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Sequential algorithms and strongly stable functions

Paul-André Melliès 1

Abstract

Intuitionistic proofs (or PCF programs) may be interpreted as functions between domains,
or as strategies on games. The two kinds of interpretation are inherently different: static
vs. dynamic, extensional vs. intentional. It is extremely instructive to compare and to con-
nect them. In this article, we investigate the extensional content of the sequential algo-
rithm hierarchy [−]SDS introduced by Berry and Curien two decades ago. We equip every
sequential game [T ]SDS of the hierarchy with a realizability relation between plays and
extensions. In this way, the sequential game [T ]SDS becomes a directed acyclic graph, in-
stead of a tree. This enables to define a hypergraph [T ]HC on the extensions (or terminal
leaves) of the game [T ]SDS. We establish that the resulting hierarchy [−]HC coincides with
the strongly stable hierarchy introduced by Bucciarelli and Ehrhard. We deduce from this
a game-theoretic proof of Ehrhard’s collapse theorem, which states that the strongly stable
hierarchy coincides with the extensional collapse of the sequential algorithm hierarchy.

1 Introduction

A spectacular number of game semantics have been introduced in the last decade, in
order to capture the interactive essence of various logical systems or programming
languages. Comparatively, the number of interactive paradigms underlying these
models has remained desesparately low. Today, mainstream game semantics is
• sequential,
• played on trees [Joyal 1977][Abramsky, Jagadeesan 1994][Lamarche 1992] or on

arenas [Hyland, Ong 2000][Nickau 1994][Abramsky, McCusker 1999].
In this article, we champion a more concurrent or graph-theoretic style of game
semantics, which we see pervading a series of recent contributions:
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• money games [Joyal 1997] are positional games played on graphs, instead of
trees. Joyal introduces them in order to recast Whitman’s characterization of the
free lattice. This comes as a preliminary step toward the intended construction
of the bifree completion of a category. See also the later connection between
µ-bicomplete categories and parity games, established in [Santocanale 2002].

• graph games [Hyland, Schalk 2002] are positional games played on graphs, in-
stead of trees. The resulting model of PCF is shown to be the sequential algorithm
model [Berry, Curien 1982].

• concurrent games [Abramsky, Melliès 1999] are positional games played on do-
mains, instead of trees. The model is shown to be fully complete for multiplicative
additive linear logic. See also [Abramsky 2001] for a discussion about sequential-
ity and concurrency in games and logic.

Either sequential or concurrent, these game semantics have one thing in common:
they are positional.

Interleaving vs. true concurrency
Playing on a positional game (instead of a tree or an arena) means that two different
sequences of moves starting from the root may lead to the same position. This is the
game-theoretic avatar of true concurrency in process calculus. Think of a process π
and two transitions a and b starting from π. The two transitions a and b are declared
independent when they may be emitted or received by π in any order, without inter-
ference. Independence of the two transitions is generally represented by tiling the
two sequences a · b and b · a in the transition system:

π′

π1

b
==||||

π2

a
aaBBBB

π
b

<<zzzza

bbEEEE

(1)

The homotopy equivalence between transition paths is then defined in the expected
way: two paths are called homotopic when they are equal modulo a series of permu-
tations (1) of independent transitions. This 2-dimensional grammar of independence
provides a “geometry” where the interleaving semantics and the true concurrency
semantics of processes coexist, formulated respectively as transition paths and ho-
motopy classes [Pratt 1991]. The author experienced the relevance of this diagram-
matic vision in rewriting theory: the 2-dimensional paradigm leads to a syntax-free
theory of causality and neededness, including a standardization theorem, and the
characterization of head-reductions in a wide class of calculi [Melliès 1998].
Mainstream game semantics has not reached that stage of refinement yet. It is still
very much 1-dimensional. We advocate that bringing out 2-dimensional structures
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on sequential games will clarify their structure, and their relationship to other mod-
els of computation. In this article, we provide evidence for that thesis, with a limited
but striking illustration of how concurrency ideas may explicate the extensional (we
also say static) content of sequential game semantics.

True concurrency in games: dynamic plays realize static extensions
We start from the elementary intuition that sequential game semantics provides an
interleaving semantics of proofs and programs. Suppose that B is the boolean game
starting with Opponent’s question ∗ followed by Player’s answer true or false:

false

__????
true

??����
∗
OO (2)

Each play of the tensor product B⊗B is an interleaving of plays of the two instances
B1 and B2 of the sequential game B. We draw below a fragment of the resulting tree:

false2__??? true1 ??���
∗2__??? ∗1 ??���

true1__??? false2 ??���
∗1

ggOOOOO
∗2

77ooooo

(3)

The two plays drawn in (3) are different from a procedural point of view, but equiva-
lent from an extensional point of view, since both plays answer the same extensional
pair (V, F ) to Opponent’s questions — where by V we mean “true” (vrai in french)
and by F we mean “false”.
So, it is tempting to bend the two paths (3) and to tile them as in the diagram below:

(V, F )
false2

66nnnnnnn
true1

hhPPPPPPP
∗2

??����
∗1

__????
true1

__????
false2

??����
∗1

jjTTTTTTTTTT
∗2

44jjjjjjjjjj

(4)

After this plastic surgery, B ⊗ B becomes a directed acyclic graph (dag) instead
of a tree. The terminal leaf (V, F ) is added on top to indicate that the two plays
realize the same extension (V, F ). The resulting diagram (4) is the game-theoretic
counterpart of diagram (1). It relates the interleaving semantics expressed by the
plays to the true concurrency semantics expressed by the extension (V, F ).
We will see that shifting from a tree in (3) to a dag in (4) clarifies much about
how the “implicit/static” and “explicit/dynamic” presentations of sequentiality are
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connected at higher types. More precisely, we establish in the course of the article
that, for every simple type T , the extensions of the sequential game associated to T
are precisely the atoms of the dI-domain with coherence associated to T in the
strongly stable model [Bucciarelli, Ehrhard 1991].

Ehrhard’s collapse theorem
This leads to the second motivation of this work: a key result by Ehrhard states
that the sequential algorithm model of PCF [Berry, Curien 1982] collapses exten-
sionally to the strongly stable hierarchy [Bucciarelli, Ehrhard 1991]. The theorem
is remarkable, because it links for the first time a static and a dynamic model of
sequentiality. Ehrhard’s original proof [Ehrhard 1997] is a domain-theoretic tour de
force based on the observation that every strongly stable function is definable in
PCF enriched with the strongly stable functions of degree 2.
Here, we want to establish the same result another time, using game-theoretic ideas.
More specifically, we want to characterize dynamically the classes of strategies gen-
erated by the extensional collapse. Instead of working directly on Berry-Curien and
Bucciarelli-Ehrhard models of PCF, which would be extremely difficult technically,
we take advantage of the fact that both hierarchies can be “linearized”, that is, de-
rived from models of (intuitionistic) linear logic, using a kleisli construction:
• The sequential algorithm model is linearized by Lamarche as a game model of

intuitionistic linear logic, based on sequential data structures (sds). Recall that a
sds A is defined as (1) a polarized alphabet (MA, λA) of moves and (2) a prefix-
closed set PA of alternating plays in which Opponent starts. The distinctive fea-
ture of the model lies in the interpretation of the exponential modality of linear
logic. The sds !A is defined by a backtrack interleaving of the plays of the sds A.
This departs from the usual definition based on a repetitive interleaving of plays
given in [Abramsky et al. 1994]. Lamarche shows in [Lamarche 1992] that the
model linearizes the sequential algorithm model of PCF. The construction is then
reformulated and clarified by Curien in [Curien 1993][Amadio, Curien 1998].

• The strongly stable model is linearized by Ehrhard as a hypercoherence space
model of linear logic. The model refines Girard coherence space model, just like
strong stability refines stability. Recall that a hypercoherence space X is just a
hypergraph, that is (1) a set |X| of atoms (called the web) and (2) a set Γ(X) ⊂∗

fin

|X| of nonempty finite subsets of atoms (called the coherence) in which every
singleton {x} is element of Γ(X), for x ∈ |X|. Ehrhard shows in [Ehrhard 1993]
that the hypercoherence space model linearizes the strongly stable model of PCF.
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Extensional data structures
As advocated above, the extensional content of a sequential game is revealed by
its 2-dimensional structure. The author is currently developing a theory of asyn-
chronous games in which only local tiles (1 × 1) are admitted. In this framework,
the usual lexicon of arena games is formulated in a truely concurrent fashion: jus-
tification pointers and views are reconstructed by permuting moves in a play, and
innocent strategies turn out to be positional strategies enjoying forward and back-
ward confluence properties [Melliès 2004b].
The resulting theory is pretty involved though, and we will not develop it here. We
take a short cut instead, and demonstrate that only a small amount of homotopy or
asynchrony is necessary to capture the extensional content of sequential games: the
tiles considered in this article are global and expressed by a realizability relation
between plays (= the interaction paths) and extensions (= their homotopy classes).
We write EA for the set of extensions, and ‖x‖A ⊂∗

fin P even
A for the (nonempty

finite) set of (even-length) plays which realize an extension x ∈ EA. A sequential
data structure (sds) A = (MA, λA, PA) equipped with such a realizability relation
defines what we call an extensional data structure (eds).
The realizability relation enables to visualize every extensional data structure as a
directed acyclic graph (dag) labelled by extensions x on nodes — at least the graphic
edss, see the definition given in Section 6 (definition 6.1). For instance, the graphic
eds !B has three extensions ⊥, F and V , and is represented as the tree:

F V
false

bbFFFFF true

<<xxxxx

⊥
∗

OO (5)

The extension ⊥ at the root and the extensions F and V at the leaves indicate that:

ε ∈ ‖⊥‖!B ∗ ·false ∈ ‖F‖!B ∗ ·true ∈ ‖V ‖!B

where ε denotes the empty play. The advantage of the graph-theoretic notation be-
comes clear when one tensors the eds !B three times, and draws the graphic eds
!B⊗!B⊗!B as illustrated in figure 1.

Extracting hypercoherence spaces from extensional data structures

We mentioned earlier the coincidence between (1) the extensions of the eds inter-
preting a simple type T in the sequential algorithm hierarchy, and (2) the atoms of
the dI-domain with coherence interpreting T in the strongly stable hierarchy. We
clarify and illustrate this point briefly. Recall that the atoms of the dI-comain with
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Fig. 1. A fragment of the extensional data structure !B⊗!B⊗!B.

coherence associated to the simple type T form a hypercoherence space. This ob-
servation is at the heart of [Ehrhard 1993]. We will see in Section 7 how to extract a
hypercoherence space U(A) from every eds A — at least when the eds A is regular,
see definition 7.3. The web of this hypercoherence space U(A) is precisely the set
of extensions of A:

|U(A)| = EA.

Typically, one deduces from the graph-theoretic presentation of the sequential game
!B⊗!B⊗!B produced in Figure 1 that:
• the triple w = {(V, F,⊥), (F,⊥, V ), (⊥, V, F )} is coherent in !B⊗!B⊗!B be-

cause (informally) Opponent has to choose between one of the extensions of w
when she plays the first move ∗i for i ∈ {1, 2, 3}. For instance, Opponent plays ∗1

and thus rejects the extension (⊥, V, F ) as possible outcome of the interaction,
• the pair v = {(V, F,⊥), (F,⊥, V )} is incoherent in !B⊗!B⊗!B because (infor-

mally again) Player has to choose between one of the extensions of w after Op-
ponent plays the move ∗1. For instance, Player plays ∗1 · true1 and thus rejects
the extension (F,⊥, V ) as possible outcome of the interaction.

There are historical reasons for illustrating our ideas with the eds !B⊗!B⊗!B and
the subset w = {(⊥, V, F ), (F,⊥, V ), (V, F,⊥)} of extensions. The example stems
from [Berry 1979] in which the stable hierarchy [−]S of simple types is introduced.
There, Berry describes a stable but non-sequential function G at the simple type
(o × o × o) ⇒ o:

G(x, V, F ) = V G(F, x, V ) = V G(V, F, x) = V

and G(x, y, z) = ⊥ otherwise. This function is often called the Gustave function in
the litterature. The fact that the triple w is not bounded (and thus “incoherent”) in
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the dI-domain

[o × o × o]S = {⊥, V, F} × {⊥, V, F} × {⊥, V, F}

interpreting the simple type o× o× o in the stable model, is the starting point of the
theory of strong stability in dI-domains with coherence [Bucciarelli, Ehrhard 1991].
The point of strong stability is precisely that the triple w becomes coherent in the
dI-domain with coherence interpreting o × o × o in the strongly stable hierarchy.

