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A topological correctness criterion
for multiplicative non-commutative logic

P.-A. MELLIÈS

CNRS, Université Paris 7

Abstract

We formulate Girard’s long trip criterion for multiplicative linear logic

(MLL) in a topological way, by associating a ribbon diagram to every

switching, and requiring that it is homeomorphic to the disk. Then, we

extend the well-known planarity criterion for multiplicative cyclic linear

logic (McyLL) to multiplicative non-commutative logic (MNL) and show

that the resulting planarity criterion is equivalent to Abrusci and Ruet’s

original long trip criterion for MNL.

1.1 Introduction

In his seminal article [7] on linear logic, Jean-Yves Girard develops two

alternative notations for proofs:

• a sequential syntax where proofs are expressed as derivation trees in

a sequent calculus,

• a parallel syntax where proofs are expressed as bipartite graphs called

proof-nets.

The proof-net notation plays the role of natural deduction in intuition-

istic logic. It exhibits more of the intrinsic structure of proofs than the

derivation tree notation, and is closer to denotational semantics. Typ-

ically, a derivation tree defines a unique proof-net, while a proof-net

may represent several derivation trees, each derivation tree witnessing a

particular order of sequentialization of the proof-net.

The parallel notation requires to separate “real proofs” (proof-nets)

from “proof alikes” (called proof-structures) using a correctness criterion.

Intuitively, the criterion reveals the “geometric” essence of the logic, be-
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2 P.-A. Melliès

yond its “grammatical” presentation as a sequent calculus. In the case

of MLL, the (unit-free) multiplicative fragment of (commutative) lin-

ear logic, Girard introduces a “long trip condition” which characterizes

proof-nets among proof-structures. The criterion is then extended to

full linear logic in [9].

The article is divided in two parts. In part one, we recall Girard’s long

trip criterion (section 1.2) reformulate the criterion topologically (sec-

tion 1.3) and relate it to an alternative formulation by Vincent Danos

and Laurent Regnier (section 1.4). In part two, we shift from commu-

tative to non-commutative logic. So, we start by reformulating care-

fully the well-known planarity criterion for multiplicative cyclic logic

(McyLL) (section 1.5). And we recall multiplicative non-commutative

logic (MNL) (section 1.6) as well as the long trip criterion devised for

MNL by V. Michele Abrusci and Paul Ruet [3] (section 1.7). Finally, we

generalize to MNL the “planarity” criterion for McyLL (section 1.8) and

show that the criterion is equivalent to Abrusci-Ruet “long trip” crite-

rion (section 1.9). We conclude the article with an appendix discussing

the topological status of logics like MLL, McyLL or MNL (section 1.10).

1.2 Girard’s long trip correctness criterion

We recall below the long trip correctness criterion, which appears in [7],

and characterizes the proofs of the (unit-free) multiplicative fragment of

linear logic (MLL).

MLL formulas and negation. — An MLL formula is a tree with

leaves p, q, r, ... and p⊥, q⊥, r⊥,... called atoms, and binary connectives

⊗ and
..............................................
............
..................................... . The negation A⊥ of a formula A is the formula defined

inductively by so-called de Morgan laws:

(A⊗B)⊥ = B⊥..............................................
............
..................................... A⊥, (A

..............................................
............
..................................... B)⊥ = B⊥⊗A⊥, (p)⊥ = p⊥, (p⊥)⊥ = p.

It follows that (A⊥)⊥ = A for every formula A.

MLL sequent calculus. — An MLL sequent is a finite sequence

of formulas, noted ` A0, ..., Ak−1. We usually write formulas as latin

letters A, B, C, and finite sequences of formulas as greek letters Γ, ∆.

A derivation tree is a tree with a sequent at each node, constructed
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inductively by the five rules below.

(Ax)
` A⊥, A

(Cut)
` Γ, A ` A⊥, ∆

` Γ, ∆

(⊗)
` Γ, A ` B, ∆

` Γ, A ⊗ B, ∆
(
..............................................
............
..................................... )

` Γ, A, B

` Γ, A
..............................................
............
..................................... B

(Exch)
` Γ, A, B, ∆

` Γ, B, A, ∆

MLL links. — An MLL link is a graph of the following form, whose

vertices are labelled with MLL formulas:

(i) Axiom link

A A

with two conclusions A and A⊥, and no premise,

(ii) Cut link

A A

with two premises A and A⊥, and no conclusion,

(iii) ⊗ and
..............................................
...........
...................................... links

B

BA

A

A

&

B

A B

where the formula A is the first premise, the formula B is the

second premise, and A ⊗ B (or A
..............................................
............
..................................... B) is the conclusion.

