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Asynchronous games 2
The true concurrency of innocence

Paul-Andgé Mellies

Equipe Preuves Programmes $yses
CNRS & Universié Paris 7

Abstract. In game semantics, one expresses the higher-order value passing mech-
anisms of the\-calculus as sequences of atomic actions exchanged by a Player
and its Opponent in the course of time. This is reminiscent of trace semantics in
concurrency theory, in which a process is identified to the sequences of requests
it generates. We take as working hypothesis that game semantics is, indeed, the
trace semantics of th&-calculus. This brings us to a notion of asynchronous
game, inspired by Mazurkiewicz traces, which generalizes the usual notion of
arena game. We then extract the true concurrency semantitgesfs from

their interleaving semantics formulated as innocent strategies. This reveals that
innocent strategies are positional strategies regulated by forward and backward
interactive confluence properties. We conclude by defining a non uniform variant
of the A-calculus, whose game semantics is formulated as a trace semantics.

1 Introduction

Game semantics has taught us the art of convertinchitjeer-ordervalue passing
mechanisms of the-calculus into sequences afomicinteractions exchanged by a
Player and its Opponent in the course of time. This metamorphosis of higher-order
syntax into interactive semantics has significantly sharpened our understanding of the
simply-typedX-calculus, either as a pure calculus, or as a calculus extended with pro-
gramming features like recursion, conditional branching, local control, local states, ref-
erences, non determinism, probabilistic choice, etc.

Game semantics is similar teace semanticén concurrency theory. A process is
commonly described as a symbolic device which interacts with its environment by emit-
ting or receiving requests. A sequence of such requests is caltadeaThe trace se-
mantics of a process is defined as the set of traces generated by this process. In many
cases, this semantics characterizes the contextual behaviour of the process.

Game semantics develops quite the same story fokteculus. The terminology
changes obviously: requests are calledves and traces are callqulays But every-
thing works as in trace semantics: the semantics afterm M of type A is the set
of playso generated by tha-term M; and this setr characterizes the contextual be-
haviour of the\-term. One original aspect of game semantics however, not present in
trace semantics, is that the tygedefines a game, and that the salefines astrategy
of that game.



The starting point of this work is that game semanticeally the trace semantics
of the A-calculus. The thesis is apparently ingenuous. But it is surprisingly subversive
because it prescribes to reevaluate a large part of the technical and conceptual choices
accepted in game semantics... in order to bridge the gap with concurrency theory. Three
issues are raised here:

1. The treatment of duplication in mainstream game semantics (eg. in arena games)
distorts the bond with trace semantics, by adding justification pointers to traces.
According to our methodology, this particular treatment of duplication should be
revisited. This is done in the first article of our series on asynchronous games [21].
We recall below the indexed and group-theoretic reformulation of arena games op-
erated there.

2. Thirty years ago, a theory abynchronous tracesas formulated by Antoni Mazur-
kiewicz in order to relate thimterleavingandtrue concurrencysemantics of con-
current computations. Game semantics delivers an interleaving semantics of the
A-calculus, formulated as innocent strategies. What is the corresponding true con-
currency semantics? The task of this second article on asynchronous games is to
answer this question precisely.

3. Ten years ago, a series of full abstraction theorems for PCF were obtained by char-
acterizing the interactive behaviour afterms as either innocent, or history-free
strategies, see [3,13,24]. We feel that the present work is another stage in the “full
abstraction” program initiated by Robin Milner [23]. For the first time indeed, we
do not simply characterize, but also derive the syntaX-térms from elementary
causality principles, expressed in asynchronous transition systems. This reconstruc-
tion requires the mediation of [21] and of its indexed treatment of threads. This
leads us to ammdexedandnon-uniformi-calculus, from which the usuatcalculus
follows by group-theoretic principles. In this variant of thealculus, the game se-
mantics of ak-term may be directly formulated as a trace semantics, performing
the syntactic exploration or parsing of theerm.

The treatment of duplicationThe language of traces is limited, but sufficient to inter-

pret theaffinefragment of the\-calculus, in which every variable occurs at most once

in a A-term. In this fragment, every trace (=play) generated bBytarm is an alternat-

ing sequence of received requests (=Opponent moves) and emitted requests (=Player
moves). And a request appears at most once in a trace.

