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Asynchronous Games 4

A Fully Complete Model of Propositional Linear Logic

Paul-André Melliès ∗

Abstract

We construct a denotational model of propositional lin-

ear logic based on asynchronous games and winning uni-

form innocent strategies. Every formula A is interpreted

as an asynchronous game [A] and every proof π of A is

interpreted as a winning uniform innocent strategy [π] of

the game [A]. We show that the resulting model is fully

complete: every winning uniform innocent strategy σ of the

asynchronous game [A] is the denotation [π] of a proof π of

the formula A.

1 Introduction

By promoting a dynamic and interactive view on proofs

and programs, game semantics has modified our basic un-

derstanding of both logical systems and programming lan-

guages. The semantic analysis has revealed that formulas

and types describe games, and that proofs and programs de-

scribe strategies. Hence, cut-eliminating a proof against its

refutation, or evaluating a program against its environment,

amounts to playing a strategy σ against a counter-strategy τ .

The play 〈σ|τ〉 resulting from the evaluation of σ against τ

defines a “symbolic trajectory” which captures the essence

as well as the syntactic details of the usual cut-elimination

and evaluation procedures. Besides, the game paradigm

was shown to apply to a large variety of programming lan-

guages, starting from PCF [4, 17, 31] and Idealized AL-

GOL [5].

The remarkable success of game semantics in the analy-

sis of proofs and programs should not hide the fact that, af-

ter less than fifteen years of active research, game semantics

remains a young and experimental subject, full of promises

but still a long way from maturity. Most notably, game

semantics bumps since its origins against three extremely

puzzling facts, without offering a proper solution to any of

them. Taken separately, each fact is generally accepted as

a minor defect in a beautiful and fruitful theory. Taken to-
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gether, they indicate that something fundamental remains to

be understood about games. This is the starting point of this

work. After reviewing the three facts, we explain how we

managed to resolve them together in [29] with the notion

of asynchronous game developed in [25, 27, 28]. This dis-

cussion conveys us to the main contribution of the paper:

the formulation of a fully complete model of propositional

linear logic, in the sense of [3].

Game semantics describes fragments of linear logic —

not linear logic itself. Game semantics really emerged

in the early 1990s when people realized after Blass [10]

that the formulas of linear logic describe sequential games.

Abramsky and Jagadeesan notice in [3] that Blass model

does not provide a satisfactory interpretation of proofs as

deterministic strategies, because the model does not quite

define a category: strategies may be composed as in a cat-

egory, but composition is not associative. Much work has

been devoted subsequently to construct proper categories of

sequential games and deterministic strategies. Despite these

efforts, only fragments of linear logic could be interpreted

in this way, most notably:

• multiplicative linear logic (MLL) has the tensor prod-

uct and the duality of linear logic, but no additives and

no exponentials. The first game models of MLL are

given by Abramsky, Jagadeesan, Hyland and Ong [3,

16] who refine the category of Conway games con-

structed by Joyal [21] in order to obtain precise (that

is, fully complete) models.

• intuitionistic linear logic (ILL) has the tensor product,

the linear implication, the cartesian product, and the

exponential modality of linear logic — but no dual-

ity. The first game models of ILL are given by La-

marche [22, 11] who linearizes in this way the sequen-

tial algorithm model of Berry and Curien [9]; and by

McCusker [24] who combines the work by Hyland

and Ong on arena games [17] and by Abramsky, Ja-

gadeesan, Malacaria on token games [4]. Another in-

teresting model of ILL appears in Hyland’s survey on

game semantics [15].

• polarized linear logic (LLP) has all the connectives of



linear logic — but formulas are restricted to Continu-

ation Passing Style formulas (CPS formulas) by a po-

larity constraint. Girard introduces the idea of polarity

in his work on LC and classical logic [13]. Laurent de-

fines LLP and adapts to the logic the arena game model

of Intuitionistic Logic [23].

Other less conventional game models have been designed,

most notably a concurrent model of the multiplicative ad-

ditive fragment [7], a non deterministic model of the mul-

tiplicative exponential fragment [8], and two slightly mys-

terious game models of propositional linear logic [18, 19].

However, it seemed hardly possible to formulate a sequen-

tial game model of propositional linear logic in the style

of Blass games — until the asynchronous game model of

propositional linear logic came out in [29]. The task of the

present paper is precisely to refine this particular model in

order to obtain a full completeness result.

Game semantics is affine — not linear. Another puz-

zling fact about game semantics is that the unit 1 of the ten-

sor product and the unit ⊤ of the cartesian product are gen-

erally identified in game models of ILL. Typically, the two

units are interpreted as the empty game, see [22, 11, 24, 15].

From a logical point of view, the equality 1 = ⊤ implies

that the weakening rule may be applied on any formula A.

From a categorical point of view, the unit ⊤ is the terminal

object of the underlying category of sequential games. Ev-

ery strategy σ of a game B may be seen alternatively as a

morphism 1 −→ B of the category. The equality 1 = ⊤ en-

ables to compose this morphism to the canonical morphism

A −→ ⊤ associated to any object A. The resulting strategy

A −→ 1 −→ B

is affine in the sense that it does not need to interact on

the game A in order to complete the interaction on the

game B. This departs severely from linear logic, in which

every proof of the linear implication

A ⊸ B

uses its hypothesis exactly once. So, linearity in the precise

sense of linear logic is not captured by usual game seman-

tics, or only marginally by the notion of strict morphism [1].