Technical contributions of the article
The first contribution of the article is to clarify the dynamic content of hypercoher-
ence spaces, as follows:
(1) we define when a strategy σ of an eds A implements a set f ⊂ EA of exten-

sions of A; and call configuration any set f ⊂ EA implemented by a strategy,
(2) we extract from any regular eds A a hypercoherence space U(A) with web the

set EA of extensions of A,
(3) we show that in any regular eds A, the finite configurations of A are exactly

the finite cliques of U(A).
We consider in this article two different interpretations of the base type ι as a se-
quential game:
• either as the flat natural number eds noted Nflat,
• or as the lazy natural number eds noted Nlazy,
Each interpretation induces a sequential algorithm hierarchy of simple types [−]flat

SDS

(also noted [−]SDS) and [−]lazySDS .
The second contribution of the article is to extract the strongly stable hierarchy from
the game-theoretic hierarchies [T ]flat

SDS and [T ]lazySDS . More precisely, we show that the
hypercoherence space [T ]HC associated to a simple type T in [Ehrhard 1993] is pre-
cisely the hypercoherence space computed by U from the edss [T ]flat

SDS and [T ]lazySDS :

[T ]HC = U([T ]flat
SDS) = U([T ]lazySDS ) (6)

From that concrete connection between the sequential algorithm and the strongly
stable hierarchies, we deduce a game-theoretic proof of Ehrhard’s collapse theorem.
Surprisingly, this last part is far from easy — despite the equalities (6). We proceed
in three steps.
First, (F) we show that the flat and the lazy sequential algorithm hierarchies col-
lapse to the same hierarchy of types. The argument imported from [Melliès 2004a]
is based on the existence of a retraction between Nflat and Nlazy in the category of
edss:

Nflat
for
−→ Nlazy

count
−→ Nflat = Nflat

idNflat−→ Nflat
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Then, (FF) we prove by a non-constructive compactness argument that the (possi-
bly infinite) configurations of a finitely branching eds A are precisely the cliques of
U(A). This is precisely the reason why we work with the lazy hierarchy instead of
the flat one: the interpretation [T ]lazySDS of every simple type T is finitely branching,
and the compactness argument works only on finitely branching games.
Finally, (FFF) we characterize the partial equivalence relation ∼T on the strate-
gies of [T ]lazySDS induced by the extensional collapse, for every simple type T . We
show that ∼T relates two strategies σ and τ of [T ]lazySDS precisely when:
(1) the strategies σ and τ are extensional in a sense explained in Section 11,
(2) the strategies σ and τ implement the same configuration.

We deduce that the set of strategies of [T ]lazySDS quotiented by ∼T is in a one-to-one
relationship with the configurations of [T ]lazySDS .
Putting the three steps (F) and (FF) and (FFF) together, we conclude that the
flat sequential algorithm hierarchy collapses extensionally to Bucciarelli-Ehrhard
strongly stable hierarchy. This is precisely the statement of Ehrhard’s theorem in
[Ehrhard 1997].

Structure of the paper:
We start in Section 2 with preliminaries on models of linear logic, hierarchies of
types, and extensional collapse. In Section 3, we introduce a hypergraph model
which coincides with the hypercoherence space model on simple types, but cap-
tures sequentiality more accurately outside the intuitionistic types. In Section 4, we
recall the sequential data structure (sds) model of intuitionistic linear logic. In Sec-
tion 5, we introduce the extensional data structure (eds) hierarchy, which is just the
original sds hierarchy, equipped with extensional information. We show in Section 6
that every simple type T is interpreted as a spread eds [T ]flat

SDS which may be visual-
ized as a directed acyclic graph (dag). In Section 7, we extract from every regular
eds A a hypercoherence space U(A) and show that the finite configurations of A as
the finite cliques of U(A). We show in Section 8 that the construction U extracts
the strongly stable hierarchy [T ]HC from either the flat or the lazy sequential algo-
rithm hierarchy [T ]flat

SDS and [T ]lazySDS . In Section 9, we exhibit a retraction between
the flat and the lazy hierarchies [−]flat

SDS and [−]lazySDS , and deduce from this that the
two hierarchies collapse to the same extensional hierarchy. In Section 10, we use
a non-constructive compactness argument to show that the (possibly infinite) con-
figurations of [T ]lazySDS are the cliques of [T ]HC. The two last sections are the most
technical ones. In Section 11, we equip every extensional data structure of the lazy
hierarchy with a notion of alive plays; and define when a strategy is extensional
in such a structure. In Section 12 we characterize the self-equivalent strategies of
the collapse of [−]lazySDS as the extensional strategies of the hierarchy; and deduce
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Ehrhard’s collapse theorem from that.

Related works on sequentiality and strong stability

A model of “extensional sequential algorithms” is introduced in [Ehrhard 1997].
The idea is to consider triples (E, X, π) where E is a sequential structure (Ehrhard’s
own domain-theoretic presentation of sequential concrete data structures), X is a
hypercoherence space, and π is a strongly stable linear function

(E∗, C
L(E))

π
−→ qDC(X)

between the dI-domains with coherence associated to E and X . The main require-
ment on the “projection map” π is the following “lifting property” that for any
sequential structure F and strongly stable function f : (F∗, C

L(F )) −→ qDC(X)
there exists a strongly stable function f ′ : E∗ −→ F∗ such that π ◦ f ′ = f . It
follows from the requirement that π is onto, in a uniform way. The category of “ex-
tensionally projected sequential structures” (E, X, π) is shown to be cartesian clo-
sed. The cartesian product is computed pointwise. The exponentiation (H, Z, π ′′) =
(E, X, π) ⇒ (F, Y, π′) is computed as follows: Z is the exponentiation X ⇒ Y
of X and Y in the category of hypercoherence spaces, while G is a sub-structure
of the exponentiation E ⇒ F of E and F in the category of sequential structures,
consisting of the extensional sequential algorithms between E and F . The lifting
property of π plays a remarkable rôle in the proofs.
[van Oosten, 1997] and [Longley 1998] construct independently the same combi-
natory algebra, and prove that the associated realizability model of modest sets is
equivalent to the strongly stable model of [Bucciarelli, Ehrhard 1991]. The combi-
natory algebra is based on a game-theoretic presentation of sequential evaluation,
where strategies are encoded as partial functions from the set of natural numbers
to itself. The result is yet another testimony that the strongly stable model of PCF
is sequential in nature. [Longley 1998] goes further, and unfolds a comprehensive
analysis of the strongly stable model of PCF. Developing ideas of [Ehrhard 1997],
Longley establishes a key property of the strongly stable model: that there exists a
universal simple type 2 of degree 2, universal in the sense that every interpretation
[T ]HC of a simple type T is a retract of its interpretation [2]HC in the model. Longley
deduces from this universality property an alternative proof that the strongly stable
model of PCF is the extensional collapse of the concrete data structure model.
In [Ehrhard 2000], Ehrhard defines the dual categories of parallel and serial hyper-
coherence spaces, and proves that every hypercoherence space X may be projected
canonically to a parallel (resp. serial) hypercoherence space P (X) (resp. S(X)).
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Using the two projection maps πS : S(X) −→ X and πP : X −→ P (X), one un-
folds any hypercoherence space X as a serial-parallel hypercoherence space, and
expresses this way the sequential game underlying X . By construction, the pro-
jections πS and πP enjoy the same lifting properties as the projection maps π in
[Ehrhard 1996].
In this article, Ehrhard’s programme is to extract the sequential game from the
hypercoherence space, by a series of parallel and serial unfoldings. In a sense,
Ehrhard’s direction is just reverse to the direction we take here:

Sequential games

here
--

Hypercoherence spaces

[Ehrhard2000][Boudes2002]

mm

Ehrhard’s student Boudes has carried on in this direction, and obtained interesting
results in his PhD thesis [Boudes 2002].

2 Preliminaries

2.1 Sets

Given two sets E and F , we write E ⊂ F when E is a subset of F , E ⊂fin F when
E is a finite subset of F , E ⊂∗

fin F when E is a non-empty finite subset of F . We
write P(E) the set of the subsets of E, and P∗

fin(E) the set of the non-empty finite
subsets of E.
Definition 2.1 (multisection) Given a set E and a subset W of P(E), we call mul-
tisection of W any set v ⊂ E such that
• for every w ∈ W , v ∩ w is non-empty,
• for every e ∈ v, there exists w ∈ W such that e ∈ w.

2.2 Relations

A relation between E and F is a subset of E × F . The category REL has sets as
objects and relations between E and F as morphisms from E to F . The identity of
E is the relation

idE = { (x, x) | x ∈ E}

and the composite of two relations f : E −→ F and g : F −→ G is the relation
f ; g : E −→ G

f ; g = {(x, z) | ∃y ∈ F, (x, y) ∈ f and (y, z) ∈ g}
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2.3 Words

For a natural number k ∈ N, we write:

[k] = {0, 1, ..., k − 1} = {i ∈ N | i < k}

We call alphabet M any denumerable set, and word on this alphabet any finite se-
quence of elements of M. The set of words on the alphabet M defines a monoid
M∗ with product concatenation of words denoted “·” and unit the empty word ε. A
word s ∈ M∗ is prefix of a word t, what we write s v t when there exists a word u
such that t = s · u. We write s veven t when s is prefix of t and s is of even-length.
We call polarized alphabet (M, λ) any alphabet equipped with a function λ :
M −→ {−1, +1}. We say that a word m0 · · ·mk is alternating when:

∀i ∈ [k], λ(mi+1) = −λ(mi)

We note M~

A the set of alternating words on the polarized alphabet A = (MA, λA)
which are either empty or start with a negative letter.

2.4 Models of intuitionistic linear logic

Linear logic (LL) is exposed in [Girard 1995]. Here, we restrict ourselves to intu-
itionistic linear logic (ILL) because it is sufficient to construct hierarchies of simple
types, see next Section 2.5. The formulas of ILL are given by the grammar:

T = T ⊗ T | T ( T | T&T | !T | 1 | >

The sequent calculus of ILL is recalled in figure (2).
There exist several categorical definitions of a model of ILL. The definition 2.3 be-
low is introduced in [Melliès 2003]. The axiomatization ensures that the equalities
required by a model of ILL, recalled in [Bierman 1995], are satisfied in the category.
Definition 2.2 (exponential modality) An exponential modality over a symmetric
monoidal category (C,⊗, 1) with finite products (&,>) is given by the following
data:
• for every object A, a commutative comonoid (!A, dA, eA) with respect to the ten-

sor product,
• for every object A, a morphism derA :!A −→ A, such that for every morphism

f :!A −→ B

11



axiom
A ` A

cut
∆ ` A Γ, A ` B

Γ,∆ ` B

⊗ left
Γ, A,B ` C

Γ, A ⊗ B ` C
⊗ right

Γ ` A ∆ ` B

Γ,∆ ` A ⊗ B

( left
∆ ` A Γ, B ` C

Γ,∆, A ( B ` C
( right

Γ, A ` B

Γ ` A ( B

1 left
Γ ` A

Γ,1 ` A
1 right

` 1

& right
Γ ` A Γ ` B

Γ ` A&B
true

Γ ` >

& left-1
Γ, A ` C

Γ, A&B ` C
& left-2

Γ, B ` C

Γ, A&B ` C

dereliction
Γ, A ` B

Γ, !A ` B
promotion

!Γ ` A

!Γ `!A

weakening
Γ ` B

Γ, !A ` B
contraction

Γ, !A, !A ` B

Γ, !A ` B

exchange
Γ, A1, A2,∆ ` B

Γ, A2, A1,∆ ` B

Fig. 2. Sequent calculus of intuitionistic linear logic (ILL)

there exists a unique comonoidal morphism

f † : (!A, dA, eA) −→ (!B, dB, eB)

making the diagram below commute:

!A
f†

//

f
''NNNNNNNNNNNNN !B

der
B

��
B

(7)

12



• for every objects A, B, two comonoidal isomorphisms:

(!A, dA, eA) ⊗ (!B, dB, eB) ∼= (!A&B, dA&B, eA&B)

(1, ρ−1
1 = λ−1

1 , id1) ∼= (!>, d>, e>)

Definition 2.3 (model) A categorical model of ILL is a symmetric monoidal clo-
sed category (C,⊗, (, 1) with finite products (&,>) equipped with an exponential
modality. When in addition, the category C is ∗-autonomous, we say that it is a
categorical model of LL.

Remark. We will generally consider models of ILL in which the category C contains
two distinguished objects bool and nat. This enables to construct a hierarchy of
types over the boolean type o and natural number type ι.

2.5 Hierarchies of types

The class of simple types T over the booleans o and the integers ι is given by the
grammar below:

T ::= o | ι | T ⇒ T

A hierarchy is a family of sets [T ] indexed by simple types T , and a family of
functions:

·T1T2 : [T1 ⇒ T2] × [T1] −→ [T2]

Given f ∈ [T1 ⇒ T2] and x ∈ [T1], we write f ·T1T2 x or even f · x for the image
in [V ] of the pair (f, x) by the function ·T1T2 . Every model (C, !) of intuitionistic
linear logic equipped with a pair of objects bool and nat of the category C, induces
a hierarchy by Girard’s formula:

[o] = bool [ι] = nat [T1 ⇒ T2] = (! [T1]) ( [T2]

Every object [T ] of the category C is regarded as the hom-set HomC(1, [T ]) of its
elements. The function ·T1T2 : [T1 ⇒ T2] × [T1] −→ [T2] associates the composite
f · x : 1 −→ [T2]

1
f ·x // [T2] = 1 x† // ![T1]

[[f ]] // [T2]

to the pair x : 1 −→ [T1] and f : 1 −→ [T1 ⇒ T2]. Here, the morphism [[f ]] denotes
the “co-name” of f , that is the morphism ![T1] −→ [T2] associated by monoidal
closure to the element f : 1 −→ (![T1]) ( [T2]
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2.6 Extensional collapse

A hierarchy is extensional when, for every type T1 ⇒ T2 and elements f, g of
[T1 ⇒ T2], one has:

(∀x ∈ [T1], f · x = g · x) ⇒ f = g

Every hierarchy ([T ], ·T1T2) and pair of partial equivalence relations∼o on [o] and ∼ι

on [ι] induces an extensional hierarchy called the extensional collapse of ([T ], ·T1T2)
modulo ∼o and ∼ι. The construction goes as follows. Every set [T ] is equipped with
a partial equivalence relation ∼T defined by induction:

— ∼o and ∼ι are the partial equivalence relations given on [o] and [ι],

— f ∼T1⇒T2 g
defn
⇐⇒ ∀x, y ∈ [T1], x ∼T1 y ⇒ f · x ∼T2 g · y.

