
HAL Id: hal-00154286
https://hal.science/hal-00154286

Submitted on 19 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asynchronous games 2: the true concurrency of
innocence

Paul-André Melliès

To cite this version:
Paul-André Melliès. Asynchronous games 2: the true concurrency of innocence. CONCUR 2004 –
Concurrency Theory, Sep 2004, Londres, United Kingdom. pp.448-465. �hal-00154286�

https://hal.science/hal-00154286
https://hal.archives-ouvertes.fr


Asynchronous games 2

The true concurrency of innocence

Paul-Andŕe Melliès

Equipe Preuves Programmes Systèmes
CNRS & Universit́e Paris 7

Abstract. In game semantics, one expresses the higher-order value passing mech-
anisms of theλ-calculus as sequences of atomic actions exchanged by a Player
and its Opponent in the course of time. This is reminiscent of trace semantics in
concurrency theory, in which a process is identified to the sequences of requests
it generates. We take as working hypothesis that game semantics is, indeed, the
trace semantics of theλ-calculus. This brings us to a notion of asynchronous
game, inspired by Mazurkiewicz traces, which generalizes the usual notion of
arena game. We then extract the true concurrency semantics ofλ-terms from
their interleaving semantics formulated as innocent strategies. This reveals that
innocent strategies are positional strategies regulated by forward and backward
interactive confluence properties. We conclude by defining a non uniform variant
of theλ-calculus, whose game semantics is formulated as a trace semantics.

1 Introduction

Game semantics has taught us the art of converting thehigher-order value passing
mechanisms of theλ-calculus into sequences ofatomic interactions exchanged by a
Player and its Opponent in the course of time. This metamorphosis of higher-order
syntax into interactive semantics has significantly sharpened our understanding of the
simply-typedλ-calculus, either as a pure calculus, or as a calculus extended with pro-
gramming features like recursion, conditional branching, local control, local states, ref-
erences, non determinism, probabilistic choice, etc.

Game semantics is similar totrace semanticsin concurrency theory. A process is
commonly described as a symbolic device which interacts with its environment by emit-
ting or receiving requests. A sequence of such requests is called atrace. The trace se-
mantics of a processπ is defined as the set of traces generated by this process. In many
cases, this semantics characterizes the contextual behaviour of the process.

Game semantics develops quite the same story for theλ-calculus. The terminology
changes obviously: requests are calledmoves, and traces are calledplays. But every-
thing works as in trace semantics: the semantics of aλ-termM of typeA is the set
of playsσ generated by theλ-termM ; and this setσ characterizes the contextual be-
haviour of theλ-term. One original aspect of game semantics however, not present in
trace semantics, is that the typeA defines a game, and that the setσ defines astrategy
of that game.



The starting point of this work is that game semantics isreally the trace semantics
of theλ-calculus. The thesis is apparently ingenuous. But it is surprisingly subversive
because it prescribes to reevaluate a large part of the technical and conceptual choices
accepted in game semantics... in order to bridge the gap with concurrency theory. Three
issues are raised here:

1. The treatment of duplication in mainstream game semantics (eg. in arena games)
distorts the bond with trace semantics, by adding justification pointers to traces.
According to our methodology, this particular treatment of duplication should be
revisited. This is done in the first article of our series on asynchronous games [21].
We recall below the indexed and group-theoretic reformulation of arena games op-
erated there.

2. Thirty years ago, a theory ofasynchronous traceswas formulated by Antoni Mazur-
kiewicz in order to relate theinterleavingandtrue concurrencysemantics of con-
current computations. Game semantics delivers an interleaving semantics of the
λ-calculus, formulated as innocent strategies. What is the corresponding true con-
currency semantics? The task of this second article on asynchronous games is to
answer this question precisely.

3. Ten years ago, a series of full abstraction theorems for PCF were obtained by char-
acterizing the interactive behaviour ofλ-terms as either innocent, or history-free
strategies, see [3,13,24]. We feel that the present work is another stage in the “full
abstraction” program initiated by Robin Milner [23]. For the first time indeed, we
do not simply characterize, but also derive the syntax ofλ-terms from elementary
causality principles, expressed in asynchronous transition systems. This reconstruc-
tion requires the mediation of [21] and of its indexed treatment of threads. This
leads us to anindexedandnon-uniformλ-calculus, from which the usualλ-calculus
follows by group-theoretic principles. In this variant of theλ-calculus, the game se-
mantics of aλ-term may be directly formulated as a trace semantics, performing
the syntactic exploration or parsing of theλ-term.

The treatment of duplication.The language of traces is limited, but sufficient to inter-
pret theaffinefragment of theλ-calculus, in which every variable occurs at most once
in aλ-term. In this fragment, every trace (=play) generated by aλ-term is an alternat-
ing sequence of received requests (=Opponent moves) and emitted requests (=Player
moves). And a request appears at most once in a trace.

The extension from the affine fragment to the wholeλ-calculus requires to handle
semantically the duplication mechanisms. This is a delicate matter. Several solutions
have been considered, and coexist today in the litterature. By way of illustration, take
theλ-term chosen by Church to interpret the natural number2:

M = λf.λx.ffx

In front of two λ-termsP andQ, theλ-termM duplicates its first argumentP , and
applies it twice to its second argumentQ. This is performed syntactically by twoβ-
reductions:

MPQ −→β (λx.PPx)Q −→β PPQ (1)



Obviously, the remainder of the computation depends on theλ-termsP andQ. The
game-theoretic interpretation of theλ-termM has to anticipate all cases. This requires
to manipulate several threads of theλ-termP simultaneously — and many more than
two copies when theλ-termP(1) uses its first argumentP(2) several times inP(1)P(2)Q.

