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Impact picture for the analyzing power A N in very forward pp elastic scattering
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In the framework of the impact picture we compute the analyzing power A N for pp elastic scattering at high energy and in the very forward direction. We consider the full set of Coulomb amplitudes and show that the interference between the hadronic non-flip amplitude and the single-flip Coulomb amplitude is sufficient to obtain a good agreement with the present experimental data. This leads us to conclude that the single-flip hadronic amplitude is small in this low momentum transfer region and it strongly suggests that this process can be used as an absolute polarimeter at the BNL-RHIC pp collider.

I. INTRODUCTION

The measurement of spin observables in hadronic exclusive processes is the only way to obtain the full knowledge on the corresponding set of scattering amplitudes, and in particular, their relative size and phase difference. Taking the specific case of proton-proton elastic scattering, a reconstruction of the five amplitudes has been worked out in the low-energy domain [1]. This situation is very different at high energy; due to the lack of data, in the range p lab 100-300 GeV, besides the non-flip hadronic amplitude φ h 1 , only the hadronic helicity-flip amplitude φ h 5 is known and to a rather poor level of accuracy. The advent of the BNL-RHIC pp collider, where the two proton beams can be polarized, longitudinally and transversely, up to an energy √ s = 500 GeV, offers a unique opportunity to measure single-and double-spin observables, and thus to provide the determination of the spin-dependent amplitudes, which remain unknown so far.

For instance, for an elastic collision of transversely polarized protons, the differential cross section as a function of the momentum transfer t and the azimuthal angle φ, reads 2π

d 2 σ dtdφ = dσ dt [1 + (P B + P Y )A N cos φ (1) 
+ P B P Y (A N N cos 2 φ + A SS sin 2 φ)] ,
where P B and P Y are the beam polarizations, A N the analyzing power and A N N , A SS are double spin asymmetries (see Ref. [2] for definitions). In this expression, the values of the beam polarizations have to be known accurately in order to reduce the errors on the spin asymmetries. So new measurements are indeed required to achieve an amplitude analysis of pp elastic scattering at high energy, and the success of the vast BNL-RHIC spin programme [3] also relies heavily on the precise determination of the beam polarizations. One possibility for an absolute polarimeter1 is provided by the measurement of the analyzing power A N , in the very forward |t| region, where significant Coulomb nuclear interference (CNI) occurs [START_REF] Bourrely | 12th International Symposium on High Energy Spin Physics[END_REF][START_REF] Buttimore | [END_REF][7].

In the calculation of the analyzing power an important question arises: is the interference fully dominated by the hadronic non-flip amplitude with the one-photon exchange helicity-flip amplitude or must one also take into account the contribution of the hadronic helicity-flip amplitude φ h 5 , mentioned above? Several arguments concerning the magnitude and phase of φ h 5 in the small t-region, have been discussed in great detail in Ref. [START_REF] Buttimore | [END_REF] and it was concluded that the measurement of A N in the CNI region was badly needed to get the answer. The purpose of this paper is to study this problem in the framework of the impact picture developed almost three decades ago [8], which has led to a very successful phenomenology, repeatedly verified by highenergy experiments, including near the forward direction. 2

II. THE IMPACT-PICTURE APPROACH

In the impact picture, the spin-independent hadronic amplitude φ h 1 = φ h 3 for pp and pp elastic scattering reads as [8] 

φ h 1,3 (s, t) = is 2π e -iq•b (1 -e -Ω 0 (s,b) )db , ( 2 
)
where q is the momentum transfer (t = -q 2 ) and Ω 0 (s, b) is the opaqueness at impact parameter b and at a given energy s. We take

Ω 0 (s, b) = S 0 (s)F (b 2 ) + R 0 (s, b) . (3) 
Here the first term is associated with the Pomeron exchange, which generates the diffractive component of the scattering and the second term is the Regge background. The Pomeron energy dependence is given by the crossing symmetric expression [START_REF] Cheng | [END_REF][START_REF] Cheng | Expanding Protons: Scattering at High Energies[END_REF]]

S 0 (s) = s c (ln s) c + u c (ln u) c , ( 4 
)
where u is the third Mandelstam variable. The choice one makes for F (b 2 ) is crucial and, as explained in Ref. [8], we take the Bessel transform of

F (t) = f [G(t)] 2 a 2 + t a 2 -t . (5) 
Here G(t) stands for the proton electromagnetic form factor, parametrized as

G(t) = 1 (1 -t/m 2 1 )(1 -t/m 2 2 ) . ( 6 
)
The slowly varying function occurring in Eq. ( 5) reflects the approximate proportionality between the charge density and the hadronic matter distribution inside a proton [START_REF] Cheng | [END_REF]. So the Pomeron part of the amplitude depends on only six parameters c, c , m 1 , m 2 , f, and a. The asymptotic energy regime of hadronic interactions are controlled by c and c , which will be kept, for all elastic reactions, at the values obtained in 1984 [13], namely c = 0.167 and c = 0.748 .

