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Asynchronous games 3

An innocent model of linear logic

Paul-André Melliès

Equipe Preuves Programmes Systèmes
CNRS et Université Denis Diderot

Paris, France

Abstract

Since its early days, deterministic sequential game semantics has been limited to
linear or polarized fragments of linear logic. Every attempt to extend the semantics
to full propositional linear logic has bumped against the so-called Blass problem,
which indicates (misleadingly) that a category of sequential games cannot be self-
dual and cartesian at the same time. We circumvent this problem by considering
(1) that sequential games are inherently positional; (2) that they admit internal
positions as well as external positions. We construct in this way a sequential game
model of propositional linear logic, which incorporates two variants of the innocent
arena game model: the well-bracketed and the non well-bracketed ones.

Key words: Game semantics, linear logic, categorical models.

Foreword

This paper does not simply introduce the innocent model of propositional
linear logic. It also explains in detail the conceptual stages which brought it
to existence. We hope that this presentation will satisfy a categorically-minded
audience. The paper is organized in six sections. We start by recalling André
Joyal’s category Y of Conway games and winning strategies (Section 1). We
prove that the category Y does not have binary products (Section 2). This
fact is well-known, but the proof does not appear anywhere in full details.
We then reduce the Blass problem to the fact that the linear continuation
monad A 7→ ((A −• ⊥) −• ⊥) is strong but not commutative on Conway
games. Finally, after a crash course on asynchronous games (Section 4), we
construct a linear continuation monad equivalent to the identity functor, by
allowing internal positions in our games. This circumvents the Blass problem,
and defines a model of linear logic (Section 5). We conclude (Section 6).

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs
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1 Introduction: Conway games

Twenty-five years ago, André Joyal realized after a lecture by John H. Con-
way on surreal numbers, that he could construct a category Y with Conway
games as objects, and winning strategies as morphisms, composed by sequen-
tial interaction. The construction appears in an article of 7 pages, written in
French, and published in 1977 in the Gazette des Sciences Mathématiques du
Québec [9]. Since it is extremely difficult to get a copy of the Gazette today,
we find useful to recall below André Joyal’s construction of the category Y of
Conway games.

Before explaining the category, it may be worth discussing briefly what
makes the category Y so interesting today. Two reasons at least. Historically,
it is a precursor of game semantics for proof-theory and programming lan-
guages. Conceptually, it is a self-dual category of sequential games. We are
particularly interested in this last point here. The categories of games con-
sidered today are generally symmetric monoidal closed, with a tensor product
(noted ⊗) and a monoidal closure (noted (). Except for a few exceptions,
they are not self-dual. In contrast, the category Y is ∗-autonomous, that is,
symmetric monoidal closed, with a dualizing object ⊥ making the canonical
morphism:

A −→ ((A ( ⊥) ( ⊥)

an isomorphism in the category Y , for every Conway game A. Since we are
looking for game models of full propositional linear logic, and since linear logic
is based on a duality between proofs and counter-proofs, we find extremely
instructive to study the category Y more closely. For the reader’s comfort,
we will recast the original set-theoretic formulation of Conway games [9] in
a graph-theoretic style. This choice is also made in the recent account of
(money) games by André Joyal [10]. This may not be the best presentation,
but it clarifies the connections with our own game-theoretic model of linear
logic, given in Section 5.

Conway games. A Conway game is an oriented graph (V, E, λ) consisting
of a set V of vertices, a set E ⊂ V × V of edges, and a function λ : E −→
{−1, +1} associating a polarity −1 or +1 to every edge of the graph. The ver-
tices are called the positions of the game, and the edges its moves. Intuitively,
a move m ∈ E is played by Player when λ(m) = +1 and by Opponent when
λ(m) = −1. As is usual in graph-theory, we write x → y when (x, y) ∈ E,
and call path any sequence of positions s = (x0, x1, ..., xk) in which xi → xi+1

for every i ∈ {0, ..., k − 1}. In that case, we write s : x0 −→−→ xk to indicate
that s is a path from the position x0 to the position xk.

In order to be a Conway game, the graph (V, E, λ) is required to verify
two additional properties:

• the graph is rooted: there exists a position ∗ called the root of the game,
such that for every other position x ∈ V , there exists a path from the root
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∗ to the position x:

∗ → x1 → x2 → x3 · · · → xk → x,

• the graph is well-founded: every sequence of positions

∗ → x1 → x2 → x3 → · · ·

starting from the root is finite.

A path s = (x0, x1, ..., xk, xk+1) is called alternating when:

∀i ∈ {1, ..., k − 1}, λ(xi → xi+1) = −λ(xi−1 → xi).

A play is defined as a path s : ∗ −→−→ x starting from the root. The set of
plays of a Conway game A is denoted PA.

Winning strategies. A strategy σ of the Conway game (E, V, λ) is defined
as a set of alternating plays such that, for every positions x, y, z, z1, z2:

(i) the empty play (∗) is element of σ,

(ii) every play s ∈ σ starts by an Opponent move, and ends by a Player
move,

(iii) for every play s : ∗ −→−→ x, for every Opponent move x → y and Player
move y → z,

∗ s−→−→ x → y → z ∈ σ ⇒ ∗ s−→−→ x ∈ σ,

(iv) for every play s : ∗ −→−→ x, for every Opponent move x → y and Player
moves y → z1 and y → z2,

∗ s−→−→ x → y → z1 ∈ σ and ∗ s−→−→ x → y → z2 ∈ σ ⇒ z1 = z2.

Thus, a strategy is a set of plays closed under even-length prefix (Clause 3)
and deterministic (Clause 4). A strategy σ is called winning when for every
play s : ∗ −→−→ x element of σ and every Opponent move x → y, there exists
a position z and a Player move y → z such that the play

∗ s−→−→ x → y → z

is element of the strategy σ. Note that the position z is unique in that case,
by determinism. We write σ : A to mean that σ is a winning strategy of A.