The extensional collapse ([T ]ext, �T1T2) is defined in a straightforward fashion: [T ]ext

denotes the set [T ]/∼T of ∼T -classes in [T ]; while f �T1T2 a denotes the ∼T2-class
of f ·T1T2 a, for every two elements f of the ∼T1⇒T2-class f and a of the ∼T1-class a.
We leave the reader check that the definition is correct, and induces an extensional
hierarchy ([T ]ext, �T1T2).

3 Hypergraphs: a polarized variant of hypercoherence spaces

We introduce the hypergraph model of linear logic, a polarized variant of the hyper-
coherence space model presented in [Ehrhard 1993]. We show that the hypergraph
and the hypercoherence space models coincide on simple types, and thus deliver
alternative “linearizations” of the strongly stable hierarchy. We also indicate briefly
why the hypergraph model is closer to sequentiality than the hypercoherence space
model when one considers formulas outside the intuitionistic fragment.

3.1 Two equivalent definitions of hypergraphs

A hypergraph X may be seen alternatively:
(1) as a relaxed notion of hypercoherence space in which an element x ∈ |X| is

not necessarily equivalent to itself (definition 3.2),
(2) as a hypercoherence space equipped with a function λX : |X| −→ {−1, +1}

which polarizes every element of the web (definition 3.3.)
Before discussing the two definitions of hypergraphs, we recall the definition of
hypercoherence space in [Ehrhard 1993].
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Definition 3.1 (Ehrhard) A hypercoherence space X = (|X|, Γ(X)) is a pair con-
sisting of:
(1) an enumerable set |X| called the web of X , whose elements are called the

atoms of X ,
(2) a subset Γ(X) of P∗

fin(|X|), called the atomic coherence of A, such that for
any x ∈ |X|, {x} ∈ Γ(X).

A hypercoherence space X with web |X| is also characterized by its strict atomic
coherence, the set Γ∗(X) of all sets u ∈ Γ(X) not singleton.
The first definition of hypergraph, as a relaxed notion of hypercoherence space, is
given below:
Definition 3.2 (hypergraph (1)) A hypergraph X = (|X|, Γ̆(X)) is a pair consist-
ing of:
(1) an enumerable set |X| called the web of X ,
(2) a subset Γ̆(X) of P∗

fin(|X|), called the polarized atomic coherence of A.
Every hypergraph X = (|X|, Γ̆(X)) induces a hypercoherence space (|X|, Γ(X)):

v ∈ Γ(X)
defn
⇐⇒ v is singleton or v ∈ Γ̆(X)

and a function λX : |X| −→ {−1, +1} associating a polarity to every atom of the
web:

λX(x) = +1
defn
⇐⇒ {x} ∈ Γ̆(X)

Conversely, every hypercoherence space X = (|X|, Γ(X)) equipped with a func-
tion λX : |X| −→ {−1, +1} induces a hypergraph (|X|, Γ̆(X)):

v ∈ Γ̆(X)
defn
⇐⇒











v ∈ Γ(X) if v is not singleton

λX(x) = +1 if v is the singleton {x}.

This leads to the second definition of hypergraph, as a polarized hypercoherence
space:
Definition 3.3 (hypergraph (2)) A hypergraph X = (|X|, Γ(X), λX) is a hyper-
coherence space equipped with a function λX : |X| −→ {−1, +1}. An atom
x ∈ |X| is called positive or negative depending on the sign of λX(x).

Remark. From now on, we shall consider all hypergraphs X as either presented
by a pair (|X|, ˘Γ(X)) or by a triple (|X|, Γ(X), λX). Note that a hypergraph with
web |X| is characterized by its polarity function λX : |X| −→ {−1, +1} and its
strict atomic coherence, the set Γ∗(X) of all sets u ∈ Γ(X) not singleton.
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3.2 Cliques and augmented cliques of a hypergraph

Definition 3.4 (clique, augmented clique) Suppose that X is a hypergraph.
• a non-empty finite set v ⊂∗

fin |X| of atoms is coherent in X when v ∈ Γ̆(X),
• a set w ⊂ |X| of atoms is a clique of X when:

∀v ⊂∗
fin w, v ∈ Γ̆(X)

• a set w ⊂ |X| of atoms is an augmented clique of X when:

∀v ⊂∗
fin w, v ∈ Γ(X)

Remark. A clique is an augmented clique containing only positive atoms.

3.3 The hypergraph vs. the hypercoherence space models of LL

The hypergraph model of linear logic is defined essentially in the same way as
the hypercoherence space model presented in [Ehrhard 1993]. There are three main
differences though:
• the coherence Γ̆(X⊥) of the dual is exactly the complement of the coherence

Γ̆(X). This means that every atom x ∈ |X| on a hypergraph X changes polarity
in the dual hypergraph X⊥. Intuitively, an atom x ∈ |X| of a hypergraph is
“sequentially realized” by plays with last Player move when x is positive, and
with last Opponent move when x is negative.

• the web of X ⊗ Y (and thus of X ( Y ) is not the cartesian product of the web
of X and Y , because it does not contain the pairs (x, y) ∈ |X| × |Y | of negative
atoms. Intuitively, the web of X ⊗ Y picks only the “sequentially realizeable”
atoms of the web of X ⊗ Y .

• the web of !X is not the set of finite cliques of X , but the set of augmented cliques
of X with at most one negative atom. Again, intuitively, the web of !X picks only
the ”sequentially realizeable” augmented cliques of X . This definition should be
compared with the definition of the exponential !A of a sequential data structure
A (see Section 4.) Similarly, a play s of the sds !A “explores” an augmented
strategy of A which contains at most one odd-length play.

3.4 Duality, multiplicatives and additives

The dual of a hypergraph X = (|X|, Γ(X), λX) is the hypergraph X⊥ with web
|X⊥| = |X| and polarity λX⊥ = −λX and atomic coherence

Γ(X⊥) = P∗
fin(|X|) − Γ∗(X) (8)
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The tensor product of two hypergraphs X and Y is the hypergraph X ⊗ Y with
web

|X ⊗ Y | = {(x, y) ∈ |X| × |Y | | λX(x) = +1 or λY (y) = +1} (9)

polarity function

λX⊗Y (x, y) = λX(x)λY (y)

and atomic coherence

Γ(X ⊗ Y ) = {w ∈ P∗
fin(|X| × |Y |) | w�X ∈ Γ(X) and w�Y ∈ Γ(Y )}

where w�X (resp. w�Y ) is the projection of w on |X| (resp. |Y |).
The linear implication of two hypergraphs X and Y is defined by de Morgan:

X ( Y = (X ⊗ Y ⊥)⊥

So, by definition, the hypergraph X ( Y has web:

|X ( Y | = {(x, y) ∈ |X| × |Y | | λX(x) = +1 or λY (y) = −1}

polarity function

λX(Y (x, y) = λX(x)λY (y)

and atomic coherence Γ(X ( Y ) the set of all w ∈ P∗
fin(|X| × |Y |) such that

w�X ∈ Γ(X) ⇒ w�Y ∈ Γ(Y ) and w�X ∈ Γ∗(X) ⇒ w�Y ∈ Γ∗(Y )

where w�X (resp. w�Y ) is the projection of w on |X| (resp. |Y |).
The product of two hypergraphs X and Y is the hypergraph X&Y with web

|X&Y | = |X| + |Y |

and atomic coherence Γ(X&Y ) the set of all w ∈ P∗
fin(|X| + |Y |) such that

w�X = ∅ ⇒ w�Y ∈ Γ(Y ) and w�Y = ∅ ⇒ w�X ∈ Γ(X)

where w�X (resp. w�Y ) is the projection of w on |X| (resp. |Y |).
The unit > is the hypergraph with empty web; and the unit 1 is the hypergraph with
singleton web {∗} and atomic coherence {{∗}}.
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3.5 A ∗-autonomous category of hypergraphs

The category HG has hypergraphs as objects and cliques of X ( Y as morphisms
from X to Y . Morphisms are composed as relations in the category REL, and the
identity idX : X −→ X is the clique {(x, x) | x ∈ |X|} of X ( X .
Lemma 3.5 The category (HG,⊗, 1) is ∗-autonomous, and has finite products given
by (&,>).

3.6 Exponentials

The exponential of a hypergraph X is the hypergraph !X
• with web |!X| the set of finite augmented cliques of X , containing a negative

atom at most,
• with polarity λ!A(w) = +1 when w is a clique, and λ!A(w) = −1 when w is an

augmented clique containing one negative atom,
• with atomic coherence Γ(!X) the set of all W ⊂∗

fin |!X| whose every multisec-
tion w is coherent in X .

The hypergraph !X defines a commutative comonoid with comultiplication dX de-
fined as union of augmented cliques, and counity eX defined as the empty clique.
Given a hypergraph X , the dereliction clique is defined as:

derX = {({x}, x) | x ∈ |X| and {x} ∈ Γ(X)}.

Given a clique f : (!X ( Y ), the clique f † : (!X (!Y ) is defined as:

f † = {(u, v) ∈ |!X| × |!Y | | ∃(ui, xi) ∈ f, u = u1 ∪ ...∪ un and v = {x1, ..., xn}}.

This clique f † is the unique comonoidal morphism !X −→!Y making diagram (7)
commute. Besides, the comonoids !X⊗!Y and 1 are isomorphic (as comonoids) to
the comonoids !(X&Y ) and !>, for every hypergraphs X and Y . It follows that !
defines an exponential modality on the ∗-autonomous category HG. We conclude
from definition 2.3 that
Lemma 3.6 The category HG equipped with the exponential modality ! defines a
model of linear logic.

3.7 The strongly stable hierarchy [−]HC of simple types

We explain briefly why the hypergraph model delivers the same hierarchy of simple
types (noted [T ]HC) as the hypercoherence space model in [Ehrhard 1993]. First, we
note that a hypercoherence space may be seen as a particular kind of hypergraph.
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Definition 3.7 (hypercoherence space 2) A hypergraph X = (|X|, Γ(X), λX) is
called a hypercoherence space when every atom x ∈ |X| has polarity λX(x) = +1.
The hierarchy [−]HC is induced by the hypergraph model, in which the base types
o and ι are interpreted as the hypercoherence spaces [o]HC = BHC and [ι]HC = NHC

with webs:
|BHC| = {V, F} |NHC| = N

and atomic coherence the set of singletons:

Γ̆(BHC) = {{V }, {F}} Γ̆(NHC) = {{n}, n ∈ N}

Lemma 3.8 The hierarchy of types [−]HC coincides with the strongly stable func-
tion.
PROOF Hypercoherence spaces (in the sense of definition 3.7) are preserved by the
connectives of ⊗, (, & and ! in the hypergraph model of ILL. Besides, the interpre-
tations of these connectives on hypercoherence spaces, as well as the base types o
and ι, coincides in the hypergraph model and in the original hypercoherence space
model presented in [Ehrhard 1993]. It follows that the hypergraph hierarchy [−]HC

coincides with the strongly stable hierarchy of [Bucciarelli, Ehrhard 1991].

4 Sequential data structures

In this section, we recall the sequential data structure (sds) model of intuitionistic
linear logic introduced by Lamarche around 1992. We already mentioned that the
hierarchy of simple types it generates coincides with the sequential algorithm hier-
archy on concrete data structures introduced by Berry and Curien. This game model
is described for the first time in [Lamarche 1992]. Our presentation follows the later
presentation by Curien in [Curien 1993] [Amadio, Curien 1998].

4.1 Sequential data structures

Definition 4.1 (sds) A sequential data structure is a triple A = (MA, λA, PA) con-
sisting of
• a polarized alphabet (MA, λA) whose elements are called the moves of A,
• a set PA of words on the alphabet MA, whose elements are called the plays of A.
A move m is called a cell when λA(m) = −1 and a value when λA(m) = +1.
Every sds is required to verify:
• the empty play ε is a play,
• the prefix of a play is a play,
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• every non-empty play is alternating and starts by a cell:

∀m ∈ MA, m ∈ PA ⇒ λA(m) = −1,

∀s ∈ PA, ∀m, n ∈ MA, s · m · n ∈ PA ⇒ λA(m) = −λA(n).

A sds may be visualized as a rooted directed tree with plays as vertices and moves
as edges. For example, the sds B defined as:

MB = {∗, false, true} λB =



























∗ : −1

false : +1

true : +1

PB = {ε} ∪



























∗

∗ · false

∗ · true



























is represented as the labelled tree:

false:+1

__??????? true:+1

??�������

∗:−1

OO

Remark. We often write m : −1 when m is a cell, and m : +1 when m is a value.
We also write P even

A and P odd
A for the set of even-length and odd-length plays of a

sds A, respectively.

4.2 Strategies and augmented strategies

Definition 4.2 (strategy) A strategy of a sds A is a set of plays σ ⊂ P even
A of even-

length, which verifies that:
• it is closed under even-length prefix:

∀s, t ∈ PA, s veven
A t and t ∈ σ ⇒ s ∈ σ,

• it is deterministic:

∀s ∈ P even
A , ∀m, n1, n2 ∈ MA s · m · n1 ∈ σ and s · m · n2 ∈ σ ⇒ n1 = n2,

• it is nonempty: ε ∈ σ.
Definition 4.3 (substrategy) Let σ and τ be two strategies of a sds A. We say that
σ is a substrategy of τ when σ ⊂ τ .
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Definition 4.4 (augmented strategy) An augmented strategy of A is a set of plays
σ ⊂ PA verifying that:
• σ ∩ P even

A is a strategy of A,
• every odd-length play t ∈ σ ∩ P odd

A factorizes as t = s · m where:
· s is a v-maximal play in the strategy σ ∩ P even

A ,
· m ∈ MA is a cell of A.