The remaining four parameters are related, more specifically to the reaction pp (pp) and they have been fitted in [14] by the use of a large set of elastic data. We now turn to the Regge background. A generic Regge exchange amplitude has an expression of the form

Ri (s, t) = C i e b i t 1 ± e -iπα i (t) [ s s 0 ] α i (t) , (8) 
where C i e b i t is the Regge residue, ± refers to an even-or odd-signature exchange, α i (t) = α 0i + α i t, is a standard linear Regge trajectory and s 0 = 1 GeV 2 . If R0 (s, t) = i Ri (s, t) is the sum over all the allowed Regge trajectories, the Regge background R 0 (s, b) in Eq. ( 3) is the Bessel transform of R0 (s, t). In pp (pp) elastic scattering, the allowed Regge exchanges are A 2 , ρ, ω, so the Regge background involves several additional parameters, which are given in Ref. [14].

In earlier work, spin-dependent hadronic amplitudes were implemented [8,15,16], using the notion of rotating matter inside the proton, which allowed us to describe the polarizations and spin correlation parameters, but for the present purpose hadronic spin-dependent amplitudes will be ignored. In order to describe the very small t-region we are interested in, one adds to the hadronic amplitude considered above, the full set of Coulomb amplitudes φ C i (s, t), whose expressions are given in Ref. [17] and the Coulomb phase in Ref. [18].

The two observables of interest are the unpolarized cross section dσ/dt and the analyzing power A N , whose expressions in terms of the hadronic and Coulomb amplitudes are respectively

dσ(s, t) dt = π s 2 i=1,••• ,5 |φ h i (s, t) φ C i (s, t)| 2 (9)
and

A N (s, t)= 4Im((φ h 1 (s, t)) * φ C 5 (s, t)) i=1,••• ,5 |φ h i (s, t)+φ C i (s, t)| 2 . ( 10 
)
The numerator of this last expression is not fully general because we have assumed that φ h 1 = φ h 3 and φ h 2,4,5 = 0.

III. NUMERICAL RESULTS

The analyzing power A N has been measured at high energy for √ s = 13.7, 19.4, 200 GeV, but before turning to the calculation of this quantity, it is necessary to look at the predictions for the differential cross section, at the corresponding energies. They are given in the upper plot in Fig. 1 and compared with the available experimental results at √ s = 13.7 and 19.4 GeV. We underestimate a bit the data for high t-values, at √ s = 13.7 GeV, which might indicate the presence of a small hadronic spindependent amplitude. However, this is not the case at √ s = 44 GeV, where the agreement is excellent, as shown in the lower plot in Fig. 1.

FIG. 1: The differential cross section versus the momentum transfer t for different energies. Data from Refs. [19][20][21][22][23][24].

Note that the momentum transfer runs over four decades and the cross section over eleven orders of magnitude, which is a good illustration of the validity of the impact picture. Concerning the energy √ s = 200 GeV, we cannot make a detailed comparison with the data. The pp2pp experiment [25] has only determined the slope of the cross section for 0.01 < |t| < 0.019 GeV 2 , which is b = 16.3±1.6(stat.)±0.9(syst.) GeV -2 , consistent with the average value obtained in the impact picture, namely b = 16.25 GeV -2 .

In Fig. 2, we compare the predictions with the data, for A N in the CNI region versus |t|, FIG. 2: The analyzing power A N versus the momentum transfer t for different energies. Data from Refs. [26][27][28].

for three different energies and let us make the following remarks. First, there is almost no energy dependence between √ s = 13.7 and 19.4

GeV, but the curve has a slightly different shape at √ s = 200 GeV. Second, although this is not obvious from the plot, A N does not vanish for |t| > 0.1 GeV 2 and we would like to stress that for pp elastic scattering at high energy, in the dip region, the hadronic and the Coulomb amplitudes are of the same order of magnitude [29], so the behavior of spin observables is sensitive to this interference. Finally, indeed the predictions agree well with the present experimental data. This shows that the hadronic spin-flip amplitude is not necessary to describe the analyzing power, at least when compared with the data with the present day accuracy. A similar conclusion was obtained in Ref. [26], which contains the best data sample so far. Note that their analysis, based on Ref. [START_REF] Buttimore | [END_REF], was done using a simple model for φ h 1 and they did not introduce the full expressions for the Coulomb amplitudes φ C i , as we do here for consistency.

IV. CONCLUSION

We have shown, in the context of the impact picture, that the analyzing power A N can be described in the CNI region by the interference between the non-flip hadronic amplitude and the single-flip Coulomb amplitude. Unfortunately the data set at √ s = 200 GeV is too limited to confirm the predicted trend. It should be extended to make sure this method is a reliable high-energy polarimeter. The RHIC machine offers a unique opportunity to measure single-and double-spin observables, with both longitudinal and transverse spin directions, and we believe it worthwhile to improve such measurements, in particular in the small momentum transfer region [30], as discussed in Ref. [START_REF] Buttimore | [END_REF]. It is a trivial statement to say that at the moment we know almost nothing on the pp spin-flip amplitudes at high energy, due to the scarcity of previous experiments performed at CERN and Fermilab. They do not allow us to make a reliable amplitude analysis, which requires these new measured observables, in a significant range of mo-mentum transfer. This will be important for our understanding of spin-dependent scattering dynamics.

Proton-Helium elastic scattering has been also considered as a possible high-energy polarimeter[4].

2 An accurate measurement for the real part of the pp forward scattering amplitude is a real challenge for the LHC[START_REF] Bourrely | Proceedings of the XIth Int. Conf. on Elastic and Diffractive Scattering[END_REF].
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