MLL proof-structures. — A proof-structure Θ is a graph constructed

with links such that every (occurrence of) formula is the conclusion of

one link, and the premise of at most one link. We define a conclusion

of Θ as a formula which is not the premise of any link. A link of Θ is

terminal when its conclusion is a conclusion of Θ.

Every derivation tree defines a proof-structure, but conversely, not
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every proof-structure is deduced from a derivation tree. The simplest

example is the proof-structure:

A A

AA

ax

So, which proof-structures exactly are obtained from a derivation tree?

Here follows Girard’s remarkable answer, the so-called long trip criterion.

Decorated formulas. — Call decorated formula a couple (A, ↑) or

(A, ↓) where A is an MLL formula and ↑ or ↓ is a tag. We write A↑ and

A↓ for the decorated formulas (A, ↑) and (A, ↓). Now, for each axiom,

cut, ⊗ or
..............................................
...........
...................................... link l, we define two sets lin and lout of decorated formulas,

as follows:

• lin is the set of all decorated formulas A↓ where A is a premise of l,

and all decorated formulas A↑ where A is a conclusion of l;

• lout is the set of all decorated formulas A↑ where A is a premise of l,

and all decorated formulas A↓ where A is a conclusion of l.

Switching positions. — For every link l, a set S(l) of functions from

lin to lout is defined, called the switching positions of l:

• if l is an axiom link [A⊥, A], then S(l) = {ax} where

ax : (A⊥)↑ 7→ A↓, A↑ 7→ (A⊥)↓;

• if l is a cut link [A⊥, A], then S(l) = {cut} where

cut : (A⊥)↓ 7→ A↑, A↓ 7→ (A⊥)↑;

• if l is a ⊗-link [A, A ⊗ B, B], then S(l) = {⊗R,⊗L} where

⊗R : A↓ 7→ B↑, B↓ 7→ (A ⊗ B)↓, (A ⊗ B)↑ 7→ A↑,

⊗L : A↓ 7→ (A ⊗ B)↓, B↓ 7→ A↑, (A ⊗ B)↑ 7→ B↑;

• if l is a
..............................................
...........
...................................... -link [A, A

..............................................
...........
...................................... B, B], then S(l) = {

..............................................
...........
......................................
R,

..............................................
...........
......................................
L} where

..............................................
............
.....................................
R : A↓ 7→ A↑, B↓ 7→ (A ⊗ B)↓, (A ⊗ B)↑ 7→ B↑,
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LR L

&

&&

R

&

Fig. 1.1. Girard switching positions for tensor and par

..............................................
...........
......................................
L : A↓ 7→ (A ⊗ B)↓, B↓ 7→ B↑, (A ⊗ B)↑ 7→ A↑.

Long trip criterion. — A switching s of an MLL proof-structure Θ is

a function which associates a switching position s(l) ∈ S(l) to every link

l of Θ. The switched proof-structure trip(Θ, s) is the oriented graph with

vertices the decorated formulas labelling Θ, and with an edge from Ax

to By iff By = s(l)Ax, for some link l in Θ, or Ax = C↓ and By = C↑,

for some conclusion C of Θ.

Definition 1.2.1 (Girard) A Girard proof-net is a proof-structure Θ

such that every switched proof-structure trip(Θ, s) contains a unique

cycle. This unique cycle is called the long trip.

Intuitively, every switching s defines a trajectory for a particle visiting

the proof. Each ⊗ and
..............................................
...........
...................................... link is visited according to one switching

position of figure 1.1; the particle rebounces on axioms, cuts and con-

clusions. A proof-structure is a proof-net when the particle visits every

part, without being captured into a cycle, this for every switching.

Three important properties are established in [7].

(i) soundness: every MLL derivation tree translates as a Girard

proof-net.

(ii) sequentialization: every Girard proof-net is the translation of an

MLL derivation tree. The proof is based on the notions of (max-

imal) empire, and splitting tensor.

(iii) cut-elimination: MLL enjoys cut-elimination.