The extension from the affine fragment to the whalealculus requires to handle
semantically the duplication mechanisms. This is a delicate matter. Several solutions
have been considered, and coexist today in the litterature. By way of illustration, take
the A-term chosen by Church to interpret the natural nun2er

M = Mf. x.ffx

In front of two A-terms P and @, the A-term M duplicates its first argumer®, and
applies it twice to its second argumet This is performed syntactically by twg-
reductions:

MPQ —g3 (Ax.PPz)QQ —3 PPQ (1)



Obviously, the remainder of the computation depends omtterms P and Q. The
game-theoretic interpretation of theterm M has to anticipate all cases. This requires
to manipulate several threads of théerm P simultaneously — and many more than
two copies when tha-term Py uses its first argumei ;) several times iP;) P2 Q.

Now, the difficulty is that each thread d? should be clearly distinguished. A
compact and elegant solution has been introduced by Martin Hyland, Luke Ong and
Hanno Nickau, in theiarena game§13,24]. We recall that aarenais a forest, whose
nodes are thmovesf the game, and whose branches- »n are oriented in order to ex-
press the idea that the mowxejustifiesthe moven. A moven is initial when it is a root
of the forest, or alternatively, when there is no mavsuch thatn - n. A justified play
is then defined as a paim; - - - my, ) consisting of a sequence of moves ---m
and a partial functionp : {1,...,k} — {1, ..., k} providing the so-callegointer struc-
ture. The partial functiorp associates to every occurrencef a non-initial movem;
the occurrence (i) of a movem,, ;) such thatn, ;) = m;. One requires thap(i) <
to ensure that the justifying mowve,,;y occurs before the justified move;. Finally,
the partial functionp is never defined on the occurrenicef any initial movem,.

The pointer structure> provides the necessary information to distinguish the sev-
eral threads of a-term in the course of interaction — typically the several threads
or copies ofP in example (1). The pointer structugeis conveniently represented by
drawing “backward pointers” between occurrences of the sequence- m;. By way
of illustration, consider the arena + n + p in which the only initial move isn. A
typical justified play(s, ) of this arena is represented graphically as:

(@)

m.n.p.n.p.n.p.m.n
(VAV RV

Because adding justification pointers distorts the bond with trace semantics, in particu-
lar with Mazurkiewicz traces, we shift in [21] to another management principle based
onthread indexingalready considered in [3,12]. The idea is to assign to each copy of
the A\-term P in example (1) a natural numbékre N (its index) which characterizes the
thread among the other copies Bf In the case of the justified play (2), this amounts

to (a) adding a dumb movs in order to justify the initial moves of the sequence, (b)
indexing every justification pointer of the resulting sequence with a natural number:

n-p-n-p-m-n-p 3)
\/\ /&?\20/ \/
then finally (c) encoding the sequence (3) as the sequence of indexed moves below:

my7 - Ni17,5 - P17,5,69 - 17,4 - P17,4,20 * 17,1 * P17,5,7 - M5 - 15,70 - P17,4,4- (4)

Obviously, the translation of a justified pl&y, ) depends on the choice of indices put
on its justification pointers. Had we not taken sides with trace semantics and concur-



rency theory, we would be tempted (as most people do in fact) to retract to the nota-
tion (2) which is arguably simpler than its translation (4). But we carry on instead, and
regulate the indexing by asking that two justification pointers starting from different oc-
currences andy of the same move, and ending on the same occurregge) = ¢(j),
receive different indicek andk’. This indexing policy ensures that every indexed move
occurs at most once in the sequence (4). In this way, we are back to the simplicity of
the affine fragment of tha-calculus.

An interesting point remains to be understood: what can be said about two different
encodings of the same justified play? The first article of our series [21] clarifies this
point. Every game is equipped with a left and right group actions on moves:

GxMxH-—M (g,m,h) —g.m.h (5)

WhereM denotes the set of (indexed) moves, &and H the two groups acting on
by altering the indicegs; aSS|gned by Opponent (resp. the indiées 1 as&gnéd by

Player). Theorbit of an (indexed) moveny, ... x,, is precisely the set of all (indexed)
moves of the formm;,, K Now, the action oy € G andh € H on (indexed) moves

induces a left and rlght action on plays, defined pointwise:

ge(my---mg)eh=(g-mp.h)---(g.my.h) (6)

It appears that the justified plays of the original arena game coincide with the orbits of
plays modulo the left and right group actions. Typically, the justified play (2) is just the
play (4) modulo pointwise group action (6). One nice contribution of this second article
on asynchronous games, is to explain yatacticmeaning of the group action (5).
This is done in a non-uniform variant of thecalculus introduced in Section 6.