Interestingly, linearity (identified to strictness) is the key in-

gredient of the asynchronous game model of linear logic

formulated in [29] and will be one of the many elements of

the present work.

Game semantics is sequential — not positional. The

most puzzling fact about mainstream game semantics (eg.

arena games [17, 6] or token games [4]) is certainly that the

whole theory is developed without ever mentioning the no-

tion of position of a game. A game is understood simply as a

set of plays, where a play is defined as a (possibly justified)

sequence of moves. Consequently, mainstream game se-

mantics is purely “sequential” (that is, based on sequences)

instead of being also positional. This lack of positional-

ity conceals a fundamental aspect of games: different plays

may reach the same position (or state) of the game; this po-

sition is what the plays compute, each play describing one

particular trajectory to reach it.

By way of illustration, the boolean game B implements

a rudimentary computing device consisting of exactly one

memory cell. The memory cell contains a boolean value,

which may be either V (for “Vrai”, the French word for

“True”) or F (for “False”). The game B is played in two

steps. The user (Opponent) asks the value of the cell by

playing the move q (for “question”). Then, the device

(Player) answers by playing either the move true when the

value is V or the move false when the value is F . The

game is summarized in the decision tree below.

· ·

·
true

^^===== false

@@�����

·

q

OO

The tensor product of linear logic enables to combine two

boolean games B1 and B2 in order to implement the com-

puting device consisting of two memory cells (we use the

superscripts 1 and 2 only to distinguish the two boolean

games). The resulting game B1 ⊗ B2 is played as follows.

Suppose that the first cell has value V and the second cell

has value F in the current state of the device. The user (Op-

ponent) may start by asking the value of the first cell. In

that case, she plays the move q1 and the device (Player) re-

acts by playing the move true1. The user may then ask the

value of the second cell by playing the move q2, and the de-

vice will react by playing the move false2. The sequence

of interactions constructs the left branch of the (fragment

of) decision tree representing the game B1 ⊗ B2:

· ·

·
false2

WW000

·
true1

GG���

·
q2

WW000

·
q1

GG���

·
true1

WW000

·
false2

GG���

·
q1

^^====
q2

@@����

(1)

Now, the user may permute his order of inquiry, and start by

asking the value of the second cell, then the value of the first

cell. The resulting sequence of four moves constructs the

right branch of the decision tree. Since the order of inquiry

is somewhat irrelevant, it is natural to think that the two

branches should reach the same position of the game. This
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is represented in diagrams by bending the two branches of

picture (1) and by drawing the decision tree as a graph:

·

·

false2
99rrrrrr ·

true1
eeLLLLLL

·

q2 @@���
·

q1^^<<<

·
true1

^^<<<
· false2

@@���

·
q1

eeLLLLLL q2

99rrrrrr

(2)

This new picture is more informative than the previous one

because it does not only indicate how Player and Oppo-

nent interact, but also what they compute: in that case, the

state of the computing device, telling that the first cell has

value V and the second cell has value F .

Surprisingly, the positional intuition is never really ex-

ploited in mainstream game semantics. Nonetheless, the

author discovered a few years ago that positionality is just

there, hidden in the core of the theory, in the notions of

arena game and innocent strategy. This unexpected discov-

ery was the starting point of asynchronous games.

Asynchronous games. Asynchronous games are games

played on asynchronous transition systems generated by

event structures [32, 36]. An asynchronous transition sys-

tem is a directed graph equipped with 2-dimensional tiles of

the shape of a 1× 1 square:

x′

y

n
??�����
∼ z

m
__?????

x
m

``AAAAA n

>>}}}}}

(3)

Every such tile with edges m · n and n · m indicates that

the two moves m and n may be permuted in a play, what

one writes m · n ∼ n · m. From this follows an homo-

topy relation ∼ on plays, relating plays equal modulo per-

mutation of moves. The term homotopy should be under-

stood mathematically as (directed) homotopy in the topo-

logical presentation of asynchronous transition systems as a

n-dimensional cubical sets [14].

By way of illustration, this enables to refine picture (2)

as the asynchronous game represented below:

V ⊗ F

V ⊗ q

false2
88rrrrr

∼ q ⊗ F

true1
ffLLLLL

V ⊗ ∗

q2 99rrrrr
∼ q ⊗ q

true1LL
ffLL

false2rr

88rr

∼ ∗ ⊗ F

q1eeKKKKK

q ⊗ ∗
true1

eeLLLLL q2rr

88rr

∼ ∗ ⊗ q

q1LL
ffLL

false2

99rrrrr

∗ ⊗ ∗
q1

ffMMMMM q2

88qqqqq

In this 2-dimensional picture, the two plays of pictures (1)

and (2) appear to be homotopic after a series of four per-

mutations. Note also that every position is given a name

(like q ⊗ ∗ or V ⊗ F ) which reflects the current state of the

computation.