1.3 Our topological reformulation

The characterization of proofs provided by Girard’s criterion is not only

“geometric”, it is also “computational”. Expressed in game semantics,

the criterion characterizes proofs as uniform strategies which do not

deadlock during communication, and which interact with every part of
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R L
R L

& &

Fig. 1.2. Ribbon version of figure 1.1

the formula, see [1]. In fact, switchings should be understood as counter-

proofs in an extended “para-logic”, see [10].

One technical point is that long trips are oriented in Girard’s criterion.

However, the orientation may be avoided by reformulating the criterion

topologically. The idea is to replace oriented edges by ribbons, and to

apply the convention below.

Convention. —

Replace two oriented edges: by a ribbon:

According to the convention, the ⊗ and
..............................................
............
..................................... switching positions of figure

1.1 are replaced by the ribbon diagrams of figure 1.2, while the (switching

position of) axiom and cut links are replaced by simple ribbons:

ax

cut

Similarly, each conclusion C is replaced by a 2-dimensional “cul-de-sac”:

C

Now, every proof-structure Θ and every switching s induces a surface

ribbon(Θ, s) obtained by replacing every switched link and conclusion
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of Θ by its ribbon diagram, and pasting all diagrams together. This

enables us to reformulate Girard’s long trip criterion below, see also

section 1.4 for a proof that the two formulations are equivalent (lemma

1.4.2.)

Definition 1.3.1 (topological proof-net) A topological proof-net is

a proof-structure Θ such that the surface ribbon(Θ, s) is homeomorphic

to the disk, for every Girard switching s.

1.4 Danos and Regnier correctness criterion

Many alternative formulations of Girard’s long trip criterion are possible.

We recall here the “tree” criterion formulated by Vincent Danos and

Laurent Regnier in [5]. A Danos-Regnier switching for an MLL proof-

structure Θ is the data for every
..............................................
............
..................................... -link of a switching position chosen

among
..............................................
...........
......................................
R and

..............................................
...........
......................................
L:

R L

& &

Given a Danos-Regnier switching s, the switched graph graph(Θ, s) is

defined by replacing every
..............................................
............
..................................... -link in Θ by the corresponding switching

position. Danos and Regnier’s formulation of the criterion follows.

Definition 1.4.1 (Danos-Regnier) A Danos-Regnier proof-net is a

proof-structure whose all switching graphs are trees, ie. connected and

acyclic graphs.

Herebelow, we establish that the three formulations of proof-net (Gi-

rard, Danos-Regnier, topological) are equivalent. The proof is not really

difficult, but informative enough to appear here. We will consider the

“shrink” operation contracting ribbons into one-dimensional edges, like

this:



8 P.-A. Melliès

Contract a ribbon: into an edge:

It is worth observing that the operation “shrinks” the ribbon diagrams

of figure 1.2 into the Danos-Regnier switching positions above. In par-

ticular, the operation contracts the two ⊗R and ⊗L positions into the

“invisible” Danos-Regnier switching position ⊗R = ⊗L:

R L

Every Danos-Regnier proof-net is a topological proof-net. —

Consider a Danos-Regnier proof-net Θ. Every (topological) switching s

defines a surface ribbon(Θ, s) which “retracts” as the tree graph(Θ, s).

Thus, the surface is a “thick tree” homeomorphic to the disk. We con-

clude.

Every topological proof-net is a Girard proof-net. — Consider

a topological proof-net Θ. Every (topological = Girard) switching s

defines a surface ribbon(Θ, s) homeomorphic to the disk. Its border

trip(Θ, s) is unique, therefore a long trip. We conclude.

Every Girard proof-net is a Danos-Regnier proof-net. — This is

the only delicate step of our series of equivalence. We proceed by contra-

diction. Suppose that Θ is a Girard proof-net, and not a Danos-Regnier

proof-net. By definition, there exists a Danos-Regnier switching s such

that graph(Θ, s) is not a tree. The difficult point is to define a (topo-

logical = Girard) switching s′ inducing a surface ribbon(Θ, s′) with two

borders at least. When graph(Θ, s) is not connected, we take s′ = s.
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When graph(Θ, s) contains a cycle C, it is always possible to alter the

switching positions of the ⊗-links visited by C in ribbon(Θ, s) in such

a way that the altered switching s′ verifies graph(Θ, s) = graph(Θ, s′)

and that the cycle C “lifts” to a border of ribbon(Θ, s′). Note that

the resulting surface ribbon(Θ, s′) has two borders at least. Each such

border induces a cycle in trip(Θ, s′). It follows that trip(Θ, s′) is not a

long trip, and we conclude.