Duality and tensor product. The dual A⊥ of a Conway game A = (V, E, λ)
is the Conway game A⊥ = (V, E,−λ) obtained by reversing the polarities of
moves. The tensor product A ⊗ B of two Conway games A and B is the
Conway game defined below:
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• its positions are the pairs (x, y) noted x⊗ y of a position x of the game A
and a position y of the game B,

• its moves from a position x⊗ y are of two kinds:

x⊗ y →

 u⊗ y if x → u,

x⊗ v if y → v,

• the move x ⊗ y → u ⊗ y is noted (x → u) ⊗ y and has the polarity of the
move x → u in the game A; the move x⊗ y → x⊗ v is noted x⊗ (y → v)
and has the polarity of the move y → v in the game B.

Every play s of the tensor product A⊗B of two Conway games A and B may
be projected to a play s|A ∈ PA and to a play s|B ∈ PB. The Conway game
1 = (∅, ∅, λ) has an empty set of positions and moves.

The category Y of Conway games. The category Y has Conway games
as objects, and winning strategies of A⊥ ⊗ B as morphisms A −→ B. The
identity strategy idA : A⊥⊗A copycats every move received in one component
A to the other component. The composite of two strategies σ : A⊥ ⊗ B and
τ : B⊥ ⊗ C is the strategy τ ◦ σ : A⊥ ⊗ C obtained by letting the strategies
σ and τ react to a Player move in A or to an Opponent move in C, possibly
after a series of internal exchanges in B.

A formal definition of identities and composition is also possible, but it
requires to introduce a few notations. A play is called legal when it is alter-
nating and when it starts by an Opponent move. The set of legal plays is
denoted LA. The set of legal plays of even-length, or equivalently ending by
a Player move, is denoted Leven

A . The identity of the Conway game A is the
strategy below:

idA = {s ∈ Leven
A⊥⊗A | ∀t ∈ Leven

A⊥⊗A, t is prefix of s ⇒ t|A⊥ = t|A}.

The composite of two strategies σ : A⊥ ⊗B and τ : B⊥ ⊗C is the strategy of
τ ◦ σ : A⊥ ⊗ C below:

τ ◦ σ = {s ∈ Leven
A⊥⊗C | ∃t ∈ PA⊗B⊗C , t|A,B ∈ σ, t|B,C ∈ τ, t|A,C = s}.

The tensor product between Conway games gives rise to a bifunctor on the
category Y , which makes the category Y ∗-autonomous, that is, symmetric
monoidal closed, with a dualizing object noted ⊥. The category Y is more
than just ∗-autonomous: it is compact closed, in the sense that there exists an
isomorphism (A⊗B)⊥ ∼= A⊥ ⊗B⊥ natural in A and B. As in any compact
closed category, the dualizing object ⊥ is isomorphic to the identity object of
the monoidal structure, in that case the Conway game 1. Thus, the monoidal
closure A⊥ ⊗⊥ is isomorphic to A⊥, for every Conway game A.
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2 Key observation: the category Y does not have bi-
nary products

The category Y has been rediscovered at the beginning of the 90’s in the con-
text of linear logic and programming language semantics. As a ∗-autonomous
category, the category Y defines a model of Multiplicative Linear Logic (MLL).
In this model, every closed formula F of MLL is interpreted as a Conway
game [F ]; and every proof π of the formula F is interpreted as a winning
strategy [π] of the Conway game [F ]. This interpretation provides a precise
and lively picture of proofs, understood as symbolic device interacting during
cut-elimination.

Because MLL is only a small fragment of linear logic, many authors have
tried to adapt the category Y in order to capture larger or more interesting
fragments of the logic. One particularly resistant fragment is Multiplicative
Additive Linear Logic (MALL) which is MLL extended with the additive con-
nectives ⊕ and & and constants 0 and >. Every ∗-autonomous category with
finite products defines a model of MALL. Alas, the category Y does not have
binary products. To our knowledge, the proof of this well-known fact ap-
pears nowhere in the litterature. We thus give it below, after introducing the
subcategory Y − of negative Conway games.

Negative Conway games. A Conway game A is called negative when every
nonempty play of A starts by an Opponent move. The category Y − is defined
as the full subcategory of Y , whose objects are the negative Conway games.
The category Y − is symmetric monoidal closed. The symmetric monoidal
structure is inherited from the category Y , while the monoidal closure of Y −

is slightly different. The category Y − is introduced here because it has finite
products. The terminal object of the category is the Conway game 1. The
cartesian product of two negative Conway games A and B is the negative
Conway game noted A&B, and defined below:

• its set of positions is the disjoint sum of the set of positions of A and the
set of positions of B, in which the two roots ∗A and ∗B of A and B are
identified as the root ∗A&B of A&B. This construction is similar to lifted
sum in domain theory,

• its Opponent moves from the root position ∗A&B are of two kinds:

∗A&B →

 x if ∗A → x in the Conway game A,

y if ∗B → y in the Conway game B,

• its moves from a position x in the component A are exactly the moves from
x in the Conway game A, with the same polarity:

x → y in the game A&B ⇐⇒ x → y in the game A.
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• its moves from a position x in the component B are exactly the moves from
x in the Conway game B, with the same polarity.

It is not difficult to see that the game A&B, equipped with the accurate
projection strategies A&B −→ A and A&B −→ B, defines a cartesian product
of A and B in the category Y −. The end of the section is devoted to the proof
that:

Proposition 2.1 The category Y does not have binary products.