Now, the difficulty is that each thread ofP should be clearly distinguished. A
compact and elegant solution has been introduced by Martin Hyland, Luke Ong and
Hanno Nickau, in theirarena games[13,24]. We recall that anarenais a forest, whose
nodes are themovesof the game, and whose branchesm ` n are oriented in order to ex-
press the idea that the movem justifiesthe moven. A moven is initial when it is a root
of the forest, or alternatively, when there is no movem such thatm ` n. A justified play
is then defined as a pair(m1 · · ·mk, ϕ) consisting of a sequence of movesm1 · · ·mk

and a partial functionϕ : {1, ..., k} → {1, ..., k} providing the so-calledpointerstruc-
ture. The partial functionϕ associates to every occurrencei of a non-initial movemi

the occurrenceϕ(i) of a movemϕ(i) such thatmϕ(i) ` mi. One requires thatϕ(i) < i
to ensure that the justifying movemϕ(i) occurs before the justified movemi. Finally,
the partial functionϕ is never defined on the occurrencei of any initial movemi.

The pointer structureϕ provides the necessary information to distinguish the sev-
eral threads of aλ-term in the course of interaction — typically the several threads
or copies ofP in example (1). The pointer structureϕ is conveniently represented by
drawing “backward pointers” between occurrences of the sequencem1 · · ·mk. By way
of illustration, consider the arenam ` n ` p in which the only initial move ism. A
typical justified play(s, ϕ) of this arena is represented graphically as:

m · nSS · pSS · n
yy

· pXX · n
}}

· paa · m · nSS · p
~~

(2)

Because adding justification pointers distorts the bond with trace semantics, in particu-
lar with Mazurkiewicz traces, we shift in [21] to another management principle based
on thread indexing, already considered in [3,12]. The idea is to assign to each copy of
theλ-termP in example (1) a natural numberk ∈ N (its index) which characterizes the
thread among the other copies ofP . In the case of the justified play (2), this amounts
to (a) adding a dumb moveF in order to justify the initial moves of the sequence, (b)
indexing every justification pointer of the resulting sequence with a natural number:

F · m

17

SS · n

5

RR · p

69

RR · n
4zz

· p
20

VV · n

1

||
· p

7

__ · m

5

{{
· n

70

RR · p

4

��
(3)

then finally (c) encoding the sequence (3) as the sequence of indexed moves below:

m17 · n17,5 · p17,5,69 · n17,4 · p17,4,20 · n17,1 · p17,5,7 ·m5 · n5,70 · p17,4,4. (4)

Obviously, the translation of a justified play(s, ϕ) depends on the choice of indices put
on its justification pointers. Had we not taken sides with trace semantics and concur-



rency theory, we would be tempted (as most people do in fact) to retract to the nota-
tion (2) which is arguably simpler than its translation (4). But we carry on instead, and
regulate the indexing by asking that two justification pointers starting from different oc-
currencesi andj of the same moven, and ending on the same occurrenceϕ(i) = ϕ(j),
receive different indicesk andk′. This indexing policy ensures that every indexed move
occurs at most once in the sequence (4). In this way, we are back to the simplicity of
the affine fragment of theλ-calculus.

An interesting point remains to be understood: what can be said about two different
encodings of the same justified play? The first article of our series [21] clarifies this
point. Every game is equipped with a left and right group actions on moves:

G×M ×H −→M (g,m, h) 7→ g �m � h (5)

whereM denotes the set of (indexed) moves, andG andH the two groups acting on
M . Intuitively, the right (resp. left) group action operates on an indexed movemk0,...,kj

by altering the indicesk2i assigned by Opponent (resp. the indicesk2i+1 assigned by
Player). Theorbit of an (indexed) movemk0,...,kj , is precisely the set of all (indexed)
moves of the formmk′0,...,k

′
j
. Now, the action ofg ∈ G andh ∈ H on (indexed) moves

induces a left and right action on plays, defined pointwise:

g � (m1 · · ·mk) � h = (g �m1 � h) · · · (g �mk � h) (6)

It appears that the justified plays of the original arena game coincide with the orbits of
plays modulo the left and right group actions. Typically, the justified play (2) is just the
play (4) modulo pointwise group action (6). One nice contribution of this second article
on asynchronous games, is to explain thesyntacticmeaning of the group action (5).
This is done in a non-uniform variant of theλ-calculus introduced in Section 6.

Asynchronous traces.After these necessary preliminaries on thread indexing, we shift
to the core of this article: true concurrency vs. interleaving in game semantics. Two
requestsa and b are calledindependentin a processπ when they can be emitted or
received byπ in any order, without interference. Independence ofa andb is represented
graphically bytiling the two sequencesa · b andb · a in the 2-dimensional diagram:

π′

π1

b ==||||
∼ π2

aaaBBBB

π
b

<<zzzza

bbDDDD

(7)

The true concurrencysemantics of a processπ is then extracted from itsinterleaving
semantics, by quotienting the traces ofπ modulo thehomotopy equivalence∼ obtained
by permuting independent requests. Expressing concurrency by permuting events is a
pervading idea in concurrency theory. It originates from the work of Antoni Mazur-
kiewicz on asynchronous traces over a partially ordered alphabet [18,19] and appears
in the theory of asynchronous transition systems [25,15,27] as well as in rewriting the-
ory [20]. Then-dimensional presentation of the idea, and the connection to (directed)
homotopy in cubical sets, is formulated in [26,10].



