives the bias averages and the standard deviations of

the parameter estimates from 1600 independent runs. In this case, the maximum pseudo-

likelihood method provides consistent estimators with however non-negligible standard

deviations especially for small parameter values like d1 or d3.

Parameter a b d1 d2 d3 d4

True values 12 16 -1 -3 -0.5 -2

Bias average 0.0263 0.0282 0.0018 -0.0117 -0.0077 0.0033

St. deviation 0.3503 0.4775 0.2956 0.2775 0.2457 0.2619

Table 1: Bias averages and standard deviations of the parameter estimates for the beta

auto-model with eight nearest neighbours, on a 64×64 lattice, from 1600 independent runs.

4·2.2 Extended experiments with the four nearest neighbours system

Next we consider the model with four nearest neighbours as described in (3·7) and (3·8)

with the four parameters (a, b, d1, d2). This model appears in Kaiser et al. (2002) as a latent

process for the analysis of a real data set of diseased trees that involves a spatial hierarchi-

cal model. The authors impose the constraint d1 = d2, and propose Monte Carlo maximum

likelihood estimation that results in the estimates (a, b, d1 = d2) = (16.6, 18.9,−4.5). No-

tice that these values satisfy the integrability condition (3·7). Then we choose these values

for our simulation experiments.

14



Here we are also interested in measuring empirically the convergence rate of the pseudo-

likelihood estimators. Therefore, simulations are conducted on increasing lattice sizes:

n = 8 × 8, 16 × 16, 32 × 32, 48 × 48, 56 × 56, and 64 × 64. Average bias and standard

deviations of the estimates are displayed in Table 2. We can see that the bias are quite

large in the case of the smallest lattice size n = 82 and significantly reduced when n = 642.

Parameter a b d1 d2

True values 16.6 18.9 −4.5 −4.5

8*8 Bias average 2.1640 4.5885 -0.4970 -0.0491

St. deviation 6.6384 7.6895 3.8361 3.4149

16*16 Bias average 0.3574 0.8581 -0.0434 -0.0510

St. deviation 2.3882 2.3416 1.3288 1.3376

32*32 Bias average 0.0260 0.2171 0.0273 -0.0066

St. deviation 1.1393 1.1719 0.6372 0.6219

48*48 Bias average 0.0261 0.0852 -0.0210 0.0166

St. deviation 0.7267 0.7263 0.4130 0.4359

56*56 Bias average 0.0319 0.0365 -0.0140 -0.0027

St. deviation 0.6466 0.6547 0.3693 0.3619

64*64 Bias average 0.0307 0.0357 -0.0069 -0.0085

St. deviation 0.5554 0.5713 0.3031 0.3179

Table 2: Bias averages and standard deviations of the parameter estimates for the beta

auto-model with four nearest neighbours, various lattice sizes and from 1600 independent

runs in each case.

Next, to get insights on the sampling distributions, we examine Gaussian Q-Q plots of

the estimates. Figure 1 below displays such plots for extreme sizes n = 162 and n = 642

(in the case of the smallest size n = 82, the plot shows a non Gaussian behaviour). For a

size as small as n = 162, the plot is not so bad and the empirical distribution is close to a

Gaussian distribution. Step by step, the Q-Q plots set right, and we finally get a “perfect”

Gaussian approximation for n = 642.

Finally, we examine empirically the convergence rate of the estimates to their respective

Gaussian distributions. Based on Table 2 and with the “bad” case n = 82 excluded,

Figure 2 displays scatter-plots of the logarithms of the standard deviations versus log n.

Simple regression fits indicate a slope around −1
2

for all the four parameters, yielding a

strong support for a root-n rate of their weak convergence to an asymptotic Gaussian

distribution.
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Figure 1: Gaussian Q-Q plots of the estimates from 1600 independent runs. a). Lattice

size n = 162. b). Lattice size n = 642.
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Figure 2: Standard deviations of estimates vs the sample size n (both in log-scale) with n =

162, 322, 482, 562 and 642. The slope of the regression line is −0.5264, −0.5142, −0.5250

and −0.5143 for parameters a, b, d1 and d2 respectively.

5 Discussion

In this paper we have proposed a directly analogous to Besag’s auto-models to the situa-

tions where the local conditional distributions belong to some multi-parameter exponential

families, such as the beta distribution. This allows one to model spatial cooperation (as

well as spatial competition). Another interesting application is the modelling of mixed-

state data where the distributions are mixtures of discrete and continuous components.

Measurements can present continuous values during some periods and discrete values at

other times, such as for daily rainfall time series. At a given site, there may be many zeros

when the rain is absent, followed by periods with positive rainfall values (Allcroft and

Glasbey (2003)); then, the state space becomes E = {0} ∪ (0,∞). Any random variable

X taking its values in E is called a mixed-state random variable, which we can define

formally as follows: with probability γ ∈ (0, 1), set X = 0, and with probability 1 − γ, X

is positive, continuous having a density belonging to a s-dimensional exponential family,

gξ(x) = H(ξ) exp〈ξ, T (x)〉, x > 0, ξ ∈ R
s, T (x) ∈ R

s.