Positionality. We explain in [25, 27] how to formulate

arena games and innocent strategies in the language of asyn-

chronous games. This shift from arena games to asyn-

chronous games is prerequisite if one takes positionality se-

riously. For instance, the naive idea that the current posi-

tion x of a justified sequence s in an arena game may be

simply defined as the set of moves (and pointers) which

have been played... does not really work, for subtle reasons

related to the interpretation of the exponential modality, and

further discussed in [25].

A strategy of asynchronous game is defined in the usual

“sequential” way, as a set of plays satisfying the usual prop-

erties of alternacy, determinism, etc. A strategy is innocent

when it satisfies moreover two local consistency diagrams

recalled in the Appendix (Figures 2 and 3). The two dia-

grams replace the condition originally formulated in arena

games that an innocent strategy plays according to the cur-

rent Player view, see [17, 31, 6] for details.

By definition, a strategy σ plays a position x when there

exists a play s ∈ σ with target x in the asynchronous game.

The set of positions played by a strategy σ is denoted σ•.

The main result of [27] is that every innocent strategy σ may

be reconstructed from the set of positions σ•. In that sense,

an innocent strategy is positional as well as sequential.

Moreover, once understood as positional strategies, in-

nocent strategies compose just as relations: given two inno-

cent strategies σ : A ⊸ B and τ : B ⊸ C, their composite

σ; τ : A ⊸ C is the innocent strategy characterized by the

equation:

(σ; τ)• = {x ⊸ z | ∃y, x ⊸ y ∈ σ• ∧ y ⊸ z ∈ τ•}. (4)

Here, we write x ⊸ z for the position of A ⊸ C project-

ing on the position x in A and on the position z in C, and

similarly for x ⊸ y and y ⊸ z.

Linearity. Shifting from a sequential to a positional point

of view enables to resolve the points raised earlier in a very

natural way. To every position x, one assigns an integer

κ(x) ∈ Z called its payoff. Every strategy σ is then re-

quired to be a winning strategy, playing only on positions of

positive payoff. Now, a typical arena game (without brack-

eting policy) is translated as an asynchronous game B in

which all the positions are of null payoff, except for the ini-

tial position ∗B which is of payoff +1. The game starts by

a move m by Opponent, followed by a move n by Player:

∗B
m
→ x

n
→ y.
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Suppose given another asynchronous game A of the same

kind. In the definition of A ⊸ B appearing in [29] as well

as in the present paper, Opponent starts the game by play-

ing simultaneously a hidden move reaching the initial posi-

tion ∗A of component A, and one initial move m reaching a

position x in component B:

∗A⊸B
m
→ (∗A ⊸ x). (5)

A winning strategy of A ⊸ B cannot react to Opponent’s

move (5) by playing a move n in B. The resulting play

∗A⊸B
m
→ (∗A ⊸ x)

n
→ (∗A ⊸ y) (6)

would indeed reach the position ∗A ⊸ y, whose payoff

happens to be −1. We will not explain here how this pay-

off is calculated from the payoff +1 of ∗A in component A,

and the null payoff of y in component B. This calculation

is elementary, and will be explained at a later stage of the

paper. What matters here is that the negative payoff of po-

sition ∗A ⊸ y compels every winning strategy of A ⊸ B

to be strict: if the strategy reacts to Opponent’s first move,

it has to react by playing a move in component A.

Propositional linear logic. Hence, assigning payoffs to

positions treats the second puzzling fact: linearity. But what

about the first one? Unexpectedly, the positional point of

view happens to be also the key to full propositional linear

logic. We explain how after describing briefly the problem.

The existing sequential game models of intuitionistic

linear logic (ILL) define symmetric monoidal closed cate-

gories. In every symmetric monoidal closed category, there

exists for every two objects A and⊥ a canonical morphism:

∂A : A −→ (A ⊸ ⊥) ⊸ ⊥.

An object ⊥ is called dualizing when this morphism is an

isomorphism for every object A. A symmetric monoidal

closed category with a dualizing object ⊥ is called a ∗-
autonomous category. Besides, a model of propositional

linear logic is simply a model of ILL in which the underly-

ing category happens to be ∗-autonomous, see [34, 26].

From that point of view, it should be noted that the

existing symmetric monoidal closed categories of sequen-

tial games are nearly ∗-autonomous. There exists indeed

a tentative dualizing object in these categories: the se-

quential game ⊥ with a unique move played by Oppo-

nent. Of course, the game ⊥ is not exactly dualizing. In

fact, the game (A ⊸ ⊥) ⊸ ⊥ is obtained by lifting the

game A twice: once by a Player move, then by an Opponent

move. The resulting game is not isomorphic to the original

game A... but not far from it! There exists indeed a strategy

ρA : (A ⊸ ⊥) ⊸ ⊥ −→ A.

which defines with ∂A a retraction between the two games.

Of course, the composite ρA; ∂A does not coincide with the

identity of (A ⊸ ⊥) ⊸ ⊥:

ρA; ∂A 6= id(A⊸⊥)⊸⊥ (7)

and this is all the problem! If the two strategies were coin-

ciding, the strategy ∂A would be an isomorphism, and the

category would be ∗-autonomous. This situation is interest-

ing, but not particular to categories of games. Selinger [35]

notices that it occurs in fact in any control category.