In comparison, mainstream game semantics is still very much 1-dimensional. By
way of illustration, take the sequential boolean gameB, starting by an Opponent ques-
tion q followed by a Player answertrue or false:

false

__????? true

??�����

q
OO (8)

The plays of the tensor productB⊗ B are obtained by interleaving the plays of the two
instancesB1 andB2 of B. Thus, (a fragment of) the gameB⊗ B looks like this:

false2__?? true1 ??��
q2__?? q1 ??��

true1__?? false2 ??��
q1ggOOOO

q2 77oooo

(9)

We point out in [22] that the two plays in (9) are different from aproceduralpoint of
view, but equivalent from anextensionalpoint of view, since both of them realize the
“extensional value”(true, false). We thus bend the two paths, and tile the resulting
2-dimensional octagon as follows:

false2 77oooooo
true1ggOOOOOO

q2 ??���
q1__???

true1__??? false2 ??���
q1ggOOOOOO

q2 77oooooo

(10)

By doing so, we shift from usual sequential games played on trees, to sequential games
played ondirected acyclic graphs(dags). This enables us to analyze the extensional
content of sequential games, and to obtain a game-theoretic proof of Ehrhard’s collapse
theorem [9].

However instructive, the framework developed in [22] is not entirely satisfactory,
because the permutation tiles areglobal — that is, they involve more than two moves
in general. In contrast, the asynchronous game model presented here admits onlylocal
permutations tiles, similar to tile (7). By way of illustration, this decomposes the global
tile (10) into four local tiles:

false2
??���� ∼

true1
__????

q2
??���� ∼
true1??
__??

false2��

??��

∼

q1
__????

true1

__???? q2��

??��

∼
q1??

__??

false2

??����

q1

__???? q2

??����

(11)

It is interesting that by shifting from (10) to (11), concurrent plays likeq1 ·q2 appear in
the model. From our point of view, this means that a satisfactory theory of sequentiality
requires a concurrent background.



The non-uniformλ-calculus.Here comes the most surprising, most difficult, and maybe
most controversial, part of the paper. In Section 2, we define an asynchronous game as
an event structure whose events are polarized+1 for Player moves and−1 for Opponent
moves. This polarization of events gives rise to a new class of eventsm · n consisting
of an Opponent movem followed by a Player moven. We callOP -movesany such
pair of moves. Just like ordinary moves, twoOP -movesm1 · n1 andm2 · n2 may be
permuted in a play, in the following way:

n2
??���� ∼

n1
__????

m2
??���� ∼
n1??
__??

n2��

??��
∼

m1
__????

n1

__???? m2��

??��
∼
m1??
__??

n2

??����

m1

__???? m2

??����

(12)

The permutation diagram (12) induces an homotopy relation∼OP between plays. The
dual relation∼PO is defined symmetrically, by permutingPO-movesn ·m instead of
OP -moves, where byPO-moven · m we mean an Opponent moven followed by a
Player movem. Note that both∼OP and∼PO preservealternationof plays.

Now, there is a well-established theory ofstableasynchronous transition systems,
see for instance [25,15,20], in which every sequence of transitionss is characterized
(modulo homotopy) as a directed acyclic graph of so-calledcanonical forms. The canon-
ical form of a transitiona in a sequences · a of transitions, expresses the cascade of
transitions necessary for the enabling of the transitiona. Formally, a sequence of tran-
sitionst · a is a canonical form ofs · a when (1)s · a ∼ t · a · t′ for somet′, and (2)
whenevert ∼ t′ · b, thena cannot be permuted beforeb. The stability property ensures
that this canonical forms · a is unique.

The theory may be applied to the asynchronous transition system withOP -moves
as transitions, which happens to be stable. From this follows that everyOP -movem ·n
in an alternating plays ·m · n has a uniquecanonical form. Strikingly, this canonical
form is precisely the so-calledPlayer viewps ·m · nq of the plays ·m · n, introduced
by Martin Hylandet al. in arena games [13,24] and adapted to asynchronous games in
Section 3.

We claim that here lies the essence of the syntax of theλ-calculus. It has been
already noted in [7] that every Player view of a justified play(s, φ) corresponds to
the branch of anη-long Böhm tree. When adapted to the indexed treatment of threads
described in [21] and recalled above, the correspondence defines the branch of anon-
uniformη-long Böhm tree. The definition of the non-uniformλ-calculus is given in Sec-
tion 6. A nice feature of the calculus is that the strategyσ associated to a non-uniform
λ-term may be defined in the same way as a trace semantics. This is also done in Sec-
tion 6.

Related works.The idea of relating a dynamic and a static semantics of interaction is
formulated for the first time by Patrick Baillotet al. in [6]. The idea reappears implicitly
in the concurrent game semantics introduced by Samson Abramsky and the author [5],



in which games are complete lattices of positions, and strategies are closure operators.
As a closure operator, every strategy is at the same time an increasing function on
positions (the dynamic point of view) and a set of positions (the static point of view).
The present paper is the result of a long journey (five years!) to connect this concurrent
game semantics to mainstream sequential game semantics. See also [2].

Martin Hyland and Andrea Schalk develop in [14] a notion of games on graphs quite
similar to the constructions presented here and in [22]. One difference is the treatment
of duplication: backtracking in [14,22], repetitive and indexed here. From this choice
follows that the permutation tilings are global in [14,22] whereas they are local here.
Another difference is that our positions are defined asidealsof moves.