We write σ : A when σ is a strategy or an augmented strategy of a sds A.

4.3 Multiplicatives and additives

The tensor product of two sdss A and B is the sds A ⊗ B:
(1) MA⊗B = MA + MB ,
(2) λA⊗B(inl(m)) = λA(m) and λA⊗B(inr(m)) = λB(m),
(3) PA⊗B = {s ∈ M~

A⊗B , s�A ∈ PA and s�B ∈ PB}.
The linear implication of two sdss A and B is the sds A ( B:
(1) MA(B = MA + MB ,
(2) λA(B(inl(m)) = λA(m) and λA(B(inr(m)) = −λB(m),
(3) PA(B = {s ∈ M~

A(B , s�A ∈ PA and s�B ∈ PB}.
The product of two sdss A and B is the sds A&B:
(1) MA&B = MA + MB ,
(2) λA&B = λA + λB,
(3) PA&B = inl

∗(PA) + inr
∗(PB).

The units 1 and > are equal to the sds with an empty set of moves.

4.4 A symmetric monoidal closed category of sequential data structures

The category SDS has the sequential data structures as objects, and the strategies
of A ( B as morphisms from A to B. The identity map idA : A −→ A is the
“copycat” strategy idA : A ( A, defined as:

idA = {s ∈ P even
A(A | ∀t veven s, t�A1 = t�A2}.

The composite of two strategies σ : A −→ B and τ : B −→ C is the strategy
σ; τ : A −→ C defined by “parallel composition plus hiding”:

σ; τ = {s ∈ PA(C | ∀t veven s, ∃u ∈ σ, ∃v ∈ τ,

t�A = u�A, u�B = v�B, v�C = t�C}

We refer the reader to [Abramsky, Jagadeesan 1994] or [Curien 1993] for a proof
that the composition law is associative, and that the strategies idA : A −→ A define
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proper identities. Besides, one establishes that:
Lemma 4.5 The category SDS is symmetric monoidal closed, and cartesian.

4.5 Exploration of augmented strategies

Definition 4.6 (σ ↓) Suppose that σ : A is an augmented strategy. We note

σ ↓ = {s ∈ PA | ∃t ∈ σ, s vA t}.

Remark. The set σ ↓ may be seen as an Opponent-branching subtree of the sds A.
Note that every augmented strategy σ may be recovered from the subtree σ ↓, as its
subset of even-length plays and of maximal and odd-length plays.
Definition 4.7 (−→btk) Suppose that σ and τ are augmented strategies of a sds A,
and that t ∈ PA \ {ε} is a nonempty play. We write

σ
t

−→btk τ
defn
⇐⇒ τ ↓ = σ ↓ + {t}.

The notation + means that σ ↓= τ ↓ ∪ {t} and that t is not element of σ ↓.
Definition 4.8 (exploration) We say that a word t = t0 · · · tn−1 on the alphabet
PA \ {ε} explores an augmented strategy σ of A when:

{ε}
t0−→btk τ0

t1−→btk · · · τ1
t2−→btk · · ·

tn−1
−→btk τn = σ

For instance, the two words on the alphabet PB⊗B \ {ε}:

∗1 · (∗1 · true) · ∗2 · (∗2 · false) and ∗2 ·(∗2 · false) · ∗1 · (∗1 · true)

explore the strategy σ = {ε, ∗1 · true, ∗2 · false} of the sds B ⊗ B.

4.6 Exponentials

One distinctive feature of Lamarche’s model is the interpretation of the exponential
modality of linear logic. In this model, the sequential data structure !A is interpreted
by interleaving the plays of A without repetition, using a clever backtracking device
in the definition of the contraction map dA : !A −→!A⊗!A. This departs from the
mainstream models like [Abramsky et al. 1994] in which the exponential game !A
is defined by interleaving and repeating the plays of A as much as Opponent desires.
Note that the two styles of exponentials may be compared by exhibiting a retraction
between them, see [Melliès 2004a] for details. Formally, Lamarche defines for every
sds A the exponential sds !A as follows:
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(1) M!A = PA \ {ε},
(2) λ!A(s) = +1 when s ∈ P even

A and λ!A(s) = −1 when s ∈ P odd
A ,

(3) P!A is the set of alternating words s ∈ M~

!A which explore an augmented strat-
egy σ of A.

Remark. Note that every play s ∈ P even
!A explores a strategy, and that every play

s ∈ P odd
!A factors as t · m where t ∈ P even

!A explores a strategy σ and s explores the
augmented strategy σ + {m}, where m ∈ M!A and m ∈ P odd

A at the same time.
Consequently, only augmented strategies with at most one odd-length play are ex-
plored by a play in !A. This observation on sequential data structures motivates our
interpretation of the exponential modality in the hypergraph model, in Section 3.

The sds (!A, dA, eA) defines a commutative comonoid in the category SDS. The
strategy dA is defined in two steps. First, one says that a play s ∈ P!A((!A⊗!A)

verifies property (*) when the augmented strategies σ1, σ2, σ3 explored by its first,
second and third projections s1, s2, s3 verify σ1 = σ2 ∪ σ3 (set-theoretic union).
Then, one defines:

dA = {s ∈ P even
!A((!A⊗!A) | ∀t ∈ P even

!A((!A⊗!A), t v s ⇒ t verifies property (*)}.

The strategy eA : (!A ( 1) is defined as the singleton {ε}.
The strategy derA is defined in two steps. First, one says that a play s ∈ P!A(A

verifies property (**) when the augmented strategy σ explored by the first projection
s�!A, and the second projection s�A verify together: σ ↓= {u ∈ PA | u v s2}. Then,
one defines:

derA = {s ∈ P even
!A(A | ∀t ∈ P even

!A(A, t v s ⇒ t verifies property (**)}.

There exists for every strategy σ :!A −→ B a unique comonoidal strategy (σ)† :
!A −→!B making diagram (7) commute. For instance, when A = 1 and the strategy
σ : 1 −→ B is just a strategy of B, the comonoidal strategy (σ)† : 1 −→!B is
defined as:

(σ)† = {s ∈ P!B | s explores a substrategy of σ}.

Besides, there exists a comonoidal isomorphism between !A⊗!B and !(A&B) for
every sdss A and B, and a comonoidal isomorphism between 1 and !>.
It follows that ! defines an exponential modality on the ∗-autonomous category SDS,
and from definition 2.3, that:
Lemma 4.9 (Lamarche) Sequential data structures define a model of intuitionistic
linear logic.
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4.7 The flat and the lazy sequential hierarchies [−]flat
SDS and [−]lazySDS

We consider two hierarchies of types induced by the sds model of ILL:
• the flat hierarchy [−]flat

SDS (sometimes written [−]SDS) in which o is interpreted as
the sds B and ι is interpreted as the “flat” natural number sds Nflat:

MNflat
= {∗} ∪ {n | n ∈ N} λNflat

=











∗ : −1

n : +1

PNflat
= {ε} ∪ {∗} ∪ {∗ · n | n ∈ N}

The flat hierarchy is the hierarchy considered in [Berry, Curien 1982].
• the lazy hierarchy [−]lazySDS in which o is interpreted as the sds B and ι is interpreted

as the “lazy” natural number sds Nflat:
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The two natural number sdss Nflat and Nlazy are represented as trees in figure 3.

5 Extensional data structures

In this section, we equip every sequential data structure with a realizability relation
between plays and extensions, obtaining what we call an extensional data structure
(eds). Our ambition is not to define another model of intuitionistic linear logic (we
will see that the sds and eds models are equivalent), but to analyze the extensional
content of the strategies in the category SDS.

5.1 Extensional data structures

Definition 5.1 (eds) An extensional data structure (eds) is a six-tuple

A = (MA, λA, PA, EA, ‖ − ‖A)
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where:
• (MA, λA, PA) is a sequential data structure,
• EA is an enumerable set whose elements are called the extensions of A,
• ‖ − ‖A associates to every extension x ∈ EA a non-empty finite set ‖x‖A ⊂

P even
A .

The plays in ‖x‖A are called the realizers of the extension x. We ask that every
extensional data structure is modest in the sense that:

∀x, y ∈ EA, ‖x‖A ∩ ‖y‖A 6= ∅ ⇒ x = y.

We write RA for the set of realizers of A:

RA =
⋃

x∈EA

‖x‖A.

We illustrate the definition with the boolean eds B = (MB, λB, PB, EB, ‖ − ‖B).
It is defined as the boolean sds (MB, λB, PB) of Section 4, now equipped with the
extensional realizability structure:

EB = {V, F}, ‖F‖B = {∗ · false}, ‖V ‖B = {∗ · true}.

5.2 Strategies

A strategy of the eds A is defined as a strategy of its underlying sds. It follows that
the eds and sds models of intuitionistic linear logic are equivalent.

5.3 When does a strategy implement a set of extensions?

Definition 5.2 (�A) We write s �A x when s ∈ PA is prefix of a play t realizing an
extension x ∈ EA:

s �A x
defn
⇐⇒ ∃t ∈ PA, s vA t and t ∈ ‖x‖A.

Definition 5.3 (implement, �A) A strategy σ : A implements an extension x ∈ EA

when, for every play s ∈ PA and move m ∈ MA such that s · m ∈ PA, one has:

s ∈ σ and s · m �A x ⇒ ∃n ∈ MA, s · m · n �A x and s · m · n ∈ σ.

In that case, we write:
σ �A x.
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A strategy σ implements a set v ⊂ EA of extensions of A, when σ implements every
extension of v, what we note σ �A v. Thus:

σ �A v
defn
⇐⇒ ∀x ∈ v, σ �A x.

Remark. The definition of implementation of an extension x ∈ EA is inspired
by the definition of concurrent strategy in [Abramsky, Melliès 1999]. It should be
compared with the definition of conflict-free strategy in [Hyland, Schalk 2002] and
of forward confluent strategy in [Melliès 2004b]. Its task is to provide an explicit
and dynamic formulation of the usual notion of sequential realizability, either given
by extensional collapse as in Section 2.6, or by observational equivalence as in
Section 4.2 of [Abramsky et al. 2000] and Section 3 of [Hyland, Ong 2000].

5.4 Configurations

Definition 5.4 (configuration) A configuration of A is any set v ⊂ EA of exten-
sions implemented by a strategy σ.

5.5 Multiplicatives and additives

We adapt to edss the model of ILL presented in Section 4. The interpretation is con-
servative on the sds part. This enables us to limit our definitions to the realizability
relation attached to each interpretation.
The tensor product of two edss A and B is the sds A ⊗ B equipped with the real-
izability relation:
(1) EA⊗B = EA × EB ,
(2) ‖(x, y)‖A⊗B = {s ∈ M~

A⊗B | s�A ∈ ‖x‖A and s�B ∈ ‖y‖B}.
The linear implication of two edss A and B is the sds A ( B equipped with the
realizability relation:
(1) EA(B = EA × EB ,
(2) ‖(x, y)‖A(B = {s ∈ M~

A⊗B | s�A ∈ ‖x‖A and s�B ∈ ‖y‖B}.
The product of two edss A and B is the sds A&B equipped with the realizability
relation:
(1) EA&B = EA + EB ,
(2) ‖inl(x)‖A&B = inl

∗(‖x‖A) and ‖inr(y)‖A&B = inr
∗(‖y‖B).

The unit > is the sds > equipped with an empty set of extensions; the unit 1 is the
sds 1 equipped with a single extension ∗, realized by the empty play ε.
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5.6 Exponentials

Definition 5.5 (sub-implement) A strategy σ : A sub-implements an extension x ∈
EA when, for every play s ∈ PA and moves m, n ∈ MA:

s ∈ σ and s · m �A x and s · m · n ∈ σ ⇒ s · m · n �A x.

A strategy σ sub-implements a set v ⊂ EA of extensions of A, when σ sub-implements
every extension of v.
This enables to define:
The exponential of an eds A is the sds !A equipped with the realizability relation:
(1) E!A is the set of finite configurations of A,
(2) a play s ∈ P!A realizes a finite configuration v ∈ E!A when there exists a

strategy σ of A such that:
• s explores the strategy σ,
• σ sub-implements the configuration v,
• v = {x ∈ EA | σ ∩ ‖x‖A 6= ∅},
• ∀t ∈ σ, ∃x ∈ v, t �A x.

5.7 The category EDS

The category EDS has the edss as objects and the strategies of A ( B as mor-
phisms from A to B. Identities and composition are defined as in the category SDS.
We obtain immediately that:
Lemma 5.6 The category EDS is equivalent to the category SDS.

5.8 The flat and the lazy sequential hierarchies [−]flat
SDS and [−]lazySDS

We equip the flat and the lazy sequential algorithm hierarchies of types with exten-
sional information. The simple type o is interpreted as the eds B ; the simple type ι is
interpreted either (1) as the natural number sds Nflat equipped with the realizability
relation:

ENflat
= N, ‖n‖Nflat

= {∗ · n}.

and (2) as the lazy natural number sds Nlazy equipped with the realizability relation:

ENlazy
= N, ‖n‖Nlazy

= {≥0 · · · ≥n · =n}.

The two edss Nflat and Nlazy are represented in figure 3. We write [T ]flat
SDS and [T ]lazySDS

for the interpretations of a simple type T in the respective hierarchies.
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Fig. 3. The flat natural number eds N flat vs. the lazy natural number eds Nlazy.