Again, the positional point of view leads to a very natural

and elegant solution. Because the two strategies ∂A and ρA

are innocent, equation (7) may be rewritten in the positional

fashion:

(ρA; ∂A)• 6= (id(A⊸⊥)⊸⊥)•. (8)

It appears after inspection that the two sets of positions

in (8) differ only on the very “early” positions of the game

— which all have positive payoffs +1 or more. In partic-

ular, the two sets of positions coincide exactly on the posi-

tions with null payoff. This motivates to focus on the set of

positions with null payoff of a strategy σ:

σ◦ = σ• ∩ {x | κA(x) = 0}.

The equality follows:

(ρA; ∂A)◦ = (id(A⊸⊥)⊸⊥)◦. (9)

This equality prompts us to call external any position of null

payoff, and to identify any two innocent strategies σ and τ

which play the same external positions — what we write

σ ≃ τ . The intuition is that every innocent strategy σ re-

alizes the set of external positions σ◦. A position is called

internal when it is not external. This distinction between

external and internal position revisits traditional realizabil-

ity, by integrating the realizer and the object it realizes in

the same computational space, instead of treating them as

separate and heteregeneous entities.

Remarkably, the fact expressed by equation (4) that com-

position is relational remains valid when one considers only

the external positions of two winning innocent strategies:

(σ; τ)◦={x ⊸ z | ∃y, x ⊸ y ∈ σ◦ ∧ y ⊸ z ∈ τ◦}.

Consequently, the equivalence relation ≃ is preserved by

composition: given two pairs of winning innocent strategies

σ, σ′ : A ⊸ B and τ, τ ′ : B ⊸ C,

σ ≃ σ′ and τ ≃ τ ′ ⇒ σ; τ ≃ σ′; τ ′.

We obtain in this way what we were looking for:

Proposition 1 The category of asynchronous games and

winning innocent strategies (modulo ≃) defines a ∗-
autonomous category.

4



Not only that: the category is cartesian, and leads to a model

of propositional linear logic. The only difficulty is to inter-

pret the exponential modality. As explained in [25], this is

done by indexing copies in a way inspired by Geometry of

Interaction [12] and token games [4]. Every asynchronous

game is then equipped with a left and right group action on

the indices of these copies. A group-theoretic notion of uni-

form strategy replaces the notion of self-equivalent strategy

designed by Abramsky, Jagadeesan and Malacaria in token

games [4]. This point is detailed in [25]. One obtains:

Proposition 2 The category of asynchronous games and

winning uniform innocent strategies (modulo ≃) defines a

model of propositional linear logic.

Full completeness. In the model, every formula A of

propositional linear logic is interpreted as an asynchronous

game [A] and every proof π of the formula A is interpreted

as a winning uniform innocent strategy [π] of the game [A].
The model is fully complete when the converse property

holds: every winning uniform innocent strategy σ of the

game [A] is the denotation σ ≃ [π] of a proof π of the for-

mula A. The model formulated in [29] is not fully complete,

because it identifies the two formulas

(A&B) ⊗ ⊤ and (A⊗⊤) & (B ⊗⊤) (10)

for any given formulas A and B. Note that the same prob-

lem occurs in the usual game models of intuitionistic linear

logic, because the unit ⊤ coincides with the unit 1.

From the proof search point of view, the introduction rule

of the additive unit ⊤:

⊢ Γ,⊤

plays the role of a garbage collector: once the rule has col-

lected the context Γ, the proof search succeeds. Proving

one of the two formulas (10) in a context Γ consists in ap-

plying the garbage collector on a piece ∆ of the context

before proving the formulas A and B. The collected piece

is the same for the two formulas A and B in the case of

the formula (A&B) ⊗ ⊤, whereas it is selected indepen-

dently for each formula A and B in the case of the formula

(A⊗⊤)&(B ⊗⊤). Consequently, the linear implication

(A&B) ⊗ ⊤ ⊸ (A⊗⊤) & (B ⊗⊤).

holds in (intuitionistic) linear logic, but not its converse.

Bracketing revisited. In order to obtain a fully complete

model of propositional linear logic, we thus need to re-

fine the notion of winning strategy given in [29]. We

achieve this by revisiting the well-bracketing condition of

arena games [17, 31, 6]. We observe first that usual well-

bracketing may be reformulated by assigning a payoff to

every path of the game, indicating roughly the number of

pending questions appearing in the path; then by requiring

that every paths x −→−→ y between two positions x, y ∈ σ•

has positive payoff. However, the resulting condition is still

not sufficient to obtain full completeness. We thus go fur-

ther and require that every walk x ←→←→ y followed by the

strategy σ between two positions x, y ∈ σ•, is of positive

payoff, see Section 2 for a definition of walk. This gener-

alized form of well-bracketing happens to be sufficient to

establish full completeness. The reader may check for in-

stance that it separates the two formulas (10).