Outline. In the remainder of the article, we define our notion of asynchronous game
(Section 2) and adapt the usual definition of innocent strategy to our setting (Section 3).
We then characterize the innocent strategies in two ways: diagrammatically (Section 4)
and positionally (Section 5). This leads to a non-uniform variant of theλ-calculus, for
which we define a trace semantics, and which we relate to the usualλ-calculus (Sec-
tion 6). Finally, we deliver a series of refinements of asynchronous games (Section 7).

2 Asynchronous games

We choose the simplest possible definition ofasynchronous game, in which the only re-
lation between moves is an order relation≤ which reformulates thejustificationstruc-
ture of arena games. This is enough to describe the language PCF, a simply-typedλ-
calculus enriched with arithmetic, conditional branching, and recursion. Other more
expressive variants are discussed in section 7.

Event structures.An event structureis an ordered set(M,≤) such that every element
m ∈M defines afinitedownward-closed subsetm ↓ = {n ∈M | n ≤ m}.

Asynchronous games.An asynchronous gameis a tripleA = (MA,≤A, λA) consisting
of:

– an event structure(MA,≤A) whose elements are called themovesof the game,
– a functionλA : MA −→ {−1,+1} which associates to every move apolarity +1

(for the Player moves) or−1 (for the Opponent moves).

Positions.A positionof an asynchronous gameA is anyfinitedownward closed subset
of (MA,≤A).

The positional lattice.The set of positions ofA is denotedD(A). Since positions
are ordered by inclusion, and closed under finite union, the partial order(D(A),⊆)
defines a sup-lattice. The empty position, which is the least element of(D(A),⊆), is
denoted∗A. Positions are also closed under arbitrarynonemptyintersection. Adding a
top element> to (D(A),⊆) provides a neutral element to intersection, and induces a



completelatticeD(A)> = (D(A),⊆)>. The greatest least bound and least upper bound
of a family (xi)i∈I of positions inD(A) are computed respectively as:∧

i∈I
xi =

{
> if I is empty,⋂
i∈I xi otherwise,

∨
i∈I

xi =
{
> if

⋃
i∈I xi is infinite,⋃

i∈I xi if
⋃
i∈I xi is finite.

We callD(A)> thepositional latticeassociated to the gameA.

The positional graph.Every asynchronous gameA induces a graphG(A):
– whose nodes are the positionsx, y ∈ D(A),
– whose edgesm : x −→ y are the moves verifyingy = x+ {m}, where+ denotes

disjoint union, or equivalently, thaty = x∪{m} and that the movem is not element
of x.

We call this graphG(A) thepositional graphof the gameA. We writes : x � y for a
path

x
m1−→ x1

m2−→ · · · mk−1−→ xk−1
mk−→ y

between two positionsx andy. Note that there is no repetition of move in the sequence:

∀i, j ∈ {1, ..., k}, i 6= j ⇒ mi 6= mj .

The targety of the paths : x� y may be deduced from the sourcex and the sequence
of movesm1, ...,mk, using the equation:

y = x +
⋃

1≤i≤k

{mi}.

A path ofG(A) is thus characterized by its source (or alternatively, its target) and the
sequence of movesm1 · · ·mk.

Homotopy.Given two pathss, s′ : x� y in G(A), we writes ∼1 s′ whens = m·n and
s′ = n ·m for two movesm,n ∈ MA. Thehomotopy equivalence∼ between paths is
defined as the least equivalence relation containing∼

1, and closed under composition;
that is, for every four pathss1 : x1 � x2 ands, s′ : x2 � x3 ands2 : x3 � x4:

s ∼ s′ ⇒ s1 · s · s2 ∼ s1 · s′ · s2.

We also use the notation∼ in our diagrams to indicate that two (necessarily different)
movesm andn are permuted:

z

y1

n
>>||||

y2

m
``BBBB

x
n

>>||||m

``BBBB

∼ (13)

Note that our current definition of asynchronous game implies that two pathss1 : x1 �
y1 ands : x2 � y2 are homotopic iffx1 = x2 andy1 = y2. Thus, homotopy becomes
informative only in the presence of anindependencerelation between moves, see Sec-
tion 7.



Alternating paths.A pathm1 · · ·mk : x� y is alternatingwhen:

∀i ∈ {1, ..., k − 1}, λA(mi+1) = −λA(mi).

Alternating homotopy.Given two pathss, s′ : x� y in G(A), we writes ∼1
OP s

′ when
s = m1 · n1 ·m2 · n2 ands′ = m2 · n2 ·m1 · n1 where the movesm1,m2 ∈ MA are
Opponent and the moves movesn1, n2 ∈ MA are Player. The situation is summarized
in diagram (12). The relation∼OP is defined as the least equivalence relation containing
∼

1
OP and closed under composition. Note thats ∼PO s′ implies s ∼ s′, but that the

converse is not true, since in diagram (12) one hasm1 ·n1 ·m2 ·n2 ∼ m1 ·n2 ·m2 ·n1

without havingm1 · n1 ·m2 · n2 ∼OP m1 · n2 ·m2 · n1.

Plays. A play is a path starting from the empty position∗A:

∗A
m1−→ x1

m2−→ · · · mk−1−→ xk−1
mk−→ xk

in the positional graphG(A). The set of plays is notedPA.

Equivalently, a play ofA is a finite sequences = m1 · · ·mk of moves, without rep-
etition, such that the set{m1, ...,mj} is downward closed in(MA,≤A) for every
1 ≤ j ≤ k.