6 A graphic representation for simple types

In this section, we show that every extensional data structure [T ]flat
SDS and [T ]lazySDS

interpreting a simple type T , may be represented as directed acyclic graphs (dags).
We start by a definition.
Definition 6.1 (graphic) Let s and t be any two plays of an eds A. We write s ∼A t,
when, for every word u on the alphabet MA, we have:

s · u ∈ PA ⇐⇒ t · u ∈ PA,

∀x ∈ EA, s · u ∈ ‖x‖A ⇐⇒ t · u ∈ ‖x‖A.

An eds A is called graphic when every two plays s and t realizing the same extension
x ∈ EA are equivalent:

∀x ∈ EA, ∀s, t ∈ PA, s, t ∈ ‖x‖A ⇒ s ∼A t.

Every graphic eds A is represented by the dag obtained by identifying all vertices
s ∈ PA realizing the same extension x ∈ EA in the tree associated to the sds
(MA, λA, PA). We have already seen in the introduction that the graphic eds !B is
represented as the labelled tree:

F V

false

aaCCCCCCCC true

==zzzzzzzz

⊥

∗

OO

and the graphic eds !B⊗!B⊗!B as the labelled dag (of which we only draw a frag-
ment) of figure 1. It turns out that the class of graphic games is closed under the
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linear connectives: ⊗, (, &; but not closed under the exponential modality !(−).
For instance, the eds (B ⊗ B) is graphic, but the eds A =!(B ⊗ B) is not graphic.
Let us explain why. Consider the two plays s and t of A:

s = (∗1) · (∗1 · true1) · (∗1 · true1 · ∗2) · (∗1 · true1 · ∗2 · false2)

t = (∗2) · (∗2 · false2) · (∗2 · false2 · ∗1) · (∗2 · false2 · ∗1 · true1)

The two plays realize the same extension (V, F ) ∈ E!(B⊗B). The only difference is
that the play s interrogates its arguments left-to-right, while the play t interrogates
its arguments right-to-left. The sds model is too “sequential” to detect that s and t
are just doing the same thing, and thus, the word s·t is accepted as a play of !(B⊗B)
and as a realizer of (V, F ). So, the play s ·t interrogates its arguments twice, the first
time from left-to-right, the second time from right-to-left. It follows immediately
that s and t are not ∼A equivalent (since t · t is not a play) and consequently, that
!(B⊗B) is not graphic. This is an interesting pathology of sequential data structures,
which our analysis uncovers.
Fortunately, the defect is harmless on simple types T , which are interpreted as
graphic edss [T ]flat

SDS and even more than that: every eds [T ]flat
SDS is spread in the

sense given below.
Definition 6.2 (spread) An eds A is spread when

∀x ∈ EA, ∀s ∈ ‖x‖A, ∀t ∈ PA, s v t ⇒ s = t.

and no extension x ∈ EA is realized by the empty play.
Note that every spread eds is graphic, and represented by a dag whose extensions
are at the leaves. We prove that:
Lemma 6.3 The interpretations [T ]flat

SDS and [T ]lazySDS of every simple type T is spread.
PROOF The property follows from the three observations that,
(1) the edss B and Nflat and Nlazy are spread,
(2) the eds !A is not necessarily spread when A is spread...
(3) but the eds A ( B is spread when B is spread.

7 Extracting hypercoherence spaces from extensional data structures

In this section, we associate to every (regular) extensional data structure A a hyper-
coherence space U(A) whose finite cliques are the configurations of A.
Definition 7.1 (frontier) The cone of a non-empty finite set v ⊂∗

fin EA of extensions
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is defined as follows:

cone(v) = {s ∈ PA | ∀x ∈ v, s �A x}.

The frontier of v is the set of vA-maximal plays in the cone of v:

frontier(v) = maxvA
(cone(v)).

Remark. The cone of a set v ⊂∗
fin EA of extensions is always finite. It follows that

frontier(v) is nonempty.
Definition 7.2 (coherence) A non-empty finite subset v ⊂∗

fin EA of extensions is
declared:
• coherent in A when frontier(v) ⊂ P even

A ,
• incoherent in A when frontier(v) ⊂ P odd

A .
Definition 7.3 (regular) An eds is regular when every non-empty finite subset v ⊂∗

fin

EA of extensions is either coherent or incoherent.
To every regular eds A we associate the hypergraph

U(A) = (|U(A)|, Γ̆(U(A))).

defined as follows:
• |U(A)| = EA,
• Γ̆(U(A)) contains the coherent subsets of EA.
Remark. We required in our definition of an eds A that ‖x‖A ⊂ P even

A for every
extension x ∈ EA. It follows that every extension x ∈ EA is coherent in an eds A;
and from this, that the hypergraph U(A) is a hypercoherence space in the sense of
definition 3.7: every atom x ∈ |U(A)| is positive. So, the advantage of using hy-
pergraphs instead of hypercoherence spaces is only visible when one moves outside
the intuitionistic hierarchy, with a less constrained notion of sds and eds.
The definition of the hypercoherence space U(A) is motivated by the result below:
Lemma 7.4 (configuration=clique (finite case)) Suppose that A is a regular eds
and that v is a finite subset of EA. Then, the following are equivalent:
(1) v is a configuration of A,
(2) v is a clique of U(A).

PROOF (1 ⇒ 2) Let w be any nonempty finite subset of v. We claim that w is
coherent in U(A). Let σ be a strategy implementing v. The strategy σ implements
w ⊂ v as well. Besides, the set cone(w) ⊂ PA is finite and contains the empty
play ε. It follows that σ ∩ cone(w) is finite and nonempty; and that there exists a
vA-maximal play s in σ ∩ cone(w). We claim that s ∈ frontier(w). Suppose not.
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Then, there would exist a cell m ∈ MA such that s ·m ∈ cone(w); by definition of
σ �A w, there would exist a value n such that s ·m ·n ∈ σ and s ·m ·n ∈ cone(w);
and this would contradict maximality of s in σ ∩ cone(w). We conclude that s ∈
frontier(w). Now, as an element of σ, the play s is of even-length. And the eds
A is regular. It follows that every play frontier(w) is of even-length. We conclude
that w is coherent, and that v is a clique in U(A).
(2 ⇒ 1) is by finiteness. We write s

m,n
−→v t when

• s, t ∈ P even
A and m, n ∈ MA and t = s · m · n,

• ∀x ∈ v, s · m �A x ⇒ s · m · n �A x.
The relation −→v defines a tree Tv on the even-length plays of A, labelled with
pairs of moves (m, n). Let σ be maximal among the subtrees of Tv closed under
even-length prefix, and verifying

∀m, n1, n2 ∈ MA, ∀s, t1, t2 ∈ σ, s
m,n1−→v t1 and s

m,n2−→v t2 ⇒ n1 = n2 (10)

Clearly, σ is a strategy of A. We claim that this strategy σ implements v. Indeed,
suppose that x ∈ v, that s ∈ σ, that m ∈ MA, and that s · m �A x. We prove that

∃n ∈ MA, s · m · n �A x and s · m · n ∈ σ.

Let w = {x ∈ v | s·m �A x}. As a finite subset of the clique v, the set w is coherent
in U(A). By definition of coherence, this means that all the plays in frontier(w)
are of even-length. On the other hand, s · m is element of cone(w) and of odd-
length. Thus, s · m is strict prefix of a play t ∈ frontier(w). Let p ∈ MA be the
value such that s · m · p v t. Note that s · m · p ∈ w, and thus s

m,p
−→v s · m · p.

So, by maximality of σ, there exists a move n ∈ MA such that s
m,n
−→v s · m · n. By

definition of
m,n
−→v and s ·m �A x, the inequality s ·m ·n �A x holds. We conclude.

The definition of U is nicely illustrated by the regular eds !B⊗!B⊗!B discussed
in the introduction, and presented in figure 1. Consider the two subsets v, w of
E!B⊗!B⊗!B:

w = {(⊥, V, F ), (F,⊥, V ), (V, F,⊥)}, v = {(F,⊥, V ), (V, F,⊥)}.

The frontier of v and w are given by singletons:

frontier(w) = {ε}, frontier(v) = {∗1}.

The empty play ε is of even-length and the play ∗1 is of odd-length. It follows that
w is coherent and that v is incoherent in the eds !B⊗!B⊗!B.
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8 The strongly stable vs. the sequential algorithm hierarchies

In this section, we prove
(1) that the extensional data structures [T ]flat

SDS and [T ]lazySDS are regular for every
simple type T , and

(2) that the hypercoherence space [T ]HC interpreting T in the strongly stable model,
is precisely the hypercoherence space extracted from the edss [T ]flat

SDS and [T ]lazySDS :

[T ]HC = U([T ]flat
SDS) = U([T ]lazySDS ).

This is the reconstruction theorem 8.3 established in Section 8.3. The theorem is
proved by induction on the type T , after the lemmas of Sections 8.1 and 8.2.

8.1 The linear implication (

Lemma 8.1 Suppose that A, B are regular edss, and that B is spread. Then, the
eds A ( B is regular, and verifies the equality:

U(A ( B) = U(A) ( U(B).

PROOF The two hypergraphs U(A) and U(B) are hypercoherence spaces. The web
U(A) ( U(B) is therefore equal to the cartesian product of the webs of U(A)
and U(B), that is: EA × EB . It follows that the hypergraphs U(A) ( U(B) and
U(A ( B) have the same web. Besides, we know that every atom of U(A) (

U(B) and U(A ( B) is of polarity +1. We prove now that the strict coherence of
U(A) ( U(B) and U(A ( B) coincide.
Suppose that v ⊂∗

fin EA(B is strictly coherent in the hypergraph U(A) ( U(B).
That means that v is not a singleton, and that both assertions hold:

v�A ∈ Γ(U(A)) ⇒ v�B ∈ Γ(U(B)), (11)

v�A ∈ Γ∗(U(A)) ⇒ v�A ∈ Γ∗(U(B)). (12)

We claim that v is coherent in the eds A ( B. Indeed, let s ∈ P odd
A(B be a play of

odd-length in cone(v). We prove that there exists m ∈ MA(B such that s · m ∈
cone(v).
Note that the projection s�A is of even-length and in cone(v�A); and that the pro-
jection s�B is of odd-length and in cone(v�B).
We proceed by case analysis. First case: when s�A 6∈ frontier(v�A). Then, there
exists a cell m ∈ MA such that (s�A) ·m ∈ cone(v�A). It follows that s ·inl(m) ∈
cone(v), and we conclude.
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Second case: when s�A ∈ frontier(v�A). Then, it follows from regularity that v�A
is coherent in the eds A. From this, and (11), it follows that v�B is coherent in the
eds B. It is worth noting here that v�B is not singleton, because, otherwise, v�A
would be singleton by (12) and thus v would be singleton — which contradicts our
hypothesis.
So, the set v�B is coherent. And the play s�B is of odd-length and in cone(v�B).
It follows that there exists a value m ∈ MB such that (s�B) · m ∈ cone(v�B).
The set v�B is also non singleton. It follows that cone(v�B) does not contain any
v-maximal play in the eds B. So, the play (s�B) · m is not maximal. From this, it
follows easily that s · inr(m) ∈ cone(v).
We have just proved that every play s ∈ P odd

A(B of odd-length in cone(v) may be
extended by a value m ∈ MA(B such that s · m ∈ cone(v). We conclude that v is
coherent in the eds A ( B.
Now, suppose that v ⊂∗

fin EA(B is strictly incoherent in the hypergraph U(A) (

U(B). That means that v is not a singleton, and that:

v�A ∈ Γ(U(A)) and v�B 6∈ Γ∗(U(B)). (13)

We claim that v is incoherent in the eds A ( B. Indeed, let s ∈ P even
A(B be a play

of even-length in cone(v). We prove that there exists a cell m ∈ MA(B such that
s · m ∈ cone(v).
We proceed by case analysis. First case: when the last move of s is played in the
component A. Then, the projection s�A is of odd-length and in cone(v�A). We
know from (13) that v�A is coherent in the eds A. It follows that there exists a value
m ∈ MA such that (s�A) · m ∈ cone(v�A). It follows that s · inl(m) ∈ cone(v),
and we conclude.
Second case: when the last move of s is played in the component B, or when s is the
empty play. Then, the projection s�B is of even-length and in cone(v�B). By (13)
the set of extensions v�B is either (a) singleton v�B = {y}, or (b) non singleton and
incoherent in the eds B. We claim that in both cases (a) and (b) there exists a cell
m ∈ MB such that (s�B) ·m ∈ cone(v�B). This is immediate in case (b) when v is
incoherent in B. This is also true in case (a) because, we claim, the play s�B is not
element of ‖y‖B. Indeed, if this was the case, then s�B would be v-maximal in the
eds B, because B is spread; and in turn, the play s would be v-maximal in the eds
A ( B; this maximality and s ∈ cone(v) would imply that v is singleton, which
contradicts our hypothesis. We conclude that there exists a cell m ∈ MB such that
(s�B) · m ∈ cone(v�B). It follows easily that s · inr(m) ∈ cone(v).
We have just proved that every play s ∈ P even

A(B of even-length in cone(v) may be
extended by a cell m ∈ MA(B in such a way that s · m ∈ cone(v). We conclude
that v is incoherent in the eds A ( B.
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Now, observe that every non-empty finite subset v of EA(B is either coherent or
incoherent in the hypergraph U(A) ( U(B). We have just proved that the subset
v is coherent in the eds A ( B in the first case, and incoherent in the eds A ( B
in the second case. We conclude that A ( B is regular, and that U(A ( B) =
U(A) ( U(B).

8.2 The exponentials

Lemma 8.2 (exponential) Suppose that A is a regular eds. Then, the eds !A is
regular and verifies the equality:

U(!A) =!U(A).