Contributions of this work. We solve in this paper a fa-

mous and longstanding problem of linear logic. The solu-

tion is far from straightforward. It results from the stubborn

and meticulous analysis of asynchronous games reported

in [25, 27, 29]. Many ideas and techniques are imported

from these three papers. But the key to the full complete-

ness theorem is formulated here for the first time: the ex-

tension of the payoff function from finite positions to finite

walks. The proof of full completeness is also new, and ex-

tremely instructive on the very nature of linear logic.

Related works. Much of the related work has been al-

ready mentioned. The interested reader will also find se-

quential games played on graphs in the reformulation by

Hyland and Schalk of the sequential algorithm model [18].

Synopsis. The rest of the paper is structured in the fol-

lowing way. After the necessary preliminaries on event

structures (Section 2) we define formally the notions of

asynchronous arena and winning uniform innocent strategy

(Section 3). We then construct the model of propositional

linear logic (Section 4) and give an outline of the proof of

full completeness (Section 5) before concluding (Section 6).

We can only give an outline of the proof in this extended ab-

stract; a detailed account is given in a draft full paper [30].

2 Event structures

Event structures. An event structure (M,≤,#) is a

partial order (M,≤) whose elements are called events,

equipped with a binary symmetric irreflexive relation #,

satisfying:

• the set m↓ = {n ∈ M | n ≤ m} is finite for every

event m,

• m#n ≤ p implies m#p for every events m,n, p.

Two events m,n ∈M are called incompatible when m#n,

and compatible otherwise. Two events m and n are called

independent when they are compatible: ¬(m#n), and in-

comparable: ¬(m ≤ n) and ¬(n ≤ m). In that case, we

write:

m I n.

5



An event m is initial when m↓ = {m} and second when

m↓ contains only initial events besides the event m itself.

Positions. A position is a downward closed subset of

(M,≤) consisting of pairwise compatible events. The set

of (possibly infinite) positions defines a domain (complete

pointed partial order) denoted D. The set of finite (resp. in-

finite) positions of this domain is denoted Dfin (resp D∞.)

The positional graph. Every event structure A induces a

graph G whose nodes are the finite positions x, y ∈ Dfin,

and whose edges

m : x→ y

are the events verifying y = x ⊎ {m}. Here, we write ⊎ to

mean that y = x∪ {m} and that the move m is not element

of x. Note that the graph G is rooted, with root the empty

position noted ∗.

Tiles. The positional graph is also equipped with 2-

dimensional tiles expressing that two independent events m

and n starting from the same position x may be permuted.

We use the notation ∼ to indicate a tile in our diagrams.

Walks. A walk w is a sequence

w = (x0,m
ǫ1
1 , x1, ..., xk−1,m

ǫk

k , xk) (11)

in which every xi is a finite position, every mi is a move,

every ǫi is a signature in {+1,−1}, and

mi : xi−1 → xi when ǫi = +1,

mi : xi → xi−1 when ǫi = −1.

In that case, we write w : x0 ←→←→ xk and say that w

crosses the positions x0, ..., xk. So, a walk is just a path

in the non oriented graph associated to the graph G. The

concatenation of two walks w1 : x ←→←→ y and w2 :
y ←→←→ z defines a walk noted w1 · w2 : x ←→←→ z. We

write W for the set of walks of the event structure.

3 Asynchronous games and strategies

3.1 The arenas

Asynchronous arenas. An asynchronous arena A =
(MA,≤A,#A, λA, κA, κ∞

A ) is an event structure whose

events m ∈MA are called the moves of the arena, equipped

with:

• a polarity function λA : MA → {−1,+1} on moves,

• a payoff function κA : Dfin
A + WA → Z on finite

positions and walks,

• a payoff function κ∞
A : D∞

A → {−∞,+∞} on infinite

positions.

A move m with polarity λA(m) = +1 (resp. λA(m) = −1)

is called a Player (resp. Opponent) move. Every asyn-

chronous arena is required to satisfy the additional prop-

erties:

• every two initial moves m and n are incompatible:

m #A n.

• the payoff of the initial position ∗A is either−1 or +1,

• the polarity of every initial move m is the opposite of

the payoff of the initial position: λA(m) = −κA(∗A),

• the polarity of every second move n is the payoff of

the initial position: λA(n) = κA(∗A),

• the payoff of an empty walk w : x ←→←→ A x is null,

• the payoff of a non-empty walk w : x ←→←→ A y

which crosses the initial position ∗A is equal to the

payoff κA(y) of its target y.

The opposite of the payoff κA(∗A) is called the polarity of

the arena, denoted πA. Thus, every initial move is Opponent

in a negative game and Player in a positive game. A finite

position x or a walk w is declared winning when its payoff

is positive or null. An infinite position x is declared winning

when its payoff is +∞. A finite position x is external when

its payoff κA(x) is null, and internal otherwise.

3.2 The strategies

Path. A walk w : x0 ←→←→ xk as formulated in (11) is

called a path from x0 to xk when ǫi = +1 for every index i.

We write w : x0 −→−→ xk in that case.

A path is alternating when λ(mi+1) = −λ(mi) for

every index i ∈ [1, ..., k − 1].

Play. A play is a path starting from the empty position ∗A.