Strategy.A strategyσ is a set of alternating plays of even length such that:

– the strategys ∈ σ contains the empty play,
– every nonempty plays ∈ σ starts by an Opponent move,
– σ is closed by even-length prefix:

∀s ∈ PA,∀m,n ∈MA, s ·m · n ∈ σ ⇒ s ∈ σ,

– σ is deterministic:∀s ∈ PA,∀m,n, n′ ∈MA,

s ·m · n ∈ σ ands ·m · n′ ∈ σ ⇒ n = n′.

We writeσ : A whenσ is a strategy ofA.

3 Innocent strategies

The notion ofinnocencehas been introduced by Martin Hyland, Luke Ong and Hanno
Nickau in the framework of arena games [13,24]. It is designed to capture the interac-
tive behaviour of the simply-typedλ-calculus with a constantΩ for non-termination,
either formulated asη-long Böhm trees [7], as proofs of Polarized Linear Logic [17], or
(after a continuation-passing style translation) as PCF programs augmented with local
control [16,4,11]. Asynchronous games enable to reformulate the notion ofinnocence
in a concurrency friendly way. The original definition of innocence is based on the no-
tion of Player viewof a justified play(s, ϕ), defined using the pointer structureϕ. In
asynchronous games, the situation is slightly simpler than in arena games, because the
play s is non repetitive. In particular, there is no need to distinguish a movem from its
occurrences in the play. More: every plays comes with an implicit pointer structureϕ
derived from the causality relation≤ between moves, as follows.



Justification pointers.Suppose thatm and n are two different moves of an asyn-
chronous gameA. We writem `A n, and say thatm justifiesn, when:

– m ≤A n, and
– for every movep ∈MA such thatm ≤A p ≤A n, eitherm = p or p = n.

View extraction. We define the binary relation
OP
 as the smallest relation between

alternating plays such that:

s1 ·m · n · s2
OP
 s1 · s2

for every alternating plays1 and nonempty paths2 such thatm is an Opponent move
which does not justify any move ins2, andn is a Player move which does not justify
any move ins2.

Player view. The relation
OP
 defines a noetherian and locally confluent rewriting sys-

tem on alternating plays. By Newman’s lemma, the rewriting system is confluent. Thus,
every alternating plays ∈ PA induces a unique normal form notedpsq ∈ PA and called
its Player view:

s
OP
 s1

OP
 · · · OP

 sk
OP
 psq.

Asynchronous innocence.A strategyσ is innocentin an asynchronous gameA when
for every playss, t ∈ σ, for every Opponent movem ∈MA and Player moven ∈MA:

s ·m · n ∈ σ andt ·m ∈ PA andps ·mq ∼OP pt ·mq⇒ t ·m · n ∈ σ.

Asynchronous innocence is equivalent to usual innocence in the intuitionistic frag-
ment [13,24]. In that fragment, indeed, every move has at most one justifying move,
and thus, the two Player viewsps ·mq andpt ·mq are∼OP -equivalent iff they are
equal. On the other hand, asynchronous innocence generalizes the usual notion of in-
nocence to more ”concurrent” arenas, in which several movesn1, ..., nk may justify
the same movem — a situation which does not occur in arena games associated to
intuitionistic types.

4 Diagrammatic innocence

In this section, we reformulate diagrammatically the notion ofinnocencein asynchronous
games.

Backward consistency.A strategyσ is calledbackward consistent(see Figure 1 in Ap-
pendix) when for every plays1 ∈ PA, for every paths2, for every movesm1, n1,m2, n2 ∈
MA, it follows from

s1 ·m1 · n1 ·m2 · n2 · s2 ∈ σ and¬(n1 `A m2) and¬(m1 `A m2)

that
¬(n1 `A n2) and¬(m1 `A n2) ands1 ·m2 · n2 ·m1 · n1 · s2 ∈ σ.



Forward consistency.A strategyσ is calledforward consistent(see Figure 2 in Ap-
pendix) when for every plays1 ∈ PA and for every movesm1, n1,m2, n2 ∈ MA, it
follows from

s1 ·m1 · n1 ∈ σ ands1 ·m2 · n2 ∈ σ andm1 6= m2

that
n1 6= n2 ands1 ·m1 · n1 ·m2 · n2 ∈ σ.

We prove by a diagrammatic reasoning inspired by Rewriting Theory that, for every
strategyσ of an asynchronous gameA:

Proposition 1 (diagrammatic characterization). The strategyσ is innocent iff it is
backward and forward consistent.

5 Positional innocence

We establish below the main result of the paper: innocent strategies are positional
strategies (Theorem 2). We then characterize innocent strategies as positional strategies
(Proposition 3) and identify them as concurrent strategies in the sense of [5] (Proposi-
tion 4).

Positional strategy.A strategyσ : A is calledpositional when for every two plays
s1, s2 : ∗A � x in the strategyσ, and every patht : x� y of G(A), one has:

s1 ∼ s2 ands1 · t ∈ σ ⇒ s2 · t ∈ σ.

Every positional strategy is characterized by the set of positions ofD(A) it reaches,
defined as:

σ• = {x ∈ D(A),∃s ∈ σ, s : ∗A � x}.

Theorem 2 (positionality). Every innocent strategyσ is positional.

The positional characterization of innocence (Proposition 3) works in any asynchronous
game in which justification is alternated, that is, wherem ` n impliesλ(n) = −λ(m)
for every movem andn. In particular, it works in any interpretation of a formula of
intuitionistic linear logic.