Proof. The forgetful functor U : Y − −→ Y has a right adjoint Neg : Y −→
Y − which associates to every Conway game A = (V, E, λ) the negative Conway
game Neg(A) = (V ′, E ′, λ) obtained by removing every Player move starting
from the root ∗:

E ′ = E \ {(∗, x) ∈ E | λ(∗ → x) = +1},

then removing every position in V not accessible from the root in the graph
(V, E ′):

V ′ = {x ∈ V | there exists a path in (V, E ′) from the root to x}.

As a right adjoint, the functor Neg preserves limits. We proceed by contradic-
tion, and suppose that every pair of Conway games A and B has a cartesian
product noted A × B in the category Y . Then, the image Neg(A×B) of
this product is isomorphic to the cartesian product Neg(A)&Neg(B) in the
category Y −.

Now, a Conway game A is called positive when its dual A⊥ is negative. We
claim that the cartesian product of two positive Conway games A and B in
Y , is a positive Conway game A×B. Note that a Conway game A is positive
iff Neg(A) = 1. The negative game Neg(A×B) associated to the product of
two positive games A and B is equal to Neg(A)&Neg(B) = 1&1 = 1. The
game A×B is thus positive, as claimed.

Let Y + denote the full subcategory of Y consisting of positive Conway
games. Since Y + is a full subcategory of Y , we have just established that if Y
has binary products, then Y + has binary products as well. We conclude our
proof of Proposition 2.1 by showing that Y + does not have binary products.

Consider the negative game B interpreting the booleans, with four positions
∗, q, true, false, an Opponent move ∗ → q and two Player moves q → true
and q → false. Let X = B⊥ denote the positive game obtained by dualizing
B. Consider two positive games A and B, and suppose that A × B is their
cartesian product in Y +. Let the morphism σtrue : X −→ A in the category
Y + denote the smallest strategy of B⊗ A containing the play:

∗B ⊗ ∗A → q ⊗ ∗A → true⊗ ∗A.

Similarly, let τbool : X −→ B denote the smallest strategy of B⊗B containing
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the play:
∗B ⊗ ∗B → q ⊗ ∗B → bool⊗ ∗B,

where bool is either the position true or false. Let 〈σtrue, τfalse〉 : X −→ A×B
denote the unique morphism in Y + such that

σtrue = π1 ◦ 〈σtrue, τfalse〉 τfalse = π2 ◦ 〈σtrue, τfalse〉(1)

for π1 : A× B −→ A and π2 : A× B −→ B the projections associated to the
Conway games A and B in Y +. A careful inspection of (1) establishes that
the strategy 〈σtrue, τfalse〉 contains a play of the form:

∗B ⊗ ∗A×B → q ⊗ ∗A×B → q ⊗ x.

for a position x and a Player move ∗ → x of the game A × B; and that the
strategy π1 : (A×B)⊥ ⊗ A contains a play of the form

∗A×B ⊗ ∗A → x⊗ ∗A → y1 ⊗ ∗A

for a position y1 and an Opponent move ∗ → y1 of the game A×B. Similarly,
the strategy π2 : (A×B)⊥ ⊗B contains a play of the form

∗A×B ⊗ ∗B → x⊗ ∗A → y2 ⊗ ∗B

for a position y2 and an Opponent move ∗ → y2 of the game A×B. Note that
the two positions y1 and y2 may be equal in A×B. Now, let ν : X −→ A×B
denote the smallest strategy containing the play:

∗B ⊗ ∗A×B → q ⊗ ∗A×B → true⊗ ∗A×B.

And let ν ′ : X −→ A×B denote the smallest strategy containing all the plays
of the form:

∗B ⊗ ∗A×B → q ⊗ ∗A×B → q ⊗ x → q ⊗ y → true⊗ y

for y a position such that x → y is an Opponent move of A × B. The two
equalities

π1 ◦ ν = σtrue = π1 ◦ ν ′ π2 ◦ ν = τtrue = π2 ◦ ν ′.

follow immediately from these definitions. So, there exists more than one
morphism X −→ A × B making the cartesian diagrams commute for σtrue :
X −→ A and τtrue : X −→ B. We conclude that the category Y + does not
have binary products. This concludes the proof of Proposition 2.1. 2

Remark: there is another more direct way to establish that the category Y
does not have finite products, which is to show that the category Y does not
have a terminal object. This alternative argument is less conclusive however,
since it is possible to add formally an initial and a terminal object to the
category Y , without breaking self-duality.
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3 A categorical formulation of the Blass problem

We have just seen in section 2 that

• the category Y is ∗-autonomous but does not have finite products,

• its subcategory Y − of negative Conway games is symmetric monoidal closed
and has all products.

This explains why game semantics is generally more concerned with variants
of the category Y − than with variants of the category Y . Prima facie, self-
duality is less important than cartesianity in order to interpret a programming
language built on top of the λ-calculus. Besides, it is much simpler to interpret
the exponential modality ! of linear logic in the category Y − (or a variant) than
in the category Y . By starting from the category Y −, one obtains a model of
Intuitionistic Linear Logic (ILL) whose categorical axiomatization ensures that
the kleisli category associated to the comonad ! is cartesian closed, and thus
defines a model of the simply-typed λ-calculus with products, see [16,6,12]
among other works. By selecting among variants of the category Y −, and
among variants of the comonad, one generates a wide range of models of
the λ-calculus, some of them capturing the essence of particular syntactic
programming languages (cf. the full abstraction results).

The methodology is nice and fruitful. We claim however that the lack
of self-duality of the category Y − is a serious conceptual limitation of game
semantics. Our ambition here is to clarify the foundations of the subject, by
reunderstanding Y − as part of a larger ∗-autonomous category Z with products
and coproducts. In this section, we try to deduce the general shape of the
category Z from a categorical reformulation of the so-called Blass problem. We
proceed by keeping the symmetry between the category Y − and its opposite
category Y + as far as possible, in order to let unexpected structures emerge
from the symmetry. This prepares Section 5, in which we construct a candidate
for the category Z, a category of asynchronous games and innocent strategies.