Let m(dx) = δ0(dx) + λ(dx) where δ0 and λ are respectively the Dirac measure at 0 and

the Lebesgue measure on (0,∞). Define the indicator function δ(x) = I{0}(x) and set

17



δ∗(x) = 1 − δ(x), x ≥ 0. Then X has then the following density function (with respect to

m(dx)):

fθ(x) = γδ(x) + (1 − γ)δ∗(x)gξ(x) = Z−1(θ) exp〈θ, B(x)〉, x ≥ 0,

where we have set

θ = (θ1, θ2)
T =

(
log

(1 − γ)H(ξ)

γ
, ξ

)T

, B(x) = (δ∗(x), T (x)T )T .

In other words, X belongs to a (s+ 1)-dimensional exponential family. When this formu-

lation is applied to the conditional distributions on a lattice, we obtain a multi-parameter

auto-model suitable for modelling data that are either zero or positive-valued. Theoretical

results for these specific mixed-state auto-models will be studied elsewhere. Experimental

application to motion measurements in video sequences can be found in (Bouthemy et al.

(2006)).

On the other hand, the auto-model scheme will gather more power in applications

if the assumed pairwise interactions are extended to more general multiway dependence.

Another important question is to relax the positivity condition as proposed by Kaiser

and Cressie (2000) in a general context. Finally, the simulations of Section 4 indicate

that the maximum pseudo-likelihood estimators of the auto-models’ parameters should be

asymptotically normally distributed with a root-n convergence rate. It is clearly worth

investigating theoretical studies to support such empirical evidence.

6 Proofs

Proof of Theorem 1

For each i, we have:

Q(x) −Q(τix)

= Gi(xi) +
∑

j: j 6=i

Gij(xi, xj) = log
pi(xi|x

(i))

pi(τi|x(i))

= 〈Ai(x
(i)), Bi(xi)〉 + Ci(xi) .

By taking x(i) = τ (i) = {τj : j 6= i}, we obtain:

Gi(xi) = 〈Ai(τ
(i)), Bi(xi)〉 + Ci(xi) . (6·1)
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Now, let us fix two indices i 6= j. For ease of exposition and without loss of generality, we

may assume i = 1 and j = 2. The previous calculations also lead to

Q(x1, x2, τ3, . . . , τn) −Q(τ1, x2, τ3, . . . , τn)

= G1(x1) +G12(x1, x2) = 〈A1(x2, τ3, . . . , τn), B1(x1)〉 + C1(x1) .

Therefore,

G12(x1, x2) = 〈A1(x2), B1(x1)〉 ,

where we have set

A1(x2) = A1(x2, τ3, . . . , τn) −A1(τ2, τ3, . . . , τn) .

In an analogous manner and switching the indices 1 and 2, we finally obtain for all x1, x2 ∈

E,

G12(x1, x2) = 〈A1(x2), B1(x1)〉 = G21(x2, x1) = 〈A2(x1), B2(x2)〉 ;

that is,

BT
1 (x1)A1(x2) = AT

2 (x1)B2(x2) , (6·2)

where

A2(x1) = A2(x1, τ3, . . . , τn) −A2(τ1, τ3, . . . , τn) .

Next, Condition [C] for i = 2 means that there exist l elements of E, Y = {y1, ..., yl},

such that the l×l matrix B2(Y) = (B2(y1), . . . , B2(yl)) is invertible. We also write A1(Y) =

(A1(y1), . . . ,A1(yl)). Then, upon substituting x2 = yj, for j = 1, . . . , l, into (6·2) ,

AT
2 (x1)B2(Y) = [AT

2 (x1)B2(y1), . . . ,A
T
2 (x1)B2(yl)]

= [BT
1 (x1)A1(y1), . . . , B

T
1 (x1)A1(yl)]

= BT
1 (x1)A1(Y).

Therefore,

AT
2 (x1) = BT

1 (x1)β12(Y) , where β12(Y) = A1(Y)[B2(Y)]−1 .

Consequently, G12 can be written as

G12(x1, x2) = BT
1 (x1)β12(Y)B2(x2) .
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The left hand side of this equality does not depend on Y , so β12(Y) ≡ β12 is a constant

matrix and we obtain,

G12(x1, x2) = BT
1 (x1)β12B2(x2) . (6·3)

By exchanging the indices, we also have G21(x2, x1) = BT
2 (x2)β21B1(x1). As G12(x1, x2) =

G21(x2, x1), for all x1, x2, we must have β12 = βT
21.

Furthermore, Q(x)−Q(τ1x) = G1(x1) +
∑

j 6=1G1j(x1, xj). We use eqs. (6·1) and (6·3)

in this expression and obtain,

AT
1 (τ (1))B1(x1) + C1(x1) +

∑

j 6=1

BT
1 (x1)β1jBj(xj) = AT

1 (x(1))B1(x1) + C1(x1),

which is equivalent to

αT
1B1(x1) +

(
∑

j 6=1

BT
j (xj)βj1

)
B1(x1) = AT

1 (x(1))B1(x1) .