Proposition 3 (positional characterization). A positional strategyσ is innocent iff the
setσ• of positions satisfies:

– σ• is closed under intersection:x, y ∈ σ• ⇒ x ∩ y ∈ σ•,
– σ• is closed under union:x, y ∈ σ• ⇒ x ∪ y ∈ σ•,
– forward confluence: ifσ• 3 x m−→ w � z ∈ σ• andm is an Opponent move, then

there exists a unique Player movew
n−→ y such thatσ• 3 y � z ∈ σ•,

– backward confluence: ifσ• 3 x � w
n−→ z ∈ σ• andn is a Player move, then

there exists a unique Opponent movey
m−→ w such thatσ• 3 x� y ∈ σ•,

– initial condition: ∗A is element ofσ•.



Proposition 4. Every innocent strategyσ : A defines a closure operatorσ• on the
complete latticeD(A)> of positions.

This series of properties explicates the true concurrency nature of innocence. Proposi-
tion 4 bridges sequential arena games with concurrent games as formulated in [5]. In
particular, positionality implies that strategies may be composed just as relations, or as
cliques in the hypercoherence space model [8].

If the reader finds the idea ofpositionalitydifficult to grasp, we hope that the Propo-
sition below will clarify the situation. It is quite straightforward to define a notion of
innocentcounter-strategyτ interacting against the strategyσ. The counter-strategyτ
may withdraw at any stage of the interaction. Every such withdraw ofτ induces an
even-length plays : ∗A � x in the strategyτ , whose target positionx ∈ τ• is of
even cardinality. Our next result states that the static evaluation (by intersection) ofσ•

againstτ• coincides with the dynamic evaluation (by interaction) ofσ againstτ .

Proposition 5. For every positionx ∈ D(A):

σ• ∩ τ• = {x} ⇐⇒ σ ∩ τ = {s} ands : ∗A � x.

It is nearly routine to construct a categoryG with asynchronous games as objects, and
innocent strategies as morphisms. The only difficulty is to interpret the exponentials,
which is done by equipping every game with a left and right group action, in the spirit
of [21]. The resulting categoryG defines a model of intuitionistic linear logic without
additives. The usual category of arena games and innocent strategies [13,24] embeds
fully and faithfully (as a cartesian closed category) in the kleisli category associated to
the categoryG and to its comonad!.

6 The non uniform λ-calculus

We introduce a non-uniform variant of theλ-calculus. It is callednon-uniformbecause
the argument of a functionλx.P is not aλ-termQ, but a vector

−→
Q of λ-termsQi where

i ∈ N is an index for each occurrencex(i) (or function call) of the variablex in P .
The calculus is affine in nature (never two occurrences ofx(i) occur in the same term),
but the simply-typedλ-calculus may be encoded in it, thanks to group-theoretic ideas
developed in our first article on asynchronous games [21].

Definition of the calculus.The non-uniformλ-termsP and vectors of arguments
−→
Q are

defined by mutual induction:

P ::= x(i) located variable
| P

−→
Q application

| λx.P abstraction

−→
Q ::= (Qi)i∈N vector of non-uniformλ-terms indexed by an integeri ∈ N

where a located variablex(i) consists of a variablex in the usual sense, and an integer
i ∈ N. We require that every located variablex(i) appears at most once in a term. Note
that a non-uniformλ-term is generally infinite. Theβ-reduction is defined as

(λx.P )−→Q −→β P [x(i) := Qi]



whereP [x(i) := Qi] denotes the non-uniformλ-term obtained by replacing each lo-
cated variablex(i) in P by the non-uniformλ-termQi. The non-uniformλ-terms are
typed by the simple types of theλ-calculus, built on the base typeα:

x(i) : A ` x(i) : A
Γ ` P : A⇒ B (∆i ` Qi : A)i∈N

Γ,∆0,∆1,∆2, · · · ` P
−→
Q : B

Γ, x(i0) : A, x(i1) : A, x(i2) : A, · · · ` P : B
Γ ` λx.P : A⇒ B

Here, a contextΓ,∆, ... may contain an infinite number of located variables, since the
⇒-elimination rule involves a family of derivation trees(∆i ` Qi : A)i∈N. The point
is that the⇒-introduction rule may migrate an infinite number of located variablesx(i)
from the context to theλ-term.

Non-uniformη-long Böhm trees.The non-uniformη-long Böhm trees of simple type
A = A1 ⇒ · · ·Am ⇒ α are of three kinds:

1. λx1...λxm.
(
y(i) −→Q1 · · ·

−→
Qn

)
where

– every variablexj is of typeAj for 1 ≤ j ≤ m,
– the located variabley(i) is of typeB = B1 ⇒ · · ·Bn ⇒ α for some typeB,
– every non uniformη-long Böhm tree(Qk)i is of typeBk, for 1 ≤ k ≤ n and
i ∈ N.

2. orΩB whereΩB is a fixed constant of typeB,
3. orλx1...λxm. 0 where0 is a fixed constant of typeα, and every variablexj is of

typeAj , for 1 ≤ j ≤ m.

Trace semantics.We describe a trace semantics for non-uniformη-long Böhm trees,
which coincides with the game semantics delivered by our asynchronous game model.
The Opponent moves are generated by the rule

R− : ΩA −→ λx1 · · ·λxm. 0

whereA = A1 ⇒ · · ·Am ⇒ α and the variablexj is of typeAj for every index
1 ≤ j ≤ m. The Player moves are generated by the rule

R+
x(i) : 0 −→ x(i) −→ΩA1 · · ·

−→
ΩAm

wherex(i) is a located variable of typeA = A1 ⇒ · · ·Am ⇒ α, and
−→
ΩAj is the vector

which associates to every indexi ∈ N the constantΩAj , for every1 ≤ j ≤ m. Last
point, every move from anη-long Böhm tree is labelled by a subtree of the typeA, once
translated in linear logic as an infinite formula, using the equationA⇒ B = !A( B,
and the definition of the exponential modality as infinite tensor:!A = ⊗i∈NA.