First adjunction between lifting functors. We start our analysis by the
so-called lifting functor ⇓ : Y − −→ Y + which associates to every negative
Conway game A, the positive Conway game ⇓A defined below:

• a position of ⇓A is a position of A or a new position ∗,
• the only move from ∗ is the Player move ∗ → ∗A to the root ∗A of A,

• the moves from a position in A are the same as in A, with same polarities.

By duality, there is a lifting functor ⇑ : Y + −→ Y − defined by the equation
⇑ A = (⇓ (A⊥))⊥. Interestingly, the functor ⇓ is left adjoint to the functor
⇑ . What this adjunction means on Conway games is very simple. Consider a
negative Conway game A, and a positive Conway game B. The elements of
Y +(⇓A, B) and of Y −(A,⇑B) are the winning strategies of ⇑ (A⊥) ⊗ B and
the winning strategies of A⊥⊗ ⇑B, respectively. Note that both A⊥ and B
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are positive Conway games. So, the plays starting by an Opponent move are
the same in the Conway games ⇑ (A⊥) ⊗ B and A⊥⊗ ⇑B: in each case, the
dummy move followed by a play in A⊥⊗B. This induces a bijection between
the set of strategies Y +(⇓ A, B) and Y −(A,⇑ B) which is natural in A and
B. From this follows that ⇓ is left adjoint to ⇑. This adjunction induces a
monad on Y − and a comonad on Y +, obtained by lifting every game twice.
Note that variants of the monad on Y − have been already observed, typically
in the litterature on arena games.

Second adjunction between lifting functors. From now on, we focus on
another adjunction ↑a ↓ which follows from the adjunction ⇓a ⇑ , and which
plays a fundamental role in the formulation of games as continuation passing
style models. Note that the category Y + has coproducts, since its opposite
category Y − has products. From this follows that the functor ⇓ factors as:

Y − (1)−→ ΣY − (2)−→ Y +

where ΣY − is the free completion of Y − with respect to coproducts. This
completion is also called the family construction in [2]. We recall that:

• an object of ΣY − is a family {Ai | i ∈ I} of negative Conway games Ai,
indexed by the elements of a set I,

• a morphism {Ai | i ∈ I} −→ {Bj | j ∈ J} consists of a reindexing function
f : I −→ J and of a winning strategy σi : Ai −→ Bf(i), for each index i ∈ I.

Dually, the lifting functor ⇑ factors as:

Y + (3)−→ ΠY + (4)−→ Y −

where ΠY + is the free completion of Y − with respect to products. Note that
the category ΠY + is the opposite of the category ΣY −.

By composing the resulting functors together, one obtains two new “lifting”
functors ↑ and ↓ defined below:

↑ : ΣY − (2)−→ Y + (3)−→ ΠY +, ↓ : ΠY + (4)−→ Y − (1)−→ ΣY −.

Our notation ↑ and ↓ for the lifting functors indicates already that we consider
ΣY − as a category of positive games, and ΠY + as a category of negative
games. Typically, we like to think of an object of ΣY −, presented as a family
{Ai | i ∈ I} of negative games, as a positive game whose initial moves by
Player are the indices i ∈ I. We come back to this point later in the Section.

Interestingly, the functor ↑ is left adjoint to the functor ↓. Indeed, consider
a family A = {Ai | i ∈ I} of negative Conway games, and a family B =
{Bj | j ∈ J} of positive Conway games. The family A is transported (or
lifted) by ↑ to the singleton family consisting of the positive Conway game
⊕i ⇓ Ai, where ⊕ denotes the coproduct in Y +. Dually, the family B is
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transported (or lifted) by ↓ to the singleton family consisting of the negative
Conway game &j ⇑Bj. Now, we have a series of bijections between sets:

ΣY −(A, ↓B) ∼= Πi∈IY
−(Ai, &j∈J ⇑Bj) by definition of ΣY −,

∼= Π(i,j)∈I×JY −(Ai,⇑Bj) because & is product in Y −,

∼= Π(i,j)∈I×JY +(⇓Ai, Bj) thanks to the adjunction ⇓ a ⇑ ,

∼= Πj∈JY +(⊕i∈I ⇓Ai, Bj) because ⊕ is coproduct in Y +,

∼= ΠY +(↑A, B) by definition of ΣY +,

whose naturality in A and B is easily established.

ΣY − as a linear continuation category. As free completion of a symmet-
ric monoidal closed category with products, the category ΣY − is symmetric
monoidal closed. The functor:

(− � −) : ΣY − × ΣY − −→ ΣY −(2)

is defined on the families of positive Conway games, as follows:

{Ai | i ∈ I} � {Bj | j ∈ J} = {Ai ⊗Bj | (i, j) ∈ I × J}.(3)

The monoidal closure A−• B is defined as follows:

{Ai | i ∈ I} −• {Bj | j ∈ J} = {&i∈I(A
⊥
i ⊗Bf(i)) | f ∈ I → J}(4)

So, the initial Player moves of the Conway game A −• B (equivalently, the
indices of the family A−• B) are the set-theoretic functions f from the set I
of initial Player moves in A, to the set J of initial Player moves in B. This
way of defining the initial moves of A −• B does not fit in with the general
philosophy of game semantics, which is to avoid “extensional” constructions
like set-theoretic function spaces. Quite fortunately, one may specialize the
construction to the case where B = ⊥ is the singleton family with the empty
Conway game 1 as unique element. This defines what one calls a linear contin-
uation category, that is, a symmetric monoidal category with finite coproducts
distributive over the tensor product, and an exponentiable object ⊥. Besides,
the resulting endofunctor A 7→ (A−• ⊥) of the category ΣY − coincides with
the endofunctor A 7→↓(A⊥).