Asynchronous tracesAfter these necessary preliminaries on thread indexing, we shift
to the core of this article: true concurrency vs. interleaving in game semantics. Two
requests: andb are calledindependentn a processr when they can be emitted or
received byr in any order, without interference. Independence ahdb is represented
graphically bytiling the two sequences- b andb - a in the 2-dimensional diagram:

/\
\/

Thetrue concurrencysemantics of a processis then extracted from itmterleaving
semantics, by quotienting the tracesmahodulo thehomotopy equivalence obtained

by permuting independent requests. Expressing concurrency by permuting events is a
pervading idea in concurrency theory. It originates from the work of Antoni Mazur-
kiewicz on asynchronous traces over a partially ordered alphabet [18,19] and appears
in the theory of asynchronous transition systems [25,15,27] as well as in rewriting the-
ory [20]. Then-dimensional presentation of the idea, and the connection to (directed)
homotopy in cubical sets, is formulated in [26,10].

(7)



In comparison, mainstream game semantics is still very much 1-dimensional. By
way of illustration, take the sequential boolean gaetarting by an Opponent ques-
tion ¢ followed by a Player answerue or false:

fals:\ Aue
Tq

The plays of the tensor produBt® B are obtained by interleaving the plays of the two
instanced; andB; of B. Thus, (a fragment of) the ganiie® B looks like this:

(8)

falseo true;
q2 (11”
\true; ;alsezﬂ (9)
1 2
\ /
We point out in [22] that the two plays in (9) are different fronp@ceduralpoint of
view, but equivalent from aextensionapoint of view, since both of them realize the
“extensional value{¢rue, false). We thus bend the two paths, and tile the resulting
2-dimensional octagon as follows:

q2 q1
/truel falseg\ (10)
N /!

=~z

By doing so, we shift from usual sequential games played on trees, to sequential games
played ondirected acyclic graphgdags). This enables us to analyze the extensional
content of sequential games, and to obtain a game-theoretic proof of Ehrhard’s collapse
theorem [9].

However instructive, the framework developed in [22] is not entirely satisfactory,
because the permutation tiles gflebal — that is, they involve more than two moves
in general. In contrast, the asynchronous game model presented here admibsainly

permutations tiles, similar to tile (7). By way of illustration, this decomposes the global
tile (10) into four local tiles:

falsey \truel
q2 ~ q1
/ t?uel falsgg \
7 E /
q2 1
true:\ LN falses
q:\ [12

Itis interesting that by shifting from (10) to (11), concurrent plays ikeq. appear in
the model. From our point of view, this means that a satisfactory theory of sequentiality
requires a concurrent background.

(11)



The non-uniform\-calculus. Here comes the most surprising, most difficult, and maybe
most controversial, part of the paper. In Section 2, we define an asynchronous game as
an event structure whose events are polarigédbr Player moves and 1 for Opponent
moves. This polarization of events gives rise to a new class of ewents consisting

of an Opponent move: followed by a Player move. We call O P-movesany such

pair of moves. Just like ordinary moves, t@P-movesm, - n; andms - no may be
permuted in a play, in the following way:

N
ma2 SL n2ﬂ ma
/N L/ N\ (12)

\ mZ Ty /
ni 7/ N N nz
m1\ %nz

The permutation diagram (12) induces an homotopy relatipp between plays. The
dual relation~p¢ is defined symmetrically, by permutingO-movesn - m instead of
OP-moves, where by?O-moven - m we mean an Opponent movefollowed by a
Player moven. Note that both~o p and~po preservalternationof plays.