Uniformity and bi-invariance.The usual (uniform)η-long Böhm trees of theλ-calculus
are extracted from their non-uniform counterpart by applying abi-invarianceprinciple
introduced in [21]. As recalled in the introduction, see (5), every game there is equipped
with a left and right group action on moves. A strategyσ is calledbi-invariantwhen, for
every plays ∈ σ and every right actionh ∈ H, there exists a left actiong ∈ G such that
g � s � h ∈ σ. This characterizes the strategies which are “blind to thread indexing”, and
thus the strategies which behave as if they were defined directly in an arena game. The
concept of bi-invariance remains formal and enigmatic in [21]. Here, quite fortunately,
the non-uniformλ-calculus provides a simple syntactical explanation to this concept of
bi-invariance, what we explain now.

Every intuitionistic typeA defines a left and right group action (5) on the asyn-
chronous game[A] interpreting it in the asynchronous game model. These two group
actions may be understood syntactically as acting on the non-uniformη-long Böhm
treesP of typeA, as follows: the effect of a right group actionh ∈ H is to permute the
indices inside the vectors of arguments

−→
Q in P , while the effect of a left group action

g ∈ G is to permute the indices of the located variablesx(i) in P . By analogy with [21],
a non-uniformη-long Böhm treeP is calledbi-invariant when for every permutation
h ∈ H, there is a permutationg ∈ G such thatg � P � h = P . It is not difficult to
see that anη-long Böhm tree in the usualλ-calculus is just abi-invariant η-long Böhm
tree in the non-uniformλ-calculus, modulo left group action (that is, permutation of
the indices of the located variables.) For instance, letPj denote the non-uniformη-long
Böhm treePj = λx.λy.(x(j)−→y ) of typeA = (α ⇒ α) ⇒ (α ⇒ α), where−→y
associates to every indexi ∈ N the located variabley(i). Obviously,Pj is bi-invariant,
and represents the uniformη-long Böhm treeλx.λy.x y of same typeA. Note thatPj
is equivalent to anyPk modulo left group action. The trace (or game) semantics ofPj
is given by:

ΩA
m−→ λx.λy.0

n−→ λx.λy.( x(j) −→Ωα ) mk−→ λx.λy. ( x(j) −→Qk ) nk−→ · · ·

Here, the movem by Opponent (labelled by the typeA) asks for the value of the head
variable ofPj , and the moven by Player (labelled by the type(α ⇒ α)j) answers
x(j); then, the movemk by Opponent (labelled byαk in (α⇒ α)j) asks for the value
of the head variable of thek-th argument ofx(j), inducing the vector of arguments
(Qk)i = Ωα for i 6= k and(Qk)k = 0; finally the movenk by Player (labelled byαk)
answersy(k), etc... This example illustrates the fact that the trace (or game) semantics
of a non-uniformη-long Böhm tree is simply the exploration (or parsing) of that tree
by the Opponent.

7 Additional structures

For clarity’s sake, we deliver the simplest possible definition of asynchronous game in
Section 2. We review below possible extensions of this definition.

Compatibility. One may add anincompatibility relation# between moves, in order
to obtain a model of intuitionistic linear logicwith additives. The relation# indicates
when two moves cannot appear in the same position, and thus cannot appear in the same



play. The coherence axiom(m1#m2 ≤ m3 ⇒ m1#m3) is required for every moves
m1,m2,m3, just as in event structures [27].

Independence.There is a well-established tradition in trace semantics to describeinter-
ferencemechanisms using an independence relationI between events [19]. Similarly,
an independence relation between moves may be added to asynchronous games, in or-
der to study interference in imperative programming languages. Take the game model of
Idealized Algol presented in [1]. Suppose that an independence relation indicates that
the movesread andwrite( n) are interfering in the interpretation of the variable
typevar , for every natural numbern. In that case, the interference betweenread and
write( n) induces obstructions (“holes”) to the homotopy relation∼ on the game
var . Quite interestingly, the asynchronous definition of innocence adapts smoothly,
and remains compositional in the presence of interfering moves (that is, it defines a
category).

8 Conclusion

The theory of asynchronous games is designed to bridge the gap between mainstream
game semantics and concurrency theory. Our preliminary results are extremely encour-
aging. We establish indeed that the cardinal notion of sequential game semantics:inno-
cence, follows from elementary principles of concurrency theory, formulated in asyn-
chronous transition systems. We deduce from this a non-uniformλ-calculus, whose
game semantics is expressed as a trace semantics. This provides a concurrency-friendly
picture of theλ-calculus, and new diagrammatic foundations for the understanding of
its syntax and semantics.

References

1. S. Abramsky and G. McCusker. Linearity, sharing and state: a fully abstract game semantics
for Idealized Algol with active expressions, 1997.

2. Samson Abramsky. Sequentiality vs. concurrency in games and logic. Report Research
Report RR-01-08, Oxford University, Programming Research Group, April 2001.

3. Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full abstraction for PCF.
Information and Computation, 163(2):409–470, 2000.