Strategy. A strategy σ is a set of alternating plays such

that, for every positions x, y, z, z1, z2:

1. the empty play (∗) is element of σ,

2. every play s ∈ σ starts by an Opponent move, and ends

by a Player move,

3. for every play s : ∗ −→−→ x, for every Opponent move

m : x→ y and Player move n : y → z,

s ·m · n ∈ σ ⇒ s ∈ σ.

4. for every play s : ∗ −→−→ x, for every Opponent move

m : x → y and Player moves n1 : y → z1 and n2 :
y → z2,

s ·m · n1 ∈ σ and s ·m · n2 ∈ σ ⇒ n1 = n2.

Thus, a strategy is a non empty set (Clause 1) of even-length

plays (Clause 2) closed under even-length prefix (Clause 3)

and deterministic (Clause 4).
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3.3 The innocent strategies

The notion of innocent strategy is introduced in [27] in

order to reformulate the notion of innocence formulated

originally in the language of arena games. A strategy σ is

called innocent when it is backward consistent and forward

consistent in the following sense.

Backward consistency. A strategy σ is backward consis-

tent (see Figure 2 in Appendix) when for every play s1,

for every path s2, for every moves m1, n1,m2, n2 ∈ MA,

it follows from s1 · m1 · n1 · m2 · n2 · s2 ∈ σ and

n1 I m2 and m1 I m2 that n1 I n2 and m1 I n2 and

s1 ·m2 · n2 ·m1 · n1 · s2 ∈ σ.

Forward consistency. A strategy σ is forward consistent

(see Figure 3 in Appendix) when for every play s1 and for

every moves m1, n1,m2, n2 ∈MA, it follows from s1 ·m1 ·
n1 ∈ σ and s1 ·m2 · n2 ∈ σ and m1 I m2 and m2 I n1 that

m1 I n2 and n1 I n2 and s1 ·m1 · n1 ·m2 · n2 ∈ σ.

3.4 Positions and walks on a strategy

Finite position of a strategy. The set of finite positions

played by a strategy σ is defined as

σ• = {x ∈ DA | ∃s ∈ σ, s : ∗A −→−→ x}.

Infinite position of a strategy. An infinite play s is de-

fined as a sequence of moves:

∗A
m1→ x1

m2→ x2 · · · xk−1
mk→ xk

mk+1
→ xk+1 · · · (12)

The target position x of such an infinite play s is defined as:

x =
⋃

i∈N

xi = {mi | i ∈ N}.

In that case, we write s : ∗A
∞
−→−→ x. Given a strategy σ, the

set σ∞ denotes the set of infinite plays (12) such that

∗A
m1→ x1

m2→ · · ·
m2k→ x2k

is element of the strategy σ, for every index k ∈ N. Then,

σ•• = {x ∈ DA | ∃s ∈ σ∞, s : ∗A
∞
−→−→ x}.

Alternating walks. A walk is alternating when

λA(mi+1)× ǫi+1 = −λA(mi)× ǫi

for every index i ∈ [1, ..., k − 1]. Here, (− × −) denotes

the usual product of two signatures in the ring Z. So, at

each step of an alternating walk w, either the direction ǫi or

the polarity λ(mi) of the move changes. This generalizes

the previous notion of alternating play. A typical alternating

walk w : x0 ←→←→ xk looks like this:

y xk

x0

s1

>>

>>~~~~~~~~
z

s2

__

__>>>>>>>

s3

>>

>>}}}}}}}}

where s1, s2 and s3 are alternating plays, the last moves of

s1 and s2 are of the same polarity, and the first moves of s2

and s3 are of the same polarity.

Walk on a strategy. A walk w on a strategy σ is defined

as an alternating walk (11) satisfying:

• λA(m1)× ǫ1 = −1 and λA(mk)× ǫk = +1,

• every position x2i is a position of the strategy σ, for

i ∈ [0, ..., k
2 ].

Note that the length k of the walk is an even number by

the first clause, and by the definition of an alternating walk.

This justifies the use of the fraction k
2 as a natural number

in the last clause.

3.5 The winning strategies

A strategy is winning when the four conditions below are

satisfied:

1. totality: given any play s ·m in which s ∈ σ and m is

an Opponent move, there exists a Player move n such

that s ·m · n ∈ σ,

2. finite positions: the payoff of every finite position x ∈
σ• is positive or null,

3. infinite positions: the payoff of every infinite posi-

tion x ∈ σ•• is positive or null,

4. walks: the payoff of every alternating walk on the

strategy σ is positive or null.

This definition extends the definition of winning strategy

in [29] which required only totality and positive payoff on

finite positions. The payoff condition 3. on infinite positions

reformulates the usual winning condition on strategies [15].

The payoff condition 4. on walks strengthens the usual well-

bracketing condition of arena games — in order to achieve

full completeness.

3.6 Asynchronous games and uniform strategies

Asynchronous games. An asynchronous game A is an

asynchronous arena equipped with a left and right group

actions on moves:

GA ×MA ×HA −→MA
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satisfying four coherence axioms given in [25]. These ax-

ioms ensure that the actions on moves extend to actions on

plays, in a pointwise manner. The action of two elements

g ∈ GA and h ∈ HA on a play s = m1 · · ·mk is thus

defined as follows:

g � s � h = (g � m1 � h) · · · (g � mk � h).