Now, there is a well-established theorysiibleasynchronous transition systems,
see for instance [25,15,20], in which every sequence of transitioea<haracterized
(modulo homotopy) as a directed acyclic graph of so-callatbnical formsThe canon-
ical form of a transitioru in a sequence - a of transitions, expresses the cascade of
transitions necessary for the enabling of the transitioRormally, a sequence of tran-
sitionst - a is a canonical form of - a when (1)s - a ~ t - a - t’ for somet’, and (2)
whenevet ~ t’ - b, thena cannot be permuted befobeThe stability property ensures
that this canonical form - a is unique

The theory may be applied to the asynchronous transition systenOsftimoves
as transitions, which happens to be stable. From this follows that &2rnovem - n
in an alternating play - m - n has a uniqueanonical form Strikingly, this canonical
form is precisely the so-calldellayer view s - m - n' of the plays - m - n, introduced
by Martin Hylandet al. in arena games [13,24] and adapted to asynchronous games in
Section 3.

We claim that here lies the essence of the syntax ofXtoalculus. It has been
already noted in [7] that every Player view of a justified pl@y¢) corresponds to
the branch of am-long Bohm tree. When adapted to the indexed treatment of threads
described in [21] and recalled above, the correspondence defines the branubnef a
uniformn-long Bohm tree. The definition of the non-uniforkacalculus is given in Sec-
tion 6. A nice feature of the calculus is that the strateggssociated to a non-uniform
A-term may be defined in the same way as a trace semantics. This is also done in Sec-
tion 6.

Related works.The idea of relating a dynamic and a static semantics of interaction is
formulated for the first time by Patrick Baillet al.in [6]. The idea reappears implicitly
in the concurrent game semantics introduced by Samson Abramsky and the author [5],



in which games are complete lattices of positions, and strategies are closure operators.
As a closure operator, every strategy is at the same time an increasing function on
positions (the dynamic point of view) and a set of positions (the static point of view).
The present paper is the result of a long journey (five years!) to connect this concurrent
game semantics to mainstream sequential game semantics. See also [2].

Martin Hyland and Andrea Schalk develop in [14] a hotion of games on graphs quite
similar to the constructions presented here and in [22]. One difference is the treatment
of duplication: backtracking in [14,22], repetitive and indexed here. From this choice
follows that the permutation tilings are global in [14,22] whereas they are local here.
Another difference is that our positions are definedlaalsof moves.

Outline. In the remainder of the article, we define our notion of asynchronous game
(Section 2) and adapt the usual definition of innocent strategy to our setting (Section 3).
We then characterize the innocent strategies in two ways: diagrammatically (Section 4)
and positionally (Section 5). This leads to a non-uniform variant of\tiealculus, for
which we define a trace semantics, and which we relate to the dstatulus (Sec-

tion 6). Finally, we deliver a series of refinements of asynchronous games (Section 7).

2 Asynchronous games

We choose the simplest possible definitiormsfnchronous gama which the only re-
lation between moves is an order relatierwhich reformulates thgustificationstruc-

ture of arena games. This is enough to describe the language PCF, a simplytyped
calculus enriched with arithmetic, conditional branching, and recursion. Other more
expressive variants are discussed in section 7.

Event structures An event structurés an ordered sgtM, <) such that every element
m € M defines dinite downward-closed subset | = {n € M |n < m}.

Asynchronous game#n asynchronous gamisa tripleA = (M4, <4, A4) consisting
of:

— an event structuréM 4, <4 ) whose elements are called thvef the game,
— afunction\4 : M4 — {—1,+1} which associates to every movealarity +1
(for the Player moves) or1 (for the Opponent moves).

Positions. A positionof an asynchronous gameis anyfinite downward closed subset
of (MA, SA)

The positional lattice. The set of positions ofd is denotedD(A). Since positions
are ordered by inclusion, and closed under finite union, the partial ¢fded), C)
defines a sup-lattice. The empty position, which is the least elemd(of), C), is
denoted« 4. Positions are also closed under arbitrapnemptyintersection. Adding a
top elementT to (D(A), C) provides a neutral element to intersection, and induces a



completdatticeD(A)T = (D(A),C)T. The greatest least bound and least upper bound
of a family (x;);cr of positions inD(A) are computed respectively as:

/\ 2 — { T if Iis empty,

;e x: Otherwise,

_ if U, i is infinite,

\/ n { ’LEI e If UiEI Xy |S f|n|te

iel
We callD(A) " thepositional latticeassociated to the game

The positional graph Every asynchronous gamkeinduces a grapB(A):
— whose nodes are the positiangy € D(A),
— whose edges: : + — y are the moves verifying = = + {m}, where+ denotes
disjoint union, or equivalently, thgt= zU{m} and that the move: is not element
of z.