Lemma 1.4.2 The three formulations of MLL proof-net are equivalent.

Intuitively, the topological criterion stands halfway between Girard and

Danos-Regnier criteria, keeping the best of both worlds. For instance,

the switching position ⊗L is necessary to test a proof-structure in the

long trip criterion; but not in the Danos-Regnier and topological formu-

lations.

Lemma 1.4.3 In definition 1.3.1, switchings may be replaced by ⊗L-free

switchings.

This point is best illustrated by the proof-structure (1.1) pointed out by

Abrusci and Ruet [3]. Switching every ⊗-link as ⊗R is enough to show

that Θ is not a topological proof-net — since the induced switching

surface is not planar. On the other hand, the surface has a unique

border... So, it takes one switching position ⊗L at least to detect that

(1.1) is not a Girard proof-net.

A BBA

axax

A B

A B

A B

( ) ( )A B

switched as

ax ax

(1.1)

This is the advantage of thinking topologically: the long trip criterion

counts the number of borders of ribbon(Θ, s) while the topological cri-

terion takes also into account its planarity and genus.
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1.5 A planarity correctness criterion for cyclic linear logic

Suggested by Girard in [8] expounded by Yetter in [22] cyclic linear logic

(cyLL) is the variant of linear logic obtained by limiting the exchange

rule Exch to cyclic permutations:

(cyExch)
` A0, ..., Ak−1

` Aξ(0), ..., Aξ(k−1)
where ξ is a cyclic permutation.

In this section, we consider McyLL, the multiplicative (unit-free) frag-

ment of cyclic linear logic. As in [3], we use the notations � for “next”

and O for “sequential” to distinguish the cyclic connectives from their

commutative counterparts ⊗ and
..............................................
...........
...................................... . The definitions of formula, sequent

and proof-structure are the same in McyLL as in MLL, with the only

difference that the connectives � and O replace ⊗ and
..............................................
...........
...................................... everywhere,

respectively. Negation is defined as in MLL:

(A � B)⊥ = B⊥OA⊥, (AOB)⊥ = B⊥ � A⊥.

Except for the restriction on the exchange rule, the rules of McyLL are

the same as in MLL:

(Ax)
` A⊥, A

(Cut)
` Γ, A ` A⊥, ∆

` Γ, ∆

(�)
` Γ, A ` B, ∆

` Γ, A � B, ∆
(O)

` Γ, A, B

` Γ, AOB

It is worth noting that the formula (A � B) −•(B � A) is not provable

in McyLL, where A −•B is notation for A⊥OB. This is the reason why

the logic is called non-commutative.

Today, three correctness criteria are available for McyLL.

(i) A “planarity” criterion characterizes McyLL proof-nets as planar

MLL proof-nets. This criterion was observed by Girard at the

very first days of cyclic linear logic, and is well-known today.

It appears explicitly in [4, 16, 17]. François Métayer delivers

an alternative but equivalent characterization of the logic in his

simplicial presentation [14].

(ii) A “long trip” criterion by V. Michele Abrusci adapts Girard’s

correctness criterion for MLL, by (1) limiting � to the switching

position ⊗R and (2) adding a new position O3 to the switching

positions of O. The criterion is formulated for McyLL in [2] and

extended to non-commutative logic (MNL) in [3]. The criterion
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is exposed in section 1.7 where we also discuss a recent version of

the criterion by Virgil Mogbil and Quentijn Puite [15].

(iii) A recent “seaweed” criterion by Roberto Maieli [12] formulates a

criterion for McyLL and MNL in the fashion of Danos and Regnier

criterion for MLL. The idea is to replace trees by series-parallel

order varieties (seaweed).

We formulate very carefully the “planarity” criterion for McyLL, which

is not as straightforward as it seems. The first part of the criterion

requires that an McyLL proof-net Θ translates as an MLL proof-net Θ∗.

Definition 1.5.1 (commutative translation) The commutative trans-

lation Θ∗ of an McyLL proof-structure Θ is the MLL proof-structure

obtained as the result of replacing every � and O link by ⊗ and
..............................................
............
..................................... ,

respectively.