PROOF Suppose that A is regular. By lemma 7.4 the two webs of U(!A) and !U(A)
are equal. We prove that the hypercoherence structure on |U(!A)| = |!U(A)| are the
same. Let {v0, ..., vj−1} be a non-empty finite subset of |U(!A)| = |!U(A)|.
Suppose that {v0, ..., vj−1} is coherent in the hypergraph !U(A), or more explicitly
that every section w of {v0, ..., vj−1} is coherent in U(A). We claim that {v0, ..., vj−1}
is coherent in the eds !A. Indeed, let s be an odd-length play of !A verifying s ∈
cone({v0, ..., vj−1}), or more explicitly ∀i ∈ [j], s �!A vi. By definition, the word
s explores an augmented strategy σ of A with exactly one odd-length play t ∈ PA.
Note that the play t ∈ PA is at the same time the last move of s in the eds !A.
Define v as the set of extensions x ∈

⋃

i∈[j] vi such that t �A x. It follows from
∀i ∈ [j], s �!A vi that the set v defines a finite section of {v0, ..., vj−1}. By hypoth-
esis, the section v is coherent in A. This implies that the play t ∈ cone(v) may be
extended with a value m ∈ MA into an even-length play t ·m ∈ cone(v). The play
t ·m is also a move of !A. The play s ∈ P!A extended with that move (t ·m) defines
a play s · (t · m) ∈ P!A which verifies

∀i ∈ [j], s · (t · m) �!A vi.

We conclude that {v0, ..., vj−1} is coherent in the eds !A.
Suppose now that {v0, ..., vj−1} is not coherent in the hypergraph !U(A), or more
explicitly that there exists an incoherent section w of {v0, ..., vj−1} in the hyper-
graph U(A). We claim that {v0, ..., vj−1} is incoherent in the eds !A. Indeed, let
s be an even-length play of !A such that s �!A {v0, ..., vj−1}, or more explicitly
∀i ∈ [j], s �!A vi. By definition, the word s explores a strategy σ of A. Let t ∈ PA

be maximal (wrt. v) among the plays verifying t �A w in the prefix-closed set of
plays σ ↓= {t ∈ PA | ∃t′ ∈ σ, t vA t′}. We deduce from s �!A {v0, ..., vk−1}
that t is of even-length. By hypothesis, w is incoherent in the eds A. Opponent may
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therefore extend the play t into t · m in such a way that t · m �A w, or more ex-
plicitly that ∀x ∈ w, t · m �A x. The definition of w as a section of {v0, ..., vj−1}
implies that ∀i ∈ [j], ∃x ∈ vi, t · m �A x. The word s · (t · m) is a play of !A and
verifies ∀i ∈ [j], s · (t · m) �!A vj . We conclude that {v0, ..., vj−1} is incoherent in
the eds !A.
Observe that every non-empty finite subset v of E!A is either coherent or incoherent
in the hypergraph !U(A). By the previous arguments, the subset v is coherent in !A
in the first case, and incoherent in !A in the second case. We conclude that !A is
regular, and that U(!A) =!U(A).

8.3 Reconstruction theorem

Theorem 8.3 (reconstruction) Every simple type T is interpreted as a spread reg-
ular eds [T ]flat

SDS or [T ]lazySDS , with associated hypergraph U [T ]flat
SDS = U [T ]lazySDS the

interpretation [T ]HC of T in the hypercoherence space model. Thus:

[−]HC = U ◦ [−]flat
SDS = U ◦ [−]lazySDS . (14)

PROOF By induction on the simple type T . The regularity property as well as the
equality (14) are verified at the simple types ι and o, and it follows from lemmas 8.1
and 8.2 that they are preserved by the arrow construction T1 ⇒ T2 = (!T1) ( T2.
We conclude.

9 Intermezzo: a retraction between the flat and the lazy hierarchies

In this section, we prepare our alternative proof of Ehrhard’s theorem in Section 12.
We show that the flat and the lazy sequential algorithm hierarchies (introduced at
the end of Section 4) collapse to the same extensional hierarchy of types. The proof
is based on a back-and-forth translation technique introduced in [Melliès 2004a].
The key step is to exhibit a retraction in the category EDS (or equivalently SDS)
between the flat and the lazy natural numbers edss Nflat and Nlazy:

Nflat
for // Nlazy

count // Nflat = Nflat

idNflat // Nflat . (15)

The strategies for and count are defined as follows:

for = {s ∈ P even
Nflat(Nlazy

| ∃n ∈ N, s v sn}

count = {s ∈ P even
Nlazy(Nflat

| ∃n ∈ N, s v tn}
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where sn is the play of Nflat ( Nlazy defined as:

sn = ≥0 · ∗ · n · >0 · ≥1 · · ·≥n · =n

and tn is the play of Nlazy ( Nflat defined as:

tn = ∗ · ≥0 · >0 · ≥1 · · ·≥n · =n · n.

The retraction (15) induces a retraction between the edss [T ]flat
SDS and [T ]lazySDS in the

category EDS, for every simple type T :

[T ]flat
SDS

[T ]flat
lazy // [T ]lazySDS

[T ]lazy
flat // [T ]flat

SDS = [T ]flat
SDS

id
[T ]flat

SDS // [T ]flat
SDS (16)

The partial equivalence relations ∼flat
T and ∼lazy

T defined by extensional collapse
(see Section 2.6) on the sets of strategies of [T ]flat

SDS and [T ]lazySDS are given below:
Definition 9.1 (∼flat and ∼lazy)

σ ∼flat
o τ

defn
⇐⇒ σ ∼lazy

o τ
defn
⇐⇒ ∃x ∈ {V, F}, σ �B x and τ �B x,

σ ∼flat
ι τ

defn
⇐⇒ ∃n ∈ ENflat

, σ �Nflat
n and τ �Nflat

n,

σ ∼lazy
ι τ

defn
⇐⇒ ∃n ∈ ENlazy

, σ �Nlazy
n and τ �Nlazy

n.

We establish now that the retraction morphisms (15) behave well towards the partial
equivalence relations ∼flat

ι and ∼lazy
ι .

Lemma 9.2 (preservation) Suppose that σ and τ are strategies of Nflat. Then:

σ ∼flat
ι τ ⇒ σ; for ∼lazy

ι τ ; for.

Suppose that σ and τ are strategies of Nlazy. Then:

σ ∼lazy
ι τ ⇒ σ; count ∼flat

ι τ ; count and σ ∼lazy
ι σ; count; for.

PROOF We prove the first statement. The two remaining statements are proved
in a similar fashion. Suppose that σ : Nflat and τ : Nflat are strategies and that
σ ∼flat

ι τ . By definition, there exists an extension n ∈ ENflat
such that σ �Nflat

n
and τ �Nflat

n. This implies that σ = τ is the strategy {ε, ∗ · n}. The strategies
(σ; for) and (τ ; for) are equal to the strategy µ : Nlazy which contains exactly the
even-length prefixes of the play:

≥0 · >0 · ≥1 · · ·≥n · =n
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This strategy µ is the (unique) strategy of Nlazy which implements n ∈ ENlazy
. We

conclude that σ; for ∼lazy
ι τ ; for.

By Lemma 9.2, he family of retractions (16) defines a back-and-forth translation
between the hierarchies [−]flat

SDS and [−]lazySDS in the sense of [Melliès 2004a]. The
existence of such a back-and-forth translation implies immediately that:
Lemma 9.3 The two hierarchies [−]flat

SDS and [−]lazySDS collapse to the same exten-
sional hierarchy.

Remark. There remains to show that this extensional hierarchy is precisely the
strongly stable hierarchy of [Bucciarelli, Ehrhard 1991]. This is precisely what we
do from now on, in Sections 10, 11 and 12.

10 Compactness

In this section, we analyze the lazy sequential algorithm hierarchy of types, intro-
duced in Section 5 and recalled in Section 9. In Section 10.1, we show that in this
hierarchy, every simple type T is interpreted as a finitely branching eds. This departs
from the flat hierarchy, where the base type ι is interpreted as the eds Nflat, which is
not finitely branching. In Section 10.2, we use a non-constructive compactness ar-
gument to extend the characterization lemma 7.4 to possibly infinite configurations
and cliques — at least when the underlying eds A is regular and finitely branching.
We conclude in Section 10.3 that the configurations of the eds [T ]lazySDS are the cliques
of the hypercoherence space [T ]HC.

10.1 The lazy hierarchy [−]lazySDS defines only finitely branching edss

Definition 10.1 (finitely branching) An eds A is finitely branching when for every
play s ∈ PA, there exists only a finite number of moves m ∈ MA such that s · m ∈
PA.
Lemma 10.2 Every simple type T is interpreted as a finitely branching eds [T ]lazySDS

in the lazy hierarchy.
PROOF The edss B and Nlazy are finitely branching, and the class of finitely branch-
ing edss is closed under linear implication ( and exponential modality !(−).

10.2 Configurations coincide with cliques (the infinite case)

We extend lemma 7.4 on possibly infinite configurations and cliques when the ex-
tensional data structure A is finitely branching.

37



Lemma 10.3 (configuration=clique (infinite case)) Suppose that A is a regular
finitely branching eds and that f is a (possibly infinite) subset of EA. Then, the
following are equivalent:
(1) f is a configuration of A,
(2) f is a clique of U(A).

PROOF (1 ⇒ 2) is established as in lemma 7.4. (2 ⇒ 1) is proved by a non-
constructive compactness argument. We proceed as in the proof of lemma 7.4, and
write s

m,n
−→f t when

• s, t ∈ P even
A and m, n ∈ MA and t = s · m · n,

• ∀x ∈ f, s · m �A x ⇒ s · m · n �A x.
The relation −→f defines a tree Tf on the even-length plays of A, labelled with
pairs of moves (m, n). Let σ be maximal among the subtrees of Tf closed under
even-length prefix, and verifying

∀m, n1, n2 ∈ MA, ∀s, t1, t2 ∈ σ, s
m,n1−→f t1 and s

m,n2−→f t2 ⇒ n1 = n2 (17)

The tree σ defines a strategy of A which, we claim, implements f . Indeed, suppose
that x ∈ f , that s ∈ σ, that m ∈ MA, and that s · m �A x. We prove that

∃n ∈ MA, s · m · n �A x and s · m · n ∈ σ

Let g = {x ∈ f | s · m �A x}, and let W = P∗
fin(g) be the set of nonempty

finite subsets of g. Let w be an element of W . As a finite subset of the clique f ,
the set w is coherent in U(A). By definition of coherence, this means that all the
plays in frontier(w) are of even-length. On the other hand, s · m is element of
cone(w) and of odd-length. Consequently, the set P (w) ⊂ MA of values p such
that s ·m ·p ∈ cone(w) is nonempty. Besides, and here comes compactness, the set
P (w) is finite because the eds A is finitely branching. It follows that the intersection

P =
⋂

w∈W

P (w)

is nonempty. Since every p ∈ P verifies s
m,p
−→f s ·m ·p, we conclude by maximality

of σ that there exists a move n ∈ MA such that s
m,n
−→f s · m · n. By definition of

m,n
−→f and of s · m �A x, the inequality s · m · n �A x holds. We conclude.

10.3 The configurations are the strongly stable functions

It follows directly from theorem 8.3 and lemma 10.3 that
Corollary 10.4 Suppose that T is a simple type, interpreted as [T ]lazySDS in the lazy
sequential algorithm model, and as [T ]HC in the strongly stable model. Then:
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(1) [T ]HC = U([T ]lazySDS ),
(2) the configurations of [T ]lazySDS are the cliques [T ]HC.

11 Collapse data structures

We carry on our analysis of extensionality in sequential games, and equip every
extensional data structure A with a set P alive

A of alive plays. The notion of alive play
is mainly motivated by the description of the partial equivalence relation generated
by extensional collapse on the hierarchy [−]lazySDS — see the anatomic theorem 12.6
in Section 12. For that reason, we call collapse data structure (cods) an extensional
data structure equipped with a notion of alive play.

11.1 Collapse data structures

Definition 11.1 (cods) A collapse data structure (cods) is an extensional data struc-
ture A equipped with a set P alive

A ⊂ P even
A of even-length plays of A.

A play s ∈ PA is called alive when s ∈ P alive
A .

11.2 Extensional and sub-extensional strategies

We associate to every strategy σ in a cods A a set of extensions U(σ) defined as
follows:
Definition 11.2 U(σ) denotes the set of extensions x ∈ EA “encountered” by the
strategy σ, that is:

U(σ) = {x ∈ EA | σ ∩ ‖x‖A 6= ∅}.

Now, we define a notion of extensional and sub-extensional strategy in a collapse
data structure A. We recall that the notion sub-implementation is introduced in Def-
inition 5.5.
Definition 11.3 (extensional strategy) A strategy σ is extensional when
• σ ⊂ P alive

A ,
• σ implements every extension x ∈ U(σ):

∀x ∈ EA, x ∈ U(σ) ⇒ σ �A x.

Definition 11.4 (sub-extensional strategy) A strategy σ is sub-extensional when
• U(σ) is a configuration of A,
• σ ⊂ P alive

A ,
• σ sub-implements every extension x ∈ U(σ).
One proves easily that
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Lemma 11.5 Every substrategy of an extensional strategy is sub-extensional.
Remark. We will see next section, theorem 12.6, that the extensional strategies of
[T ]lazySDS are precisely the self-equivalent strategies of the extensional collapse ∼lazy

T .