We call this grapli(A) the positional graphof the gameAd. We writes : © — y for a
path

mi mo ME—1
r— 1 — " — Tk

between two positions andy. Note that there is no repetition of move in the sequence:

Vi,jE{l,...,k}, z#jémz#mj

The targety of the paths : z — y may be deduced from the soure@nd the sequence
of movesmy, ..., my, using the equation:

y = x + U {m;}.
1<i<k

A path of G(A) is thus characterized by its source (or alternatively, its target) and the
sequence of moves, - - - my.

Homotopy.Given two paths, s’ : z — yin G(A), we writes ~! s’ whens = m-n and
s’ = n - m for two movesm,n € M,. Thehomotopy equivalence between paths is
defined as the least equivalence relation contairibigand closed under composition;
that is, for every four paths, : 1 — x5 ands, s’ : o — x3 andss : x3 — x4:

/ /
S~S8 = 8§1:8-8S2~81+S - 8So.

We also use the notation in our diagrams to indicate that two (necessarily different)
movesm andn are permuted:

/V"
\/

Note that our current definition of asynchronous game implies that two paths, —

y1 ands : x5 — 1o are homotopic ific; = x5 andy; = y». Thus, homotopy becomes
informative only in the presence of amdependenceelation between moves, see Sec-
tion 7.

(13)



Alternating paths.A pathm; - - - my : © — y is alternatingwhen:
Vi € {].7...,]6—1}, )\A(mHl) :—)\A(mz)

Alternating homotopyGiven two paths, s’ : z — yin G(A), we writes ~},» s’ when
$=1mq-ny-ms-ng ands’ = msy - ny - my - n; Where the movesi, ms € M4 are
Opponent and the moves moveg n, € M 4 are Player. The situation is summarized
in diagram (12). The relatior o p is defined as the least equivalence relation containing
~&p and closed under composition. Note that po s’ impliess ~ s/, but that the
converse is not true, since in diagram (12) onem@sny - ms - g ~ mq - Ny - Moy - N
without havingmy - ny - mg - no ~op My - Ny - M3 - Ny.

Plays. A play is a path starting from the empty positien:

mi1 ma mg—1 mi
*A T Ty e = Tpol — Tk

in the positional grapl§(A). The set of plays is noteR.

Equivalently, a play ofA is a finite sequence = m; - - - m; of moves, without rep-
etition, such that the seftm,...,m;} is downward closed i 4, <4) for every
1<j<k.

Strategy. A strategyo is a set of alternating plays of even length such that:

— the strategy € o contains the empty play,
— every nonempty play € o starts by an Opponent move,
— o is closed by even-length prefix:

Vs € Py,Ym,n€ My, s-m-né€og=s€a,
— o is deterministicVs € Py,Vm,n,n’ € M4,
s-m-n€cands-m-n€oc = n=n'.

We writeo : A wheno is a strategy ofA.

3 Innocent strategies

The notion ofinnocencéhas been introduced by Martin Hyland, Luke Ong and Hanno
Nickau in the framework of arena games [13,24]. It is designed to capture the interac-
tive behaviour of the simply-typed-calculus with a constan® for non-termination,
either formulated ag-long Bohm trees [7], as proofs of Polarized Linear Logic [17], or
(after a continuation-passing style translation) as PCF programs augmented with local
control [16,4,11]. Asynchronous games enable to reformulate the notiomadence

in a concurrency friendly way. The original definition of innocence is based on the no-
tion of Player viewof a justified play(s, ¢), defined using the pointer structuge In
asynchronous games, the situation is slightly simpler than in arena games, because the
play s is non repetitive. In particular, there is no need to distinguish a mof®m its
occurrences in the play. More: every plagomes with an implicit pointer structure
derived from the causality relation between moves, as follows.



Justification pointers. Suppose thatn andn are two different moves of an asyn-
chronous gamel. We writem + 4 n, and say thatn justifiesn, when:

- m <4 n,and
— for every movep € M 4 such thatn < p <4 n, eitherm = porp = n.