4. Samson Abramsky and Guy McCusker.Game Semantics. Springer Verlag, 1999.
5. Samson Abramsky and Paul-André Melliès. Concurrent games and full completeness. In

Logic in Computer Science 99, pages 431–442, Trento, July 1999. IEEE Computer Society
Press.

6. Patrick Baillot, Vincent Danos, Thomas Ehrhard, and Laurent Regnier. Timeless games. In
Morgen Nielsen and Wolfgang Thomas, editors,Proceedings of CSL’97, number 1414 in
Lecture Notes in Computer Science, pages 56–77, Aarhus, 1997. Springer Verlag.

7. Vincent Danos, Hugo Herbelin, and Laurent Regnier. Games semantics and abstract ma-
chines. InProceedings of the 11th Symposium on Logic in Computer Science, pages 394–
405, New Brunswick, 1996. IEEE Computer Society Press.

8. Thomas Ehrhard. Hypercoherences: a strongly stable model of linear logic.Mathematical
Structures in Computer Science, 3(4):365–385, 1993.



9. Thomas Ehrhard. A relative definability result for strongly stable functions and some corol-
laries. Information and Computation, 1997.

10. Eric Goubault. Geometry and concurrency: A user’s guide.Mathematical Structures in
Computer Science, 10(4), August 2000.

11. R. Harmer. Games and full abstraction for nondeterministic languages. Phd thesis, University
of London, 2000.

12. Martin Hyland.Game Semantics. Publications of the Newton Institute. Cambridge Univer-
sity Press, 1997.

13. Martin Hyland and Luke Ong. On full abstraction for PCF: I, II and III.Information and
Computation, 163(2):285–408, December 2000.

14. Martin Hyland and Andrea Schalk. Games on graphs and sequentially realizable functionals.
In Logic in Computer Science 02, pages 257–264, Kopenhavn, July 2002. IEEE Computer
Society Press.

15. Dietrich Kuske. Non deterministic automata with concurrency relations and domains. In
Proceedings of the Colloquium on Trees in Algebra and Programming, CAAP’94, volume
787 ofLecture Notes in Computer Science. Springer Verlag, 1994.

16. James Laird. Full abstraction for functional languages with control. InLogic in Computer
Science, pages 58–67, 1997.

17. Olivier Laurent. Polarized games (extended abstract). InProceedings of the seventeenth
annual symposium on Logic In Computer Science, pages 265–274, Copenhagen, July 2002.
IEEE Computer Society Press.

18. Antoni Mazurkiewicz. Concurrent program schemes and their interpretations. Technical
Report DAIMI PB 78, Aarhus University, 1977.

19. Antoni Mazurkiewicz.The book of traces, chapter Introduction to trace theory. World Sci-
entific Publishing, 1995.

20. Paul-Andŕe Melliès. Axiomatic rewriting 4: a stability theorem in rewriting theory. InLogic
in Computer Science ’98. IEEE Computer Society Press, July 1998.

21. Paul-Andŕe Melliès. Asynchronous games 1: a group-theoretic formulation of unifor-
mity. Pŕepublicationélectronique PPS//04/06//n◦31 (pp), Equipe Preuves, Programmes et
Syst̀emes, April 2003.

22. Paul-Andŕe Melliès. Sequential algorithms and strongly stable functions. Prépublication
électronique PPS//03/09//n◦23 (pp), Equipe Preuves, Programmes et Systèmes, April 2003.
To appear in the special issue ”Game Theory Meets Theoretical Computer Science” ofThe-
oretical Computer Science.

23. Robin Milner. Fully abstract models of typed lambda-calculi.Theoretical Computer Science,
4:1–22, 1977.

24. Hanno Nickau. Hereditarily sequential functionals. In A. Nerode and Yu. V. Matiyase-
vich, editors,Proceedings of the Symposium on Logical Foundations of Computer Science:
Logic at St. Petersburg, volume 813 ofLecture Notes in Computer Science, pages 253–264.
Springer Verlag, 1994.

25. E. W. Stark P. Panangaden, V. Shanbhogue. Stability and sequentiality in data flow net-
works. In A. Nerode and Yu. V. Matiyasevich, editors,International Conference on Auto-
mates, Languages and Programming, volume 443 ofLecture Notes in Computer Science,
pages 253–264. Springer Verlag, 1990.

26. Vaughn Pratt. Modeling concurrency with geometry. InProceedings of the eighteenth an-
nual symposium on Principles Of Programming Languages, pages 311–322. ACM, IEEE
Computer Society Press, January 1991.

27. G. Winskel and M. Nielsen. Models for concurrency. In S. Abramsky, D. Gabbay, and T. S. E.
Maibaum, editors,Handbook of Logic in Computer Science, volume 4. Oxford University
Press, 1995.



Appendix: table of figures.

σ 3

s2

OOOO

n2
??����

m2
??����
∼

__????

n1

__????
??����
∼

__????

m1

__???? m2

??����

s1

OOOO

⇒

s2

OOOO

n2
??����
∼

n1
__????

m2
??����
∼

__????
??����
∼

m1
__????

n1

__????
??����
∼

__???? n2

??����

m1

__???? m2

??����

s1

OOOO

∈ σ

Fig. 1.Side consistency

σ 3

??����
∼

__????

n1

__????
??����
∼

__???? n2

??����

m1

__???? m2

??����

s1

OOOO

∈ σ

⇒

σ 3

n2
??����
∼

n1
__????

m2
??����
∼

__????
??����
∼

m1
__????

n1

__????
??����
∼

__???? n2

??����

m1

__???? m2

??����

s1

OOOO

∈ σ

Fig. 2.Forward consistency