11.3 The hierarchy [−]lazyCODS of simple types

The hierarchy [−]lazyCODS is just the hierarchy [−]lazySDS in which every eds [T ]lazySDS is
equipped with the adequate notion of alive play. The base types o and ι are inter-
preted by the edss B and Nlazy in which every even-length play is seen as alive:

P alive
B

= P even
B

P alive
Nlazy

= P even
Nlazy

The type T = T1 ⇒ T2 is interpreted by Girard formula:

[T ]lazyCODS = (![T1]
lazy
CODS) ( [T2]

lazy
CODS

where the linear implication and exponentials are defined as follows:
The linear implication of two codss A and B is the eds A ( B in which P alive

A(B in
which a play s ∈ P even

A(B is alive precisely when:
• s�A ∈ P alive

A ⇒ s�B ∈ P alive
B ,

• (s�A ∈ P alive
A and s�B ∈ RB) ⇒ s�A ∈ RA.

The exponential of a cods A is the eds !A in which a play s ∈ P even
!A is alive

precisely when it explores a sub-extensional strategy σ : A.

Remark. The definition of PA(B is motivated by Theorem 12.6. Intuitively, a play
is “alive” means that it may be “visited” by a self-equivalent strategy. So, the first
condition tells that an alive play of A is transported to an alive play of B by an alive
play of A ( B. The second condition tells that an alive play of A transported to a
realizer of B by an alive play of A ( B, is itself a realizer of A.

11.4 Alive collapse data structures

We introduce a notion alive cods in which a converse to lemma 11.5 may be estab-
lished (lemma 11.7).
Definition 11.6 (alive) A cods is alive when:
• ∀x ∈ EA, ‖x‖A ⊂ P alive

A ,
• ∀s ∈ PA, ∀t ∈ PA, s veven

A t and t ∈ P alive
A ⇒ s ∈ P alive

A

Lemma 11.7 Suppose that a cods A is alive and regular, and that σ is a sub-
extensional strategy of A. Then, σ is the substrategy of an extensional strategy τ
verifying U(σ) = U(τ).
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PROOF By regularity, the finite configuration U(σ) is also a clique of the hyperco-
herence space U(!(A)). The proof then proceeds as lemma 7.4 (2 ⇒ 1). It differs
only in that the maximal strategy σ considered in (10) is required to contain the
strategy τ .

We observe moreover that:
Lemma 11.8 Every interpretation [T ]lazyCODS is alive.
PROOF By induction on the simple type T . The proof is based on the two observa-
tions below:
• a cods A ( B is alive when the codss A and B are alive, and B is spread,
• a cods !A is alive when the cods A is alive.

11.5 Compositionality of extensional strategies

In this section, we relate the composition laws of extensional strategies in cods and
of cliques in hypercoherence spaces.
Lemma 11.9 (compositionality) Suppose that T1 and T2 are simple types. Suppose
that τ is an extensional strategy of [T1]

lazy
CODS and that σ is an extensional strategy of

[T1 ⇒ T2]
lazy
CODS. Then, the strategy (σ ·T1T2 τ) is extensional in the cods [T1]

lazy
CODS,

and:
U(σ ·T1T2 τ) = U(σ) ·T1T2 U(τ)

where the strategy σ ·T1T2 τ is defined in the lazy hierarchy [−]lazyCODS and the config-
uration U(σ) ·T1T2 U(τ) is defined in the strongly stable hierarchy [−]HC.
PROOF We write A = [T1]

lazy
CODS and B = [T2]

lazy
CODS.

We prove first that (σ ·T1T2 τ) ⊂ P alive
B . Suppose that t ∈ σ ·T1T2 τ . By definition of

composition, there exists a play s ∈ σ such that:
• s�!A is a play in the strategy (τ)†,
• s�B = t.
The play s�!A explores a substrategy µ of the extensional strategy τ ⊂ P alive

A .
By lemma 11.5, the strategy µ is sub-extensional. It follows that s�!A is alive. We
conclude from the definition of P alive

(!A)(B that t = s�B ∈ P alive
B . We conclude that

(σ ·T1T2 τ) ⊂ P alive
B .

Now, we claim that every time the strategy τ implements a configuration v ⊂∗
fin EA

and the strategy σ implements an extension (v, y) ∈ E(!A)(B , then the strategy
(σ ·T1T2 τ) implements the extension y ∈ EA. The proof (not difficult, but lengthy)
is not detailed here.
We prove now the inclusion U(σ ·T1T2 τ) ⊃ U(σ) ·T1T2 U(τ). Suppose that y ∈
U(σ) ·T1T2 U(τ). By definition of relational composition, this means that there ex-
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ists v ⊂ EA such that v ⊂ U(τ) and (v, y) ∈ U(σ). By extensionality of σ and τ ,
this means that σ implements the extension (v, y) and that τ implements the con-
figuration v. We conclude that the strategy (σ ·T1T2 τ) implements the extension
y ∈ EB . It follows from finiteness of ‖y‖B that y ∈ U(σ ·T1T2 τ). We conclude.
We prove now the converse inclusion U(σ ·T1T2 τ) ⊂ U(σ) ·T1T2 U(τ). Suppose that
y ∈ U(σ ·T1T2 τ). By definition of game-theoretic composition, this implies that
there exists a play s ∈ σ such that:
• s�!A is a play of the strategy (τ)†,
• s�B is a play of ‖y‖B.
The play s is alive in the cods !A ( B, as well as its projection s�!A. By definition
of P alive

(!A)(B , s�B ∈ RB implies that s�!A ∈ RA. So, there exists a finite configura-
tion v ⊂fin EA such that s�!A ∈ ‖v‖!A. The definition of s�!A ∈ ‖v‖!A indicates
that there exists a strategy µ of A such that:
• s�!A explores the strategy µ,
• µ is sub-extensional,
• U(µ) = v,
• ∀t ∈ µ, ∃x ∈ v, t �A x.
Now, it follows from s�!A ∈ (τ)† that µ ⊂ τ , and thus, that v ⊂ U(τ). Note also
that (v, y) ∈ U(σ). We conclude that τ �A v and σ �(!A)(B (v, y), and thus, that
U(σ ·T1T2 τ) ⊂ U(σ) ·T1T2 U(τ).
We have just proved that
• σ ·T1T2 τ ⊂ P alive

B ,
• any extension y ∈ U(σ) ·T1T2 U(τ) is implemented by (σ ·T1T2 τ),
• U(σ ·T1T2 τ) = U(σ) ·T1T2 U(τ).
We conclude that the strategy (σ ·T1T2 τ) implements every extension of U(σ ·T1T2 τ),
and that the strategy (σ ·T1T2 τ) is thus extensional.

Remark. It follows from corollary 10.4 that the partial equivalence classes of ≈lazy
T

are in one-to-one relationship with the configurations of [T ]lazyCODS and with the
cliques of [T ]HC. Compositionality (lemma 11.9) ensures that extensional strate-
gies modulo ≈lazy

T compose as configurations in [T ]HC. From this, one concludes
that the hierarchy [−]lazyCODS quotiented by ≈lazy coincides with the hierarchy [−]HC.

12 An anatomy of Ehrhard’s collapse theorem

In this section, we characterize the partial equivalence relation ∼lazy induced by
extensional collapse on the lazy hierarchy [−]lazySDS as the partial equivalence rela-
tion ≈lazy

T below:

42



Definition 12.1 (≈lazy
T ) Two strategies σ and τ of the collapse data structure [T ]lazyCODS

verify σ ≈lazy
T τ precisely when:

• σ and τ are extensional,
• U(σ) = U(τ).

12.1 Preliminaries

Before starting off the proof of theorem 12.6, we give two useful definitions and
establish two easy lemmas.
Definition 12.2 (big cone) Suppose that v ⊂ EA is a non-empty subset of exten-
sions of a cods A. We write:

bigcone(v) =
⋃

x∈v

{s ∈ PA | s �A x}

Lemma 12.3 Suppose that A is a spread cods, that σ is an extensional strategy of
A, and that v ⊂ EA is a non-empty set of extensions of A. Then, σ ∩bigcone(v) is
an extensional strategy and U(σ ∩ bigcone(v)) = U(σ) ∩ v.
PROOF Obviously, σ ∩ bigcone(v) is a strategy included in P alive

A which imple-
ments every extension in U(σ)∩ v. It follows that U(σ)∩ v ⊂ U(σ ∩bigcone(v)).
Conversely, the cods A is spread, and thus, the set bigcone(v)∩‖x‖A is non-empty
only for extensions x ∈ v. It follows that U(σ∩bigcone(v)) ⊂ U(σ)∩v. We obtain
that U(σ∩bigcone(v)) = U(σ)∩v and that every extension in U(σ∩bigcone(v))
is implemented by σ ∩ bigcone(v). We conclude that σ ∩ bigcone(v) is exten-
sional.

Definition 12.4 (compatible) Two strategies µ1, µ2 of a cods A are compatible
when µ1, µ2 are substrategies of a strategy µ3: that is, µ1 ⊂ µ3 and µ2 ⊂ µ3.
Lemma 12.5 Suppose that A, B are cods, and that µ1, µ2 are compatible strategies
of A such that µ1 is not included in µ2. Suppose that σ : (!A) ( B is a strategy
and s ∈ P(!A)(B a play verifying:
(1) s ∈ σ,
(2) s�!A explores the strategy µ1.

Then, there exists a play u ∈ P even
B and a cell m ∈ MB verifying:

(1) u · m vB s�B,
(2) u ∈ (µ2)

†; σ,
(3) ∀n ∈ MB, u · m · n 6∈ (µ2)

†; σ.
PROOF By hypothesis, there exists a play t ∈ P even

A such that t ∈ µ1 and t 6∈ µ2.
Every such play t ∈ PA is also a move n ∈ M!A. Let n be the first such move
appearing in the play s ∈ P(!A)(B . The play s factors as s1 · inr(m) · s2 · n · s3

where:

43



• the play s1 ∈ P(!A)(B is of even-length,
• the move inr(m) is a cell of the component B,
• the moves of s2 · n are played in the component !A,
Let u ∈ P even

A denote the projection s1�B. It follows from s1 · inr(m) v(!A)(B s
that u · m vB s�B. Note that the play s1 · inr(m) is maximal among the plays t
of σ prefix of s and such that t�!A ∈ (µ2)

†. We conclude that u ∈ (µ2)
†; σ and that

∀n ∈ MB, u · m · n 6∈ (µ2)
†; σ.

12.2 Anatomy of a collapse

We prove now our main theorem which states that, for every simple type T , and
strategies σ and τ of the collapse data structure [T ]lazyCODS:
Theorem 12.6 (anatomic) σ ∼lazy

T τ ⇐⇒ σ ≈lazy
T τ

PROOF By induction on the type T . The property is obvious for the base types o and
ι. Now, suppose that the property is established for the simple types T1 and T2. We
prove that the property holds for T = T1 ⇒ T2. In order to simplify our notations,
we write A = [T1]

lazy
CODS and B = [T2]

lazy
CODS. Note that [T ]lazyCODS = (!A) ( B.

(⇐) is nearly immediate by lemma 11.9 (compositionality). Indeed, suppose that
σ ≈lazy

T τ and consider two strategies µ and ν such that µ ∼lazy
T1

ν. The equivalence
µ ≈lazy

T1
ν holds by induction hypothesis on T1. The equivalence

(σ ·T1T2 µ) ≈lazy
T2

(τ ·T1T2 ν)

follows from lemma 11.9. We deduce from this and our induction hypothesis on T2

that:
(σ ·T1T2 µ) ∼lazy

T2
(τ ·T1T2 ν).

We conclude that:

∀µ, ν, µ ∼lazy
T1

ν ⇒ (σ ·T1T2 µ) ∼lazy
T2

(τ ·T1T2 ν)

and thus, that σ ∼lazy
T τ .

(⇒) We suppose that σ ∼lazy
T τ and deduce that σ ≈lazy

T τ . We prove in Part I that
the strategies σ and τ are extensional and in Part II that U(σ) = U(τ).
Part I: We show that σ ∼lazy

T σ implies:
(F) that σ ⊂ P alive

(!A)(B;
(FF) that two configurations v ⊂ w are equal when (v, y) ∈ U(σ) and (w, y) ∈

U(σ) for some extension y ∈ EB;
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(FFF) that (v, y) ∈ U(σ) implies σ �(!A)(B (v, y) for any extension (v, y) ∈
E(!A)(B .

(F) We proceed by contradiction. Suppose that that there exists a play s ∈ σ such
that ¬(s ∈ P alive

(!A)(B). We start a case analysis:
(1) either s�!A ∈ P alive

!A and ¬(s�B ∈ P alive
B ), or

(2) s�!A ∈ P alive
!A and s�B ∈ RB and ¬(s�!A ∈ R!A).

In both cases, s�!A ∈ P alive
!A means that s�!A explores a sub-extensional strategy µ

of the cods A. By definition of a sub-extensional strategy , v = U(σ) is a configu-
ration. By lemma 11.7, the strategy µ is included in an extensional strategy ν : A
such that U(ν) = v. Note also that the play s�!A is element of the two comonoidal
strategies (µ)† and (ν)† of the cods !A.
(Case 1) The strategy ν : A is extensional, and thus verifies ν ≈lazy

T1
ν by definition

of ≈lazy. From this and our induction hypothesis on T1, it follows that ν ∼lazy
T1

ν.
From σ ∼lazy

T σ, it follows that

(σ ·T1T2 ν) ∼lazy
T2

(σ ·T1T2 ν).

Finally, we deduce from our induction hypothesis on T2 that

(σ ·T1T2 ν) ≈lazy
T2

(σ ·T1T2 ν).