View extraction. We define the binary relatioR” as the smallest relation between
alternating plays such that:

(@)
S1-M-MN-82 ~ 8189

for every alternating play; and nonempty pathk, such thatn is an Opponent move
which does not justify any move isp, andn is a Player move which does not justify
any move inss.

Player view. The relation>> defines a noetherian and locally confluent rewriting sys-
tem on alternating plays. By Newman’s lemma, the rewriting system is confluent. Thus,
every alternating play € P,4 induces a unique normal form notesl’ € P4 and called

its Player view

oP  OP OP  OP . .
S~ 8§ s e s S o TS

Asynchronous innocencé strategyo is innocentin an asynchronous gamé when
for every playss, t € o, for every Opponent move. € M4 and Player move € M 4:

s-m-nc€oandt-me Pygand™s- m ' ~popt-m'=t-m-nco.

Asynchronous innocence is equivalent to usual innocence in the intuitionistic frag-
ment [13,24]. In that fragment, indeed, every move has at most one justifying move,
and thus, the two Player viewss - m™ and™t - m™ are ~pp-equivalent iff they are
equal. On the other hand, asynchronous innocence generalizes the usual notion of in-
nocence to more "concurrent” arenas, in which several mayes., n, may justify

the same moven — a situation which does not occur in arena games associated to
intuitionistic types.

4 Diagrammatic innocence

In this section, we reformulate diagrammatically the notiomnbcenceén asynchronous
games.

Backward consistencyA strategyo is calledbackward consister{see Figure 1 in Ap-
pendix) when for every play, € P4, for every pathss, for every movesny, ny, ms, ne €
My, it follows from

$1+M1 N1 -Ma-Ng- 82 € g and—(ny k4 mz) and—(my k4 ms)

that
—(n1 Fa n2)and—(my F4 no) andsy - ma - ng - my - ny - $3 € 0.



Forward consistencyA strategyo is calledforward consisten{see Figure 2 in Ap-
pendix) when for every play; € P4 and for every movesn,, ny, ma,ne € My, it
follows from

$1+-my-ny € o andsy - my - ng € 0 andmy # mo

that
ni # ng andsy -mq - ny -mo - o € 0.

We prove by a diagrammatic reasoning inspired by Rewriting Theory that, for every
strategyo of an asynchronous game

Proposition 1 (diagrammatic characterization). The strategy is innocent iff it is
backward and forward consistent.

5 Positional innocence

We establish below the main result of the paper: innocent strategies are positional
strategies (Theorem 2). We then characterize innocent strategies as positional strategies
(Proposition 3) and identify them as concurrent strategies in the sense of [5] (Proposi-
tion 4).

Positional strategy.A strategyo : A is calledpositionalwhen for every two plays
s1, 82 : x4 — x in the strategy, and every path : + — y of G(A4), one has:

31~52andsl-t€a = Ss9-t Eo0.

Every positional strategy is characterized by the set of positiori3(af) it reaches,
defined as:
o ={x € D(A),Is € 0,s: %4 > z}.

Theorem 2 (positionality). Every innocent strategy is positional.

The positional characterization of innocence (Proposition 3) works in any asynchronous
game in which justification is alternated, that is, wheré- n impliesA(n) = —A(m)

for every movem andn. In particular, it works in any interpretation of a formula of
intuitionistic linear logic.

Proposition 3 (positional characterization). A positional strategy is innocent iff the
seto*® of positions satisfies:

— o* is closed under intersection;, y € 0®* = xNy € o°,

— o*is closed under uniont,y € 0®* = zUy € o°,

— forward confluence: i#* > = = w — z € ¢* andm is an Opponent move, then
there exists a unique Player move— y such thatr® > y — z € o°,

— backward confluence: if* > z — w —~ z € ¢* andn is a Player move, then
there exists a unique Opponent mgve™ w such thatr® > =z — y € ¢°,

— initial condition: x4 is element of*°.



Proposition 4. Every innocent strategy : A defines a closure operater® on the
complete latticeD(A) T of positions.

This series of properties explicates the true concurrency nature of innocence. Proposi-
tion 4 bridges sequential arena games with concurrent games as formulated in [5]. In
particular, positionality implies that strategies may be composed just as relations, or as
cliques in the hypercoherence space model [8].