The second part of the criterion requires “planarity” of Θ, or more pre-

cisely planarity of the (orientable) surface ribbon(Θ) obtained as in

section 1.3, by replacing every {�, O, axiom, cut}-link and conclusion

in Θ by the associated ribbon diagram
∆ ax

cut
C

The unexpected point is that planarity of ribbon(Θ) is not sufficient to

characterize McyLL proofs among McyLL proof-structures. Typically,

the McyLL proof-structure Θ of conclusion

` (A⊥OB⊥), (A � B)

is not sequentializable in McyLL, but its surface ribbon(Θ) is planar:

∆

ax ax

(1.2)
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So, how should one characterize McyLL proof-nets? One possible an-

swer is to require that all conclusions of Θ lie on the same border

of ribbon(Θ). It is not very complicated to prove that this require-

ment added to planarity characterizes all cut-free proofs among cut-free

proof-structures. Unfortunately, the criterion is too weak to charac-

terize proofs with cuts, as witnessed by the example below of a non-

sequentializable McyLL proof-structure, with a unique conclusion.

∆

∆ ∆

∆

ax

ax

ax ax

cut

ax

ax

∆

(1.3)

Remark. — The proof-structure (1.3) is interpreted as a disk in

Métayer’s simplicial presentation. This explains why Métayer’s sequen-

tialization theorem for McyLL [14] is limited to cut-free proof-nets.

Planar logic. — At this point, it is tempting to define a conservative

logic over McyLL, which would capture exactly the idea of “planarity”.

Let us call it planar logic. Its formulas are McyLL formulas, and its

sequents are finite sets of (occurrences of) McyLL sequents, written

` Γ1

∣

∣ · · ·
∣

∣Γn

Each McyLL sequent Γi is called a component of the sequent. Two

sequents ` Γ1

∣

∣...
∣

∣Γn

∣

∣∆ and ` Γ1

∣

∣...
∣

∣Γn of the logic are generally identified
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when ∆ is the empty component. Planar logic enables general exchange

between components:

(Exch)
` · · ·

∣

∣ Γ
∣

∣ ∆
∣

∣ · · ·

` · · ·
∣

∣ ∆
∣

∣ Γ
∣

∣ · · ·

and cyclic permutations ξ inside a component:

(cyExch)
` · · ·

∣

∣ A0, ..., Ak−1

` · · ·
∣

∣ Aξ(0), ..., Aξ(k−1)

The remaining rules of planar logic follow:

(Ax)
` A⊥, A

(Cut)
` · · ·

∣

∣Γ, A ` A⊥, ∆
∣

∣ · · ·

` · · ·
∣

∣Γ, ∆
∣

∣ · · ·

(O)
` · · ·

∣

∣ Γ, A, ∆, B

` · · ·
∣

∣ Γ, AOB
∣

∣ ∆
(�)

` · · ·
∣

∣Γ, A ` B, ∆
∣

∣ · · ·

` · · ·
∣

∣Γ, A � B, ∆
∣

∣ · · ·

Every proof π of ` Γ1

∣

∣ · · ·
∣

∣Γm of planar logic defines a McyLL proof-

structure Θ whose translation Θ∗ is a MLL proof-net, and whose surface

ribbon(Θ) is planar with m + n borders σ1, ..., σm and τ1, ..., τn; each

border σi visits the formulas of Γi in the order in which they appear in

the component; none of the remaining borders τj visits a conclusion of

Θ.

Conversely, every McyLL proof-structure Θ whose translation Θ∗ is a

MLL proof-net, and whose surface ribbon(Θ) is planar, sequentializes

as a proof π of planar logic. Typically, the “twist” proof-structure (1.2)

sequentializes as the proof

` A⊥, A ` B, B⊥

�
` A⊥, A � B, B⊥

O
` A⊥OB⊥

∣

∣A � B

But (1.2) does not sequentialize as a proof of ` A⊥OB⊥, A ⊗ B. In a

similar way, the proof-structure (1.3) sequentializes as a derivation tree

of planar logic:

` A, A⊥ ` A, A⊥

�

` A, A⊥ � A, A⊥

O

` A⊥ � A, A⊥
OA

` B, B⊥ ` B, B⊥

�

` B, B⊥ � B, B⊥

O

` B⊥
OB, B⊥ � B

�

` A⊥ � A, (A⊥
OA) � (B⊥

OB), B⊥ � B
O

` (A⊥
OA) � (B⊥

OB)|(A⊥ � A)O(B⊥ � B)

` B⊥, B
O

` B⊥
OB

` A⊥, A
O

` A⊥
OA

�

(B⊥
OB) � (A⊥

OA)
cut

` (A⊥
OA) � (B⊥

OB)
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It is worth noting that cut-elimination preserves the planarity of proof-

structures, but generally reduces the number of borders of the surface.