ΣY − and ΠY + as categories of central maps. We have indicated that
we like to think of the category ΣY − as a category of positive Conway games.
This is justified by the existence of the functor ΣY − −→ Y + mentioned ear-
lier, which transports every family {Ai | i ∈ I} of negative games to the
positive game with initial moves the indices i ∈ I, followed by the plays of Ai.
The functor is faithful, and injective of objects. The category ΣY − is thus
isomorphic to its image in the category Y +, which we note Y +−

• .

The category Y +−
• may defined directly as follows. The objects of Y +−

• are
the Conway games in which:
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• every initial move in a play is by Player,

• every second move in a play is by Opponent.

The morphisms A −→ B of Y +−
• are the winning strategies σ : A⊥ ⊗ B such

that, for every Player move ∗A → x in A, there exists a Player move ∗B → y in
B, such that the play ∗A⊗∗B → x⊗∗B → x⊗ y is element of the strategy σ.

Dually, the functor ΠY + −→ Y − defines an isomorphism of categories
ΠY + ∼= Y −+

• where Y −+
• is defined as the opposite category of Y +−

• . It is not
difficult to see that the resulting functors:

↑ : Y +−
• −→ Y −+

• , ↓ : Y −+
• −→ Y +−

• .

coincide with the lifting functors ⇑ and ⇓ restricted to the subcategories Y +−
•

and Y −+
• of Y + and Y −, respectively. This justifies our notations for ↑ and ↓ .

Now, let Y −+ denote the full subcategory of Y − with the objects of Y −+
• ,

and let Y +− denote the full subcategory of Y + with the objects of Y +−
• . By

construction, the category Y +− is opposite to the category Y −+.

There is a crucial observation to make here: the category Y −+ is the co-
kleisli category over the category Y −+

• , induced by the comonad ↑ ↓. It is not
difficult indeed to check that the set Y −+(A, B) of morphisms between two
negative Conway games A and B of Y −+, is equal to the set Y +−

• (↓A, ↓B) of
morphisms in the category Y −+

• . This implies that the category Y −+ is the
category of continuations associated to the category Y +−

• .

The category Y −+ thus defines what Peter Selinger calls a (linear) control
category in [17]. The category Y −+

• is the category of central maps associ-
ated to this control category Y −+. This is the key to understand together
the family construction by Samson Abramsky and Guy McCusker in [2], the
polarized presentation of games by Olivier Laurent in [11], the completeness
theorem of continuation models for the λµ-calculus by Martin Hofmann and
Thomas Streicher in [5], or the representation theorem of control categories
as continuation models by Peter Selinger in [17].

The adjunction ↑ a ↓ simulates synchronization. After this long dis-
cussion, we are ready to clarify the computational meaning of the adjunction
↑ a ↓ . Suppose that A denotes a positive Conway game in Y +−

• , and B a
negative Conway game in Y −+

• . Every element of Y +−
• (A, ↓ B) is a strat-

egy σ of A⊥⊗ ↓ B which waits for an Opponent move m : ∗A → x in A⊥,
plays the dummy move in ↓B after receiving m, waits for an Opponent move
n : ∗B → y in B, and carries on after receiving n. Symmetrically, every ele-
ment of Y −+

• (↑A, B) is a strategy τ of ↓A⊥⊗B which waits for an Opponent
move n : ∗B → y in B, plays the dummy move in ↓A⊥ after receiving n, waits
for an Opponent move m : ∗A → x in A⊥, and carries on after receiving m.
In both cases, the strategy σ or τ waits for the two inputs m : ∗A → x and
n : ∗B → y, then carries on. In that way, the two strategies σ and τ imple-
ment the synchronized input of m in A and n in B: the strategy σ simulates

11
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synchronization of A and B by asking in A then in B (in the call-by-value
order) whereas the strategy σ asks in B then in A (in the call-by-name order).

The Conway game A ( B. This discussion on synchronization has a
categorical counterpart. The functor associated to the adjunction ↑a ↓ :

(Y +−
• )

op × Y −+
• −→ Set.(5)

factorizes as a functor on Conway games:

(− ( −) : (Y +−
• )

op × Y −+
• −→ Y −+

•(6)

postcomposed to the global element functor Y −+
• −→ Set which associates to

every negative Conway game its set of winning strategies. The Conway game
A ( B is defined just as A⊥ ⊗B except that the initial Opponent moves are
pairs (m, n) of a Player move in A and an Opponent move in B.

The Blass problem. The definition of the Conway game A ( B coincides
with the definition given by Andrea Blass in his game-theoretic account of lin-
ear logic [3]. Interestingly, the synchronization of the initial moves is precisely
what leads (apparently) to the so-called Blass problem. The problem is the
following one: there seems to be a natural way to build a category of negative
and positive games, but this expected construction does work unfortunately,
because it defines to a non-associative structure, see the comprehensive ac-
count by Samson Abramsky in [1].

The Blass problem may be reformulated categorically in the following way.
As any profunctor, the functor (5) induces a category Y• with Conway games
of Y +−

• and Y −+
• as objects, and:

• the morphisms of Y +−
• between two positive Conway games A and B,

• the morphisms of Y −+
• between two negative Conway games A and B,

• the strategies of A ( B from a positive game A to a negative game B,

• no morphism from a negative game A to a positive game B.

The composition law of the category Y• is deduced from the composition laws
of the categories Y +−

• and Y −+
• , as well as from the functor (5). Associativity

is ensured by the bifunctoriality of (5).

The Blass problem arises when one tries to replace the two categories Y +−
•

and Y −+
• in the construction of Y•, by their kleisli categories Y +− and Y −+.