If the reader finds the idea pbsitionalitydifficult to grasp, we hope that the Propo-
sition below will clarify the situation. It is quite straightforward to define a notion of
innocentcounter-strategy interacting against the strategy The counter-strategy
may withdraw at any stage of the interaction. Every such withdraw-ahduces an
even-length play : x4 — z in the strategyr, whose target positiom € 7° is of
even cardinality. Our next result states that the static evaluation (by intersectieh) of
againstr® coincides with the dynamic evaluation (by interactionyadgainstr.

Proposition 5. For every position: € D(A):
o*Nr*={2} < onr={stands:*xy — x.

It is nearly routine to construct a categd@ywith asynchronous games as objects, and
innocent strategies as morphisms. The only difficulty is to interpret the exponentials,
which is done by equipping every game with a left and right group action, in the spirit

of [21]. The resulting categorg defines a model of intuitionistic linear logic without
additives. The usual category of arena games and innocent strategies [13,24] embeds
fully and faithfully (as a cartesian closed category) in the kleisli category associated to
the category and to its comonad

6 The non uniform X\-calculus

We introduce a non-uniform variant of thecalculus. It is callechon-uniformbecause

the argument of a functiokz. P is not ai-term(@, but a vecto@ of A\-terms@; where

i € Nis an index for each occurrenagi) (or function call) of the variable: in P.

The calculus is affine in nature (never two occurrences¢f occur in the same term),
but the simply-typed\-calculus may be encoded in it, thanks to group-theoretic ideas
developed in our first article on asynchronous games [21].

Definition of the calculusThe non-uniform\-termsP and vectors of argumen@ are

defined by mutual induction:
P ::=2z(i) located variable

| P@ application

| Az.P abstraction

Zj = (Q;)ien vector of non-uniform\-terms indexed by an integee N

where a located variable(i) consists of a variable in the usual sense, and an integer
i € N. We require that every located variahl@) appears at most once in a term. Note
that a non-uniformi-term is generally infinite. Thg-reduction is defined as

(Ae.P) @ —p Pla(i) := Q]



where Pz (i) := Q;] denotes the non-uniformk-term obtained by replacing each lo-
cated variablec(i) in P by the non-uniformi-term @;. The non-uniformi-terms are
typed by the simple types of thecalculus, built on the base type

z(): AFxz(): A
) ) I, A0, A1, Ag,---+PQ B

I x(ip) : A,x(iy) : A,z(iz) : A,---FP: B
I'FXe.P:A=B

Here, a contexf’, A, ... may contain an infinite number of located variables, since the
=--elimination rule involves a family of derivation treés\; - Q; : A);cn. The point

is that the=--introduction rule may migrate an infinite number of located variab(es
from the context to the-term.

Non-uniformn-long Bohm trees. The non-uniformp-long Bdhm trees of simple type
A=A, = - A, = «are of three kinds:

1. Azqi... Az, (y(z) 671) . @; ) where
— every variabler; is of type A; for 1 < j < m,
— the located variablg(i) is of type B = B; = - - - B,, = « for some typeB,
— every non uniformy-long Bohm tree(Qy.); is of type By, for 1 < k < n and
1€ N.
2. or2p where(2p is a fixed constant of typ8,

3. or\zi..A\z,,. U whereU is a fixed constant of type, and every variable; is of
typeAd;, forl <j <m.

Trace semanticsWe describe a trace semantics for non-unifopfong Bohm trees,
which coincides with the game semantics delivered by our asynchronous game model.
The Opponent moves are generated by the rule

R : 24 — Ax1--- A2, O

whered = A, = ---A,, = «a and the variabler; is of type A; for every index
1 < j < m. The Player moves are generated by the rule

+

: 0 — x(z) ﬁAl "'ﬁAm

wherez(:) is alocated variable of typéd = 4; = --- A, = «, andﬁAj is the vector
which associates to every indéx N the constant?,,, for everyl < j < m. Last
point, every move from an-long Bohm tree is labelled by a subtree of the typeonce
translated in linear logic as an infinite formula, using the equaties B =4 — B,

and the definition of the exponential modality as infinite tenkér= ®;cnyA.