Uniformity. The definition appears in [25]. A strategy σ

is uniform when for every play s ∈ σ and every h ∈ HA,

there exists g ∈ GA such that g � s � h ∈ σ. Uniformity

reformulates the notion of self-equivalent strategy in [4].

4 The model of propositional linear logic

We explicate below our asynchronous game model of

propositional linear logic. For lack of space, we will not

describe here the group actions associated to each game;

we refer the reader to [25] for a detailed account.

Dual. The dual A⊥ of an asynchronous game A is ob-

tained by reversing the polarity of moves and the payoffs of

positions and walks. Note that the operation is involutive:

A⊥⊥ = A; and that the dual of a positive game is a negative

game, and conversely.

Lifting. The positive lifting (with payoff p) of a negative

asynchronous game A is the positive game ↓p A (often writ-

ten ↓ A when no confusion is possible) defined below:

• M↓A = MA + {new} with m #↓A n ⇐⇒ m #A n,

and

m ≤↓A n ⇐⇒

{

m = new,

or m ≤A n,

• κ↓A(∗↓A) = −1; and κ↓pA({new}) = p; κ↓A(y) =
κA(x) when y = x ⊎ {new},

• κ↓A(w) = κA(w) when the walk w does not con-

tain the initial position ∗↓A; κ↓A(w) = 0 when w is

the empty walk on the initial position ∗↓A; κ↓A(w) =
κ↓A(y) when the walk w : x ←→←→ ↓A y is non empty

and contains the initial position ∗↓A;

• κ∞
↓A = κ∞

A .

This defines by duality a negative lifting ↑p A on positive

games.

Affine vs. linear lifting. Two lifted games ↓p A and ↓q A

differ only on the payoff of the position {new}. This enables

to distinguish the linear lifting and the affine lifting of a

negative game A, defined respectively as ↓+1 A and ↓0 A.

Sum. The sum of two positive games A and B is the pos-

itive game A⊕B defined below:

• MA⊕B = MA + MB , ≤A⊕B=≤A + ≤B , and

m #A⊕B n ⇐⇒















m #A n,

or m #B n,

or m ∈MA and n ∈MB ,

or m ∈MB and n ∈MA,

• κA⊕B(y) = κA(x) when y = inl(x) and κA⊕B(y) =
κB(x) when y = inr(x), where inl and inr are the

left and right injections DA → DA⊕B ← DB ,

• κA⊕B(w) = κA(w) when w is a walk in the com-

ponent A; κA⊕B(w) = κB(w) when w is a walk

in the component B; κA⊕B(w) = κA⊕B(y) when

w : x ←→←→ A⊕B y is a walk on the two compo-

nents A and B,

• κ∞
A⊕B = κ∞

A + κ∞
B .

This definition extends easily to the sum
⊕

i∈I Ai of a fam-

ily (Ai)i∈I of positive games.

Tensor product. Every positive game P may be seen as

a sum
⊕

i∈I ↓
pi Li of a family of lifted negative games Li.

The tensor product of two positive games

P =
⊕

i∈I

↓pi Ki and Q =
⊕

j∈J

↓qj Lj

is defined as the positive game

P ⊗Q =
⊕

(i,j)∈I×J

(

↓pi Ki ⊗ ↓
qj Lj

)

where ↓pi Ki⊗ ↓
qj Lj is defined as the lifting

↓pi Ki⊗ ↓
qj Lj =↓pi⊗qj N(i,j)

of the negative game N(i,j) defined in the following way:

MN(i,j)
= MKi

+ MLj
≤N(i,j)

=≤Ki
+ ≤Lj

and

m #N(i,j)
n ⇐⇒

{

m #Ki
n,

or m #Lj
n.

The payoffs κx and κw and κ∞
x are computed by project-

ing the position x, and the walk w on each component Ki

and Lj , and then by applying the calculation table of Fig-

ure 1 — in which the payoffs in Ki and Lj appear in the

first row and first column. Note that the table is symmetric

in Ki and Lj because the tensor product is commutative.

Units. The unit 0 is the positive game with no move. The

unit 1 is the affine lifting ↓0 ⊤ of the dual ⊤ of the unit 0.
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⊗ −∞ −p 0 +p +∞
−∞ −∞ −∞ −∞ −∞ −∞
−q −∞ −p− q −q −q +∞
0 −∞ −p 0 p +∞

+q −∞ −p q p + q +∞
+∞ −∞ +∞ +∞ +∞ +∞

Figure 1. The table for calculating the payoff

p⊗ q from the payoffs p and q.

Linear logic. The tensor product and the sum are called

positive connectives because they are naturally defined on

positive games, see [13, 23]. We use the linear lifting ↓+1

and ↑−1 in order to extend the definition to any (positive

or negative) asynchronous game. Typically, the sum A⊕B

and the tensor product A⊗B of two asynchronous games A

and B is defined by lifting first the negative games (if any),

then applying the earlier construction on positive games.