This establishes that the strategy (σ·T1T2ν) is extensional, and in particular, included
in P alive

B . This contradicts the fact that ¬(s�B ∈ P alive
B ) since s�B ∈ (σ ·T1T2 ν).

We conclude.
(Case 2) It follows from ¬(s�!A ∈ R!A) that the play s�!A is not element of ‖v‖!A.
By definition of ‖v‖!A and of P alive

!A , this can only mean that µ is not included in
bigcone(v)).
Now, we define the strategy ν ′ as

ν ′ = ν ∩ bigcone(v).

By lemma 12.3, the strategy ν ′ is extensional and verifies U(ν ′) = v = U(ν). It
follows from the definition of ≈ that ν ≈lazy

T1
ν ′; from our induction hypothesis on

T1, that ν ∼lazy
T1

ν ′; from our hypothesis that σ ∼lazy
T σ, that

(σ ·T1T2 ν) ∼lazy
T2

(σ ·T1T2 ν ′)

and finally, from our induction hypothesis on T2, that

σ ·T1T2 ν ≈lazy
T2

σ ·T1T2 ν ′. (18)
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Recall that the play s�B is element of the strategy (σ ·T1T2 ν) and that s�B ∈ RB .
Let y ∈ EB be an extension such that s�B ∈ ‖y‖B. Note that y ∈ U(σ ·T1T2 ν).
Equivalence (18) implies that the strategy (σ ·T1T2 ν) is extensional, and thus, that
(σ ·T1T2 ν) �B y. Now, equivalence (18) again implies that (σ ·T1T2 ν ′) �B y.
We show that we reach a contradiction. Observe that the two strategies µ and ν ′ are
included in the strategy ν : A, and thus compatible. At the same time, the strategy µ
is not included in bigcone(v), and thus not included in ν ′ ⊂ bigcone(). It follows
from lemma 12.5 that there exists a play u ∈ P even

B and a value m ∈ MB such that:
• u ∈ (σ ·T1T2 ν ′),
• u · m vB s�B,
• ∀n ∈ MB, u · m · n 6∈ (σ ·T1T2 ν ′).
Put together with s�B ∈ ‖y‖B, this contradicts σ ·T1T2 ν ′ �B y. We conclude from
(case 1) and (case 2) that σ ⊂ P alive

(!A)(B when σ ∼lazy
T σ. This ends part (F).

(FF) Suppose that σ ∼lazy
T σ, that (v, y) ∈ U(σ) and (w, y) ∈ U(σ) for two

configurations v, w ∈ E!A and an extension y ∈ EB . We claim that v = w
when v ⊂ w. Indeed, suppose that v ⊂ w, and let s ∈ P(!A)(B be a play in
σ ∩ ‖(w, y)‖(!A)(B 6= ∅. The projection s�!A is element of ‖w‖!A. By definition,
there exists a sub-extensional strategy µ1 : A such that:
• s�!A explores the strategy µ1,
• U(µ1) = w,
• µ1 ⊂ bigcone(w).
By lemma 11.7, the strategy µ1 is included in an extensional strategy ν1 which veri-
fies U(ν1) = w. By induction hypothesis on T1 and T2, one deduces from σ ∼lazy

T σ
that the strategy (σ ·T1T2 ν1) is extensional in the cods B. It follows from

s�B ∈ (σ ·T1T2 ν1) ∩ ‖y‖B

that y ∈ U(σ ·T1T2 ν1) and thus, that (σ ·T1T2 ν1) �B y.
Similarly, one deduces from σ∩‖(w, y)‖(!A)(B 6= ∅ that there exists an extensional
strategy ν2 which (1) verifies U(ν2) = v and (2) induces an extensional strategy
(σ ·T1T2 ν2) which implements y in the cods B.
Now, we define the strategy

ν3 = ν1 ∩ bigcone(v).

By lemma 12.3, the strategy ν3 verifies the equivalence ν2 ≈lazy
T1

ν3. By induction
hypothesis on T1, the equivalence ν2 ∼lazy

T1
ν3 holds. The equivalence σ ∼lazy

T σ
implies the equivalence

(σ ·T1T2 ν2) ∼
lazy
T2

(σ ·T1T2 ν3)
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which implies by induction hypothesis on T2 the equivalence

(σ ·T1T2 ν2) ≈
lazy
T2

(σ ·T1T2 ν3).

It follows that the strategy (σ ·T1T2 ν3) is extensional and implements y.
Here, we reason as in part (F). We observe that the strategies µ1 and ν3 are subset
of the strategy ν1, thus compatible. We proceed by contradiction, and suppose that
v is stricly included in w. In that case, the strategy µ1 is not included in the strategy
ν3, and thus one may apply lemma 12.5 to deduce that there exists a play u ∈ P even

B

and a cell m ∈ MB such that:
• u ∈ (σ ·T1T2 ν3),
• u · m vB s�B,
• ∀n ∈ MB, u · m · n 6∈ (σ ·T1T2 ν3).
Put together with s�B ∈ ‖y‖B, this contradicts the hypothesis that the strategy
(σ ·T1T2 ν3) implements y. We conclude that v = w.
(FFF) We proceed by contradiction, and suppose that there exists an extension
(v, y) ∈ E!A(B such that (v, y) ∈ U(σ) but σ does not implement (v, y). Let s1 be
a play of σ ∩ ‖(v, y)‖(!A)(B. We repeat the pattern met in (FF). The projection
s1�!A is element of ‖v‖!A. Thus, there exists a sub-extensional strategy µ1 : A such
that:
• s1�!A explores the strategy µ1,
• U(µ1) = v,
• µ1 ⊂ bigcone(v).
By lemma 11.7, the strategy µ1 is included in an extensional strategy ν1 which
verifies U(ν1) = v. By induction hypothesis on T1 and T2 and hypothesis σ ∼lazy

T σ,
one deduces that the strategy (σ ·T1T2 ν1) is extensional in the cods B. It follows from
s1�B ∈ (σ ·T1T2 ν1) ∩ ‖y‖B that (σ ·T1T2 ν1) �B y.
On the other hand, we know that the strategy σ does not implement (v, y). This
means that there exists a play t ∈ σ and a cell m ∈ MA(B such that

t · m �(!A)(B (v, y) (19)

and:
(1) either ∀n ∈ MA(B ,¬(t · m · n ∈ σ),
(2) or ∃n ∈ MA(B , t · m · n ∈ σ and ¬(t · m · n �A(B (v, y)).

In both cases, the assertion t �(!A)(B (v, y) in (19) means that the play t is prefix
of a play s2 ∈ ‖(v, y)‖(!A)(B. We apply another time the pattern met in (FF). By
definition, s2�!A ∈ ‖v‖!A means that there exists a sub-extensional strategy µ2 : A
such that:
• s2�!A explores the strategy µ2,
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• U(µ2) = v,
• µ2 ⊂ bigcone(v).
By lemma 11.7, the strategy µ2 is included in an extensional strategy ν2 which
verifies U(ν2) = v. By lemma 12.3, we may even choose ν2 ⊂ bigcone(v). By
definition of ≈lazy

T1
, the two strategies ν1 and ν2 are ≈lazy

T1
-equivalent. By applying

our induction hypothesis on T1 and T2, as well as the hypothesis σ ∼lazy
T σ, we

deduce that (σ ·T1T2 ν1) ≈
lazy
T2

(σ ·T1T2 ν2). From this, it follows that (σ ·T1T2 ν2) �B y.
We claim that this is not possible. We start from the definition of the play t ∈
P even

(!A)(B and m ∈ M!A(B in (19). It follows from t · m ∈ P odd
(!A)(B that t · m�B ∈

P odd
B . So, the play t · m�B factors as t · m = u · p where u ∈ (σ ·T1T2 ν2) is an

even-length play and p ∈ MB is a cell. It follows from (19) that u · p �B y. We
proceed by case analysis.
• when ∀n ∈ MA(B ,¬(t · m · n ∈ σ), there is no value q ∈ MB such that

u · p · q ∈ (σ ·T1T2 ν2).
• when ∃n ∈ MA(B , t · m · n ∈ σ and ¬(t · m · n �A(B (v, y)) and n is a move

in the component A, then the two hypothesis

t · m �(!A)(B (v, y) and ¬(t · m · n �(!A)(B (v, y))

imply together that the move n, considered as a play of A, is not element of
bigcone(v). We were careful to choose a strategy ν2 : A included in bigcone(v).
It follows that the strategy “does not answer” to the move n, in the sense that there
exists no move n′ ∈ M!A such that

((t · m · n)�!A) · n′ ∈ (ν2)
†.

We conclude that there is no value q ∈ MB such that u · p · q ∈ (σ ·T1T2 ν2).
• when ∃n ∈ MA(B , t · m · n ∈ σ and ¬(t · m · n �A(B (v, y)) and n is a move

in the component B, then

(t · m · n)�B ∈ (σ ·T1T2 ν2)

and either ¬((t · m · n)�B �B y) and we are done in that case, or

(t · m · n)�B ∈ ‖y‖B and (t · m · n)�!A 6∈ ‖v‖!A.

In that last case, we know that (t · m · n)�!A ∈ R!A by (F). Thus, there exists a
configuration w such that (t · m · n)�!A ∈ ‖w‖!A, and w ( v because

(t · m · n)�!A v s2 and (t · m · n)�!A 6∈ ‖v‖!A.

It follows that (w, y) ∈ U(σ), which contradicts (FF).
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In the three cases, we may conclude that the strategy (σ ·T1T2 ν2) does not implement
the extension y ∈ EB . This concludes Part I of the proof, and shows that when two
strategies σ and τ verify the equivalence σ ∼lazy

T τ , then the strategies σ and τ are
extensional.

Part II: Suppose that σ ∩ ‖(v, y)‖!A(B is nonempty and that τ ∩ ‖(v, y)‖!A(B is
empty. We know from (FF) that σ∩‖(w, y)‖!A(B is empty for every strict subset
w ( v. We may therefore suppose without loss of generality that τ ∩ ‖(w, y)‖!A(B

is empty for every subset w ⊂ v.
We know from Part I that the strategies σ and τ are extensional. Besides, there exists
an extensional strategy ν : A such that U(ν) = v. By lemma 11.9 (composition-
ality), the strategy σ ·T1T2 ν is extensional and implements the extension y. On the
other hand, by compositionality again, the strategy τ ·T1T2 ν does not implement y.
It follows from the definition of ≈lazy

T2
that the equivalence

(σ ·T1T2 ν) ≈lazy
T2

(τ ·T1T2 ν)

does not hold; and by induction hypothesis on T2, that the equivalence

(σ ·T1T2 ν) ∼lazy
T2

(τ ·T1T2 ν)

does not hold either. We conclude from ν ∼lazy
T1

ν that the strategies σ and τ are not
∼lazy

T -equivalent. This concludes Part II.
We deduce from Part I and Part II that two ∼lazy

T -equivalent strategies σ and τ of the
collapse data structure [T ]lazyCODS are also ≈lazy

T -equivalent. This conclude the proof
of theorem 12.6.

12.3 The collapse theorem

Ehrhard’s collapse theorem follows quite immediately from theorem 12.6.
Corollary 12.7 (collapse theorem) The strongly stable model is the extensional
collapse of the sequential algorithm model.
PROOF We conclude from theorem 12.6 that the hierarchy [−]lazyCODS collapses to the
strongly stable hierarchy [−]HC. Ehrhard’s collapse theorem follows immediately
from lemma 9.3.

Remark. The proof of theorem 12.6 is quite elaborate. In that respect, it should be
compared to the proof in [Barreiro, Ehrhard 1998] that the hierarchy [−]MSET gen-
erated by the coherence space model of LL with multiset exponentials, collapses
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extensionally to Berry stable hierarchy [−]S. We show in [Melliès 2004a] that Bar-
reiro and Ehrhard’s result may be also established by exhibiting a back-and-forth
translation between the hierarchies [−]MSET and [−]S. We leave it as an open ques-
tion whether a similar translation technique may be applied to establish that the
sequential algorithm hierarchy collapses to the strongly stable hierarchy.

13 Conclusion

We analyze the extensional content of Berry-Curien sequential algorithm model by
shifting from sequential games plays on trees to sequential games played on graphs.
This clarifies the sequential nature of hypercoherence spaces, and the reasons why
the sequential algorithm hierarchy collapses extensionally to Bucciarelli-Ehrhard
strongly stable hierarchy. These results should advocate more asynchronous and
concurrent forms of game semantics — even in the study of sequentiality.
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Sciences Mathématiques du Québec, Vol I, no 4, pp.46-52, 1977.

51



[Joyal 1997] A. Joyal. Free lattices, communication and money games. In M.L. Dalla
Chiara et al. (eds.), Logic and Scientific Methods, 29-68. Kluwer Academic Publishers.
1997.

[Lamarche 1992] F. Lamarche. Sequentiality, games and linear logic. Manuscript, 1992.

[Longley 1998] J. Longley. The sequentialy realizable functionals. Submitted to Journal of
Symbolic Logic, 1998.

[McCusker, 1998] G. McCusker. Games and full abstraction for a functional metalanguage
with recursive types. Distinguished Dissertation Series, Springer Verlag, 1998.

[Melliès 1998] P.-A. Melliès. Axiomatic Rewriting Theory 4: a stability theorem in
rewriting theory. Proceedings of Logic in Computer Science, 1998.

[Melliès 2000] P.-A. Melliès. Sequentiality and extensionality. 13 pages. Unpublished notes
circulated at the Linear Summer School. Azores, September 2000.

[Melliès 2003] P.-A. Melliès. Categorical models of linear logic revisited. Prépublication
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