That is,

[
α1 +

∑

j 6=1

β1jBj(xj) −A1(x
(1))

]T

B1(x1) = 0.

Hence, applying Condition [C] in the same manner as above, we obtain Equation (2·3) for

i = 1.

Proof of Proposition 1

We have only to check that the conditional distributions of the field with potentials (2·4)

and (2·5) are those given by [B2] and (2·3). This follows from:

Q(x) −Q(τix) = Gi(xi) +
∑

j:j 6=i

Gij(xi, xj)

= 〈αi, Bi(xi)〉 + Ci(xi) +
∑

j 6=i

BT
i (xi)βijBj(xj)

= 〈Ai(x
(i)), Bi(xi)〉 + Ci(xi) = log

pi(xi|x
(i))

pi(τi|x(i))
.
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Proof of Proposition 2

We need only to prove the admissibility of Q. Let ξ = (1, 1)T and w(x) = B(x)−(log 2)ξ =

(log x, log(1 − x))T . We have

BT (xi)βijB(xj) = (log 2)2ξTβijξ + (log 2)[ξTβijw(xj) +wT (xi)βijξ] +wT (xi)βijw(xj).

For all i 6= j, since wT (xi)βijw(xj) ≤ 0 and ξTβijξ ≤ 0, we have

B(xi)
TβijB(xj) ≤ (log 2)[ξTβijw(xj) + wT (xi)βijξ].

Therefore,

Q(x1, . . . , xn) =
∑

i∈S

〈αi, B(xi)〉 +
∑

1≤i<j≤n

BT (xi)βijB(xj)

≤
∑

i∈S

〈αi, B(xi)〉 + (log 2)
∑

1≤i<j≤n

[ξTβijw(xj) + wT (xi)βijξ]

=
∑

i∈S

〈αi, w(xi)〉 + (log 2)
∑

1≤i<j≤n

ξT [βijw(xj) + βT
ijw(xi)] +Rn

=
∑

i∈S

〈αi + (log 2)
∑

j 6=i

βijξ, w(xi)〉 +Rn,

where Rn is a constant, depending only on the parameters αi. Therefore, up to a constant

factor, eQ is bounded above by a product of n independent beta densities that are well

defined, since from (3·4) and (3·5), the exponents of the factors xi and (1 − xi) are all

greater than -1. Hence eQ is integrable over (0, 1)n.

Proof of Theorem 2

Since the A(xVi
, θ)’s are linear functions of the parameters in θ, and ex is a convex function,

the parameter space Θ is a convex set in R
q. Moreover, it is not difficult to see that this

linear dependence also implies that the Hessian matrix of Un(θ) is everywhere nonnegative-

definite. Hence Un is a convex function of θ.

In the case of a translation-invariant specification, the extremal elements of Gs(θ0)

coincide with the stationary ergodic Gibbs measures. Moreover, every element of Gs(θ0) is a

convex combination of its ergodic (extremal) elements (Sinai (1982)): consider a probability

measure w defined on the set G∗
s (θ0) of ergodic elements of Gs(θ0), then we have

µθ0
=

∫

G∗

s (θ0)

ν · dw(ν) .
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Define the convergence set of the pseudo-likelihood estimator θ̂n = θ̂n(xi, i ∈ [−n1, n1] ×

[−n2, n2]):

A := {x ∈ EZ
2

: θ̂n → θ0 asn1 → ∞, n2 → ∞ .

If for all ergodic elements ν it holds that ν(A) = 1, we clearly have µθ0
(A) = 1. Therefore,

without any loss of generality, we can focus on proving the result for µθ0
ergodic.

Next, by Assumption 1 and the ergodic theorem, the following limit exists almost-surely

(µθ0
),

K(θ) = lim
n
Un(θ) = −Eµθ0

R(xW0
, θ).

Moreover,

K(θ) = −Eµθ0

[
Eµθ0

(R(xW0
, θ)|xV0

)
]

= Eµθ0
[DKL(p(·|xV0

, θ0), p(·|xV0
, θ))] ≥ 0,

where DKL(P,Q) =
∫

log(P/Q)dP is the Kullback-Leibler divergence . Furthermore,

K(θ) = 0 if and only if θ = θ0 under Assumption 3 of the Theorem.

Therefore, standard arguments for convex estimating functions imply that the estimator

θ̂n is strongly consistent (see Senoussi (1990), or Guyon (1995) Theorem 3.4.4).

Proof of Proposition 3

We need only to check condition 2 of Theorem 2. Note that the parameter sets A4 and

A8 are subsets of those defined in Equations (3·7) and (3·9), respectively. The advantage

here is that for any θ ∈ A4 (or A8), the parameters A(xVi
, θ) of the local beta conditional

distributions are nonnegative, componentwisely. Consequently, the local contrast function

{R(xW0
, θ)} is a continuous function on the compact set [0, 1]|W0| × Θ (previously it could

be discontinuous at the boundary 0 and 1). It follows that R is bounded, thus integrable.

The conclusion follows.
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Ann. Inst. Henri Poicaré 26, 19-44.
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