Suppose indeed that one tries to compose a morphism hA : A′ −→ A in the
kleisli category Y +−, a strategy σ : A ( B, and a morphism σ : B −→ B′ in
the co-kleisli category Y −+. This amounts to extending the functor (6) to a
functor

(− ( −) : (Y +−)
op × Y −+ −→ Y −+.(7)

The Blass problem amounts to the fact that there is no such functor (7) but
only a functor:

(− ( −) : (Y +−)
op ⊗ Y −+ −→ Y −+.(8)

12
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where (Y +−)
op ⊗ Y −+ is a variant of (Y +−)

op × Y −+ without the interchange
law between composition and tensor product, see [15] for a definition. In other
words, the equality:

(idA′ ( hB) ◦ (hA ( idB) = (hA ( idB′) ◦ (idA ( hB)

is not necessarily verified.

Now, observe, and this is the main point, that the functors (6) and (2) are
related by a natural isomorphism A ( B ∼= (A � B⊥)⊥. Thus, extending
the functor ( from the categories Y +−

• and Y −+
• to their kleisli categories

Y +− and Y −+, is just like extending the bifunctor � from Y +−
• to its kleisli

category Y +−. This enables to apply this well-known fact of the theory of
monads, see [8,15], that the functor � defines a premonoidal structure on
Y +− because the linear continuation monad ↓↑ on the category Y +−

• is strong
but not commutative.

Towards the category Z. We have just reduced Blass problem to the
property that the linear continuation monad A 7→ ((A−• ⊥)−• ⊥) is strong
but not commutative. This provides us with a recipe to get a model of linear
logic: find an analogue of the category Y +−

• in which the linear continuation
monad A 7→ ((A−• ⊥)−• ⊥) would be commutative. More than that: in order
to obtain a ∗-autonomous category, we want this linear continuation monad
to be equivalent (as a monad) to the identity. The category of asynchronous
games introduced in Section 5 is designed precisely for that purpose.

4 A crash course on asynchronous game semantics

In this section, we recall the definitions of asynchronous games and innocent
strategy given in [14]. We call these games simple games in order to pre-
pare Section 5 in which they appear as components of more general games.
The original definition of asynchronous game given in [14] is also adapted in
three ways. First, we consider asynchronous games with a well-founded event
structure, in order to relate them to Conway games. This is only a detail of
presentation, since all our definitions apply to non well-founded asynchronous
games. We also add an incompatibility relation # between the moves of the
game, in order to interpret the additive connectives and constants of linear
logic. Finally, we associate a payoff in {−∞,−1, +1,∞} to every position of
the game, in order to distinguish between Player positions (with positive pay-
off) and Opponent positions (with negative payoff) as well as between internal
positions (with infinite payoff) and external positions (with unit payoff).

Event structures. An event structure (M,≤, #) is a partially ordered set
(M,≤) of events equipped with a binary symmetric irreflexive relation #
verifying:

• the set m ↓ = {n ∈ M | n ≤ m} is finite for every event m ∈ M,

13
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• m#n ≤ p implies m#p for every events m,n, p ∈ M.

Two events m, n ∈ M are called incompatible when m#n, and compatible oth-
erwise. Two moves m and n are called independent when they are compatible,
and different. We write m I n in that case.

Positions. A position of an event structure A is a finite downward closed sub-
set of (MA,≤A), consisting of pairwise compatible events. The set of positions
of A is denoted DA.

The positional graph. Every event structure A induces a graph GA whose
nodes are the positions x, y ∈ DA, whose edges m : x −→ y are the events
verifying y = x+{m}, where + indicates a disjoint union, that is, y = x∪{m}
and the move m is not element of x. An event structure is called well-founded
when the graph GA is well-founded.

Simple asynchronous games. A simple game A = (MA,≤A, #A, λA, κA)
is a well-founded event structure (MA,≤A, #A) whose events are called the
moves of the game, equipped with a polarity function λA : MA −→ {−1, +1}
on moves, and a payoff function κA : DA −→ {−∞,−1, +1, +∞} on positions.
A move with polarity +1 (resp. −1) is called a Player (resp. Opponent) move.
A Player (resp. Opponent) position is a position with payoff in {+1, +∞}
(resp. in {−1,−∞}). An external (resp. internal) position is a position with
payoff in {+1,−1} (resp. in {+∞,−∞}).

The underlying Conway game. The positional graph attached to the
simple game A defines a Conway game GA, in which the polarity of a move
x → y is given by the polarity of the underlying move m such that y = x+{m}
in the simple game A. For simplicity, we write PA instead of PGA

for the set
of plays of GA. There is more structure in GA than in a usual Conway game,
since every position has a payoff, and moves may be permuted in plays, as
explained below. The set of external positions of GA is denoted D◦

A.

Homotopy. Given two paths s, s′ : x −→−→ y in GA, we write s ∼1 s′ when
the paths s and s′ are of length 2, with s = m · n and s′ = n · m for two
moves m,n ∈ MA. The homotopy equivalence ∼ between paths is defined as
the least equivalence relation containing ∼1, and closed under composition.
We also use the notation ∼ in our diagrams to indicate that two (necessarily
independent) moves m and n are permuted. The word homotopy is justi-
fied mathematically by the work on directed homotopy by Philippe Gaucher
and Eric Goubault [4]. Indeed, every asynchronous game defines a directed
simplicial set, in which directed homotopy between paths coincides with our
permutation equivalence ∼.

Strategy. A strategy σ of a simple asynchronous game is a strategy of the
underlying Conway game GA, such that, moreover, every play s : ∗ −→−→ x

14
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Fig. 1. Backward consistency

in the strategy σ has its target position x of positive payoff: +1 or +∞. A
strategy σ of A is winning when it is winning in the underlying Conway game
GA. We write σ : A when σ is a winning strategy of the simple asynchronous
game A.

Innocence. We reformulate in [14] the usual notion of innocence found in
arena games, as follows. A strategy σ is called innocent, when it is side
consistent and forward consistent in the following sense.