The tensor product A⊗B is thus defined as:

A ⊗ ↓+1 B when A is positive and B negative,

↓+1 A⊗ B when A is negative and B is positive,

↓+1 A⊗ ↓+1 B when A and B are negative,

and similarly for the sum construction. Identically, the pos-

itive lifting ↓k of a positive game A is defined as:

↓k A = ↓k
(

↑−1 A
)

.

De Morgan duality. The two negative connectives of lin-

ear logic are then deduced by De Morgan duality:

A&B = (A⊥ ⊕B⊥)⊥ A
..............................................
............
..................................... B = (A⊥ ⊗B⊥)⊥.

Exponentials. The exponential modality ! is defined by

decomposing it as the affine lifting ↓0 followed by an infi-

nite tensor product:

!A =
⊗

i∈N

↓0 A (13)

This decomposition is one of the two decompositions stud-

ied by Jacobs in [20].

As already explained in the introduction, we identify any

two strategies σ and τ playing the same positions of null

payoff, what we write σ ≃ τ . We then construct a cat-

egory with asynchronous games A,B as objects, and uni-

form winning innocent strategies of A ⊸ B = A⊥..............................................
............
..................................... B as

morphisms A −→ B. We obtain:

Proposition 3 The resulting category defines a model of

propositional linear logic.

Note that the three asynchronous games A, ↓p A and ↑p A

are isomorphic in this category, when p 6= 0.

5 Full completeness

Our proof of full completeness is based on a directed

proof search. We start from a uniform winning innocent

strategy σ of the asynchronous game [A], and we search a

proof π of the formula A, such that [π] = σ. This search is

driven by the strategy σ. The distinctive difficulty compared

to other similar proofs of full abstraction for PCF [4, 17, 31]

or of full completeness for LLP [23] is that the contexts in-

volved are not affine anymore. This requires to deal explic-

itly with the context. The proof is done in three stages.

Stage 1. We establish full completeness for the multi-

plicative additive fragment enriched with the lifting modal-

ities ↓p and ↑p. A good part of the difficulties are already

there! When it is Player’s turn to play, the MALL sequent

may be written as

⊢ Γ , ↑p ( ↓q1 M ⊗ ↓q2 N )

where Γ =↑p1 P1, · · · , ↑
pk Pk is a sequence of lifted posi-

tive formulas (we use the language of LLP here). Suppose

that the strategy σ plays the move m which “plays” the ten-

sor ↓q1 M ⊗ ↓q2 N . Then, one may deduce from the dia-

grammatic properties of innocence that the strategy σ splits

the context in three parts: Γ1 is the part “connected” to the

formula M , Γ2 is the part “connected” to the formula N ,

and Γ3 is the part not connected to anything. The payoff

condition on walks then ensures that the strategy σ itself

“splits” in two winning innocent strategies σ1 and σ2 of the

sequents:

⊢ Γ1 , M ⊢ Γ2 , N

The proof is then concluded by induction on the size of σ.

Stage 2. The full completeness result established at

stage 1 is extended to a non uniform variant of linear logic,

in which a proof π of the formula !A is defined as a family of

proofs (πk)k∈N of the formula A. Every winning innocent

strategy σ is shown to be the interpretation of a proof π.

Stage 3. Every uniform winning innocent strategy σ is

shown to be the interpretation of a proof π of usual linear

logic. This completes the proof:

Theorem 4 (Full Completeness) Asynchronous games

and uniform winning innocent strategies define a fully

complete model of propositional linear logic.

6 Conclusion and future works

We formulate a fully complete model of propositional

linear logic for the first time. The construction requires to

introduce a rich body of techniques: asynchronous games,

internal vs. external positions, payoffs on walks, non uni-

form linear logic, etc. These techniques generalize and
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clarify the usual notions of mainstream game semantics:

arena games, well-bracketing, uniform strategies, etc. The

next step will be to see how these new ideas clarify the

current game models of references in programming lan-

guages [5, 2]. By this line of research, we expect to see an

asynchronous geometry of programming languages and in-

teractive behaviours emerge slowly — at the crossing point

of the Curry-Howard isomorphism, the object-based seman-

tics of states advocated by Reddy in [33] and the geometry

of concurrency described in [14]. The full completeness

theorem established in the present paper is certainly an im-

portant and encouraging step in that direction.
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Appendix: the two figures of innocence

σ ∋

s2

OO

OO

n2 ??����
m2 ??����

∼

__????

n1

__????
??����
∼

__????

m1

__????
m2

??����

s1

OO

OO

⇒

s2

OO

OO

n2 ??����
∼

n1__????
m2 ??����

∼

__????
??����
∼

m1__????

n1

__????
??����
∼

__????
n2

??����

m1

__????
m2

??����

s1

OO

OO

∈ σ

Figure 2. Local consistency (backward)

σ ∋

m2 ??����
∼

__????

n1

__????
??����
∼

__????
n2

??����

m1

__????
m2

??����

s1

OO

OO

∈ σ

⇒

σ ∋

n2 ??����
∼

n1__????
m2 ??����

∼

__????
??����
∼

m1__????

n1

__????
??����
∼

__????
n2

??����

m1

__????
m2

??����

s1

OO

OO

∈ σ

Figure 3. Local consistency (forward)
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