Uniformity and bi-invariance The usual (uniform)-long Bohm trees of tha-calculus

are extracted from their non-uniform counterpart by applyifr@varianceprinciple
introduced in [21]. As recalled in the introduction, see (5), every game there is equipped
with a left and right group action on moves. A strategig calledbi-invariantwhen, for

every plays € o and every right actioh € H, there exists a left actiop € G such that
g.s.h € 0. This characterizes the strategies which are “blind to thread indexing”, and
thus the strategies which behave as if they were defined directly in an arena game. The
concept of bi-invariance remains formal and enigmatic in [21]. Here, quite fortunately,
the non-uniform\-calculus provides a simple syntactical explanation to this concept of
bi-invariance, what we explain now.

Every intuitionistic typeA defines a left and right group action (5) on the asyn-
chronous gaméA] interpreting it in the asynchronous game model. These two group
actions may be understood syntactically as acting on the non-unifdong Bohm
treesP of type A, as follows: the effect of a right group actiéne H is to permute the
indices inside the vectors of argume@sin P, while the effect of a left group action
g € Gisto permute the indices of the located variahlés in P. By analogy with [21],

a non-uniformn-long Bohm treeP is calledbi-invariant when for every permutation

h € H, there is a permutatiop € G such thaty. P . h = P. It is not difficult to
see that am-long Bohm tree in the usual-calculus is just di-invariant -long Bohm
tree in the non-uniform\-calculus, modulo left group action (that is, permutation of
the indices of the located variables.) For instancel’jedenote the non-uniform-long
Bohm treeP; = Az \y.(z(j) 7) of type A = (o = a) = (@ = «), wherey
associates to every indéxc N the located variablg(s). Obviously,P; is bi-invariant,
and represents the uniformlong Bohm treehx. Ay.z y of same typed. Note thatP;

is equivalent to any?, modulo left group action. The trace (or game) semanticB;of
is given by:

Qa4 2 AeAy.B 5 dady.(2(f) Bo ) 25 dedy. (2(7) Qr ) ™ -

Here, the moven by Opponent (labelled by the typ#) asks for the value of the head
variable of P;, and the move: by Player (labelled by the typgex = «);) answers
z(j); then, the moven,, by Opponent (labelled by, in (o = «);) asks for the value

of the head variable of the-th argument ofx(j), inducing the vector of arguments
(Qr): = 2, fori # k and(Qx)r = U; finally the moveny, by Player (labelled by;)
answerg(k), etc... This example illustrates the fact that the trace (or game) semantics
of a non-uniformn-long Bohm tree is simply the exploration (or parsing) of that tree
by the Opponent.

7 Additional structures

For clarity’s sake, we deliver the simplest possible definition of asynchronous game in
Section 2. We review below possible extensions of this definition.

Compatibility. One may add amcompatibility relation # between moves, in order
to obtain a model of intuitionistic linear logigith additives The relation# indicates
when two moves cannot appear in the same position, and thus cannot appear in the same



play. The coherence axiofm#mq < ms = mi#ms) is required for every moves
my, Mg, M3, just as in event structures [27].

IndependenceThere is a well-established tradition in trace semantics to desotire
ferencemechanisms using an independence relafitietween events [19]. Similarly,

an independence relation between moves may be added to asynchronous games, in or-
der to study interference in imperative programming languages. Take the game model of
Idealized Algol presented in [1]. Suppose that an independence relation indicates that
the movesead andwrite( n) are interfering in the interpretation of the variable
typevar , for every natural number. In that case, the interference betweead and

write( n) induces obstructions (“holes”) to the homotopy relatioron the game

var . Quite interestingly, the asynchronous definition of innocence adapts smoothly,
and remains compositional in the presence of interfering moves (that is, it defines a
category).

8 Conclusion

The theory of asynchronous games is designed to bridge the gap between mainstream
game semantics and concurrency theory. Our preliminary results are extremely encour-
aging. We establish indeed that the cardinal notion of sequential game semiantes:

cence follows from elementary principles of concurrency theory, formulated in asyn-
chronous transition systems. We deduce from this a non-unifogalculus, whose

game semantics is expressed as a trace semantics. This provides a concurrency-friendly
picture of the-calculus, and new diagrammatic foundations for the understanding of

its syntax and semantics.
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