Backward consistency. A strategy σ is backward consistent (see Figure 1)
when for every play s1 ∈ PA, for every path s2, for every moves m1, n1, m2, n2 ∈
MA, it follows from

s1 ·m1 · n1 ·m2 · n2 · s2 ∈ σ and n1 I m2 and m1 I m2

that
n1 I n2 and m1 I n2 and s1 ·m2 · n2 ·m1 · n1 · s2 ∈ σ.

Forward consistency. A strategy σ is forward consistent (see Figure 2)
when for every play s1 ∈ PA and for every moves m1, n1, m2, n2 ∈ MA, it
follows from

s1 ·m1 · n1 ∈ σ and s1 ·m2 · n2 ∈ σ and m1 I m2 and m2 I n1

that
m1 I n2 and n1 I n2 and s1 ·m1 · n1 ·m2 · n2 ∈ σ.

Positional strategy. A strategy σ : A is called positional when for every
two plays s1, s2 : ∗A −→−→ x in the strategy σ, and every path t : x −→−→ y of
GA, one has:

s1 ∼ s2 and s1 · t ∈ σ ⇒ s2 · t ∈ σ.
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Fig. 2. Forward consistency

Proposition 4.1 ([14]) Every innocent strategy σ is positional.

Note that every positional strategy is characterized by the set of positions
of DA it reaches, defined as σ• = {x ∈ DA,∃s ∈ σ, s : ∗A −→−→ x}.

5 An innocent model of propositional linear logic

Lifting of a simple games. The lifting ⇓ A of any simple game A is the
simple game defined by lifting the set of moves MA with an Opponent move
m, and giving the internal and Player payoff +∞ to the root ∗⇓A of the simple
game ⇓A. The operation ⇑A is defined dually.

Tensor product of simple games. The tensor product A⊗B of two simple
games

A = (MA,≤A, #A, λA, κA) and B = (MB,≤B, #B, λB, κB)

is defined by a disjoint sum of polarized event structures

(MA + MB,≤A + ≤A, #A + #B, λA + λB).

The underlying Conway game of A ⊗ B is thus equal to the tensor product
of the underlying Conway games of A and B. The payoff κA⊗B(x ⊗ y) of a
position x ⊗ y is given by the table below, in which the payoffs κA(x) and
κB(y) appear in the first row and first column.

⊗ −∞ −1 +1 +∞

−∞ −∞ −∞ −∞ −∞

−1 −∞ −∞ −1 +∞

+1 −∞ −1 +1 +∞

+∞ −∞ +∞ +∞ +∞
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Note that the table is symmetric in A and B, and that the tensor product of
an internal position with another position is always internal.

Asynchronous games. An asynchronous game is a pair {π | Ai | i ∈ I}
consisting of a polarity π ∈ {+1,−1} and of a family (Ai)i∈I of simple games
indexed by I. A position of A is defined as a position of any of the simple
games Ai. The component of a position of A is the simple game Ai in which
it appears. A position of A is called initial when it is the root of its compo-
nent Ai. Every initial position in A is required to have a positive payoff when
π = +1, and a negative payoff when π = −1. An asynchronous game is called
negative when π = −1 and positive when π = +1.

Lifting. The lifting of a negative game A = {−1 | Ai | i ∈ I} is the positive
game ↓A = {+1 | &i∈I ⇓Ai} consisting of a unique simple game &i∈I ⇓Ai with
polarized event structure the disjoint sum of the polarized event structures of
the ⇓Ai’s, with all moves in ⇓Ai and ⇓Aj incompatible when i 6= j. Note
that the underlying Conway game of &i∈I ⇓Ai is the cartesian product of the
underlying Conway game of each ⇓Ai in the category Y −.

Multiplicatives. The tensor product A � B of two positive games A =
{+1 | Ai | i ∈ I} and B = {+1 | Bj | j ∈ J} is defined by synchronizing the
initial positions of A and B:

A � B
def
= {+1 | Ai ⊗Bj | (i, j) ∈ I × J}(9)

The tensor product of positive and negative asynchronous games is deduced
from (9) as:

A � B
def
= A �↓B when A is positive and B is negative,

A � B
def
= (↓A) � B when A is negative and B is positive,

A � B
def
= (↓A) � (↓B) when A and B are negative.

The .................................................
............
.................................. -product of two asynchronous games A and B is deduced by the de

Morgan equality: A.................................................
............
.................................. B

def
= (A⊥ � B⊥)⊥ where duality is defined as expected.

Note that the asynchronous game A � B is always positive, and that the
asynchronous game A.................................................

............
.................................. B is always negative.

Strategies. A strategy σ of a negative asynchronous game {−1 | Ai | i ∈ I}
is defined as a family { σi | i ∈ I} of strategies σi of the simple game Ai. The
strategy σ is innocent (resp. winning) when each strategy σi is innocent (resp.
winning).

External equivalence. The main idea underlying our model is that two
innocent strategies should be identified when they meet the same external
positions. The set of external positions of the strategy σ = { σi | i ∈ I} on a
negative asynchronous game {−1 | Ai | i ∈ I} is the family σ◦ = { σ•i ∩D◦

Ai
| i ∈
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I}. Two innocent strategies σ and τ of an asynchronous game A are called
externally equivalent when σ◦ = τ ◦. We write this σ 'A τ .

The category Z. The category Z has asynchronous games as objects, and
'-equivalence classes of winning innocent strategies of A⊥.................................................

............
.................................. B as morphisms

from A to B.

Proposition 5.1 The category Z is ∗-autonomous and has all products.

We indicate briefly how morphisms σ : A −→ B behave in the category Z,
depending on the polarity of the two games A and B.

Case 1: the games A and B are positive. In that case, the morphism σ
is a strategy (modulo ') of A⊥.................................................

............
.................................. ↓B which thus waits for an initial position

(x, ∗) in A⊥.................................................
............
.................................. ↓ B, then plays either (x, ∗) → (x, y) where y is an initial

position of B, or (x, ∗) → (x′, ∗) where x′ is a position of payoff −∞ in A.
The fact that the position x′ is necessarily internal in A follows from the
requirement that, if played by σ, the position (x′, ∗) is necessarily of positive
payoff. Since the payoff of the position ∗ is −∞ in ↓ B, the payoff of the
position x′ has to be +∞.

This has one remarkable consequence. Call external any asynchronous
game with no internal position. By the previous discussion, a morphism be-
tween two external positive games A and B behaves in the same way as a
central map on Conway games, discussed in Section 3. That is, after receiving
the initial position x of A, the strategy σ plays necessarily an initial position
y in B. In that sense, the category Z is a category of central strategies.

At this point, it is worth stressing that the monoidal closure of two external
positive games A and B is not external nor positive any more: it is the negative
game A⊥.................................................

............
.................................. B, also equal to A.................................................

............
.................................. ↑(B⊥). The initial positions of this game are

the initial positions of A, understood as internal positions in ↑(A⊥).................................................
............
.................................. B. Each

initial position (x, ∗) is followed by a Player move in A to an internal position
(x′, ∗) or by a Player move in B to an external position (x, y).

This improves the set-theoretic definition of monoidal closure (4) in a very
satisfactory way, since the definition of (4) is simply replaced by “commuting”
the order in which Player and Opponent appear in the game A−• B. By way of
illustration, consider three external and positive games A, B, C. Any strategy
in A � B −→ C waits for a pair (x, y) of initial positions in A and B, then
plays an initial position in C. Exactly the same can be said of a strategy
B −→ A⊥.................................................

............
.................................. C, which would not be the case using definition (4).

Case 2: the games A and B are negative. The situation is just dual to
the previous one.

Case 3: the game A is positive and the game B is negative. The
strategy σ (modulo ') waits for a pair of an initial position in A and an
initial position in B, then plays a move in A or in B.
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Case 4: the game A is negative and the game B is positive. In that
case, the strategy σ (modulo ') plays an initial position in A or an initial
position in B. Note that this initial position has to be internal. Indeed, the
strategy σ is forbidden to play an external position x in A or y in B because
the resulting position (x, ∗) or (∗, y) would be of payoff −∞ in the negative
game ↑(A)⊥.................................................

............
.................................. ↑B. From this follows that there is no strategy from a negative

game A to a positive game B when A and B are external.

All this ensures that every positive game A is isomorphic to the negative
game ↑A. From this follows that Z has all products, since the full subcategory
of negative games in Z is easily shown to have products, in the same way as
the categories Y − or ΠY +.

A model of linear logic. The category Z may be equipped with an expo-
nential modality ! constructed according to the group theoretic ideas of [13].
One obtains that:

Proposition 5.2 The category Z together with the exponential modality de-
fines a model of propositional linear logic, in the sense of [16,6,12].

Besides, the category Z incorporates two well-known variants of the inno-
cent arena game model: the well-bracketed and the non well-bracketed ones.
More precisely, there are structure preserving functors F (resp. G) from the
category of arena games and well-bracketed (resp. non well-bracketed) inno-
cent strategies, to the category Z. The two functors F and G differ mainly in
the way they translate the boolean arena (noted bool).

The two asynchronous games F (bool) and G(bool) are very similar. Both
are negative, and have a unique component, consisting of a simple game with
an Opponent position ∗ at root, two external Player positions V , F , and two
Player moves true : x → V and false : x → F . Intuitively, Opponent plays
the initial position ∗, then Player answers either V (for Vrai) or F (for Faux).
The two games are represented as follows:

F V

∗
false

__@@@@@@@ true

??~~~~~~~

The two games F (bool) and G(bool) differ only in the value of the payoff
function at the root position. The position ∗ is internal (with payoff −∞) in
the game F (bool) and external (with payoff −1) in the game G(bool). It is
worth noting that the game F (bool) is isomorphic to the game 1⊕1, which is
the expected interpretation of booleans. And that the game G(bool) is equal
to the game 1⊕ 1 lifted by an affine variant of the exponential modality, this
defining the (linear) continuation passing style interpretation of booleans.

Interestingly, the functor G is full and faithful, and translates every arena
game to an asynchronous game in which every position is external. On the
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other hand, the functor F is full, but not faithful. This is nicely illustrated
by considering the left and right implementations of the and operator of type

X = bool ( bool ( bool.

Each left and right implementation is interpreted respectively as a strategy
σ1 and σ2 in the category of arena games and well-bracketed strategies. The
two strategies F (σ1) and F (σ2) are identified in the asynchronous game F (X)
because they hit the same set of external positions. The two strategies G(σ1)
and G(σ2) are not identified in the asynchronous game G(X) because all the
positions in G(X) are external. Intuitively, the external positions track the
“terminal states” in the game F (X), and all the “intermediate states” in the
game G(X).

6 Conclusion and future work

By imposing the isomorphism A ∼= ↓ ↑A in a category of sequential games,
we identify enough strategies, and obtain a model of propositional linear logic.
We conjecture that the resulting category Z (or a close variant) provides a
fully complete model of propositional linear logic. We would like to understand
also how this category Z is related to the free bicompletion of the singleton
category, with respect to limits and colimits, characterized and popularized
by André Joyal.

Acknowledgements. The main part of Section 3 was developed in collab-
oration with Peter Selinger, during the winter 2000-2001. We have learned
recently that a similar line of research was developed by Robin Cockett and
Robert Seely, on polarized categories and modules. There is also the work by
Martin Hyland and Andrea Schalk on abstract games in [7], which provides
alternative models of propositional linear logic. There remains to understand
how these works are related to the work presented here.
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