Typically:

ax

∆

ax

cut

ax ax

−→

ax ax

Accordingly, planar logic enjoys the following cut-elimination property:

if π is a proof of ` Γ1

∣

∣ · · ·
∣

∣Γm in planar logic, and π′ is a proof obtained

after a series of cut-elimination steps applied to π, then π′ is a proof of

a sequent ` ∆1

∣

∣ · · ·
∣

∣∆n which reduces to the sequent ` Γ1

∣

∣ · · ·
∣

∣Γm by

applying a series of “divide” rules:

(Divide)
` · · ·

∣

∣ Γ, ∆
∣

∣ · · ·

` · · ·
∣

∣ Γ
∣

∣ ∆
∣

∣ · · ·

Conservativity of planar logic over McyLL follows from this and the cut-

elimination property of McyLL, established in corollary 1.5.5. Indeed,

the cut-free proofs of a McyLL sequent ` Γ are the same in McyLL and

in planar logic.

Planar logic seems interesting for itself. But from now on, we stick to

cyclic linear logic, and characterize its sequentializable proof-structures,

notwithstanding the difficulties.

Index. Internal and external borders. — Given an McyLL proof-

structure Θ, and a border σ of ribbon(Θ), we shall count the number

of O-links visited by the border σ on their thick side, see (1.4). We call

this number the index of σ. A border of index 0 is called external, and

a border of index more than 1 is called internal.

∆

(1.4)
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Conversely, the border of ribbon(Θ) which visits the thick side of a

given O-link of Θ, is called the internal border of this link.

The correctness criterion. — Example (1.2) and (1.3) suggest to

reinforce the definition of McyLL proof-net as follows.

Definition 1.5.2 (McyLL proof-net) An McyLL proof-net is an

McyLL proof-structure Θ such that,

(i) its commutative translation Θ∗ is an MLL proof-net,

(ii) its surface ribbon(Θ) is planar with a unique external border σ,

(iii) σ contains all the conclusions.

The criterion rejects the proof-structures (1.2) and (1.3) because one of

their conclusions lies on an internal border. The criterion rejects the

proof-structure (1.5) of conclusion ` (B�A)−•(A�B) as well, because

it is not planar.

∆

∆
axax

(1.5)

Remark. — The criterion implies that every internal border is of index

exactly one in ribbon(Θ), when Θ is a McyLL proof-net. Indeed, by

condition 1, the surface ribbon(Θ) defines a surface homeomorphic to

the disk, when every O-link is replaced by a switching position
..............................................
...........
......................................
L or

..............................................
...........
......................................
R. Consequently, the planar surface ribbon(Θ) has n + 1 borders,

where n is the number of O-links appearing in Θ. Since there exists

only one external border, each of the remaining n internal borders of

ribbon(Θ) visits exactly one O-link.

Soundness. — It is not difficult to show by induction that the criterion

is sound. At each step, one proves that the McyLL derivation tree of

` A1, ..., Ak translates as an McyLL proof-net whose external border

visits the conclusions A1, ..., Ak in the clockwise order (here, one assumes

implicitly that the surface is oriented.)
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Planarity 1. — We recall one elementary property of planar surfaces,

which we shall use in our proof of sequentialization. If one pastes (with

glue) the two borders σ1 and σ2 of a planar surface S, on disjoints

segments A of σ1 and B of σ2, in such a way that orientation of S is

preserved, one obtains a surface S ′ which is:

• planar when σ1 = σ2,

• not planar when σ1 6= σ2.

In the next lemma, the concept of splitting �-link or cut-link is adapted

from [7, 9].

Lemma 1.5.3 Suppose that Θ is an McyLL proof-structure whose MLL

translation Θ∗ is an MLL proof-net, and whose surface ribbon(Θ) is

planar. Then, either Θ is the axiom link, or every external border of

ribbon(Θ) visits one of the following:

• the conclusion of a terminal O-link of Θ,

• a splitting �-link of Θ,

• a splitting cut-link of Θ.

Proof By induction on the size of Θ. We suppose that every McyLL

proof-structure Λ strictly smaller than Θ verifies the property. Consider

an external border σ of Θ. We proceed by case analysis.

[A] Suppose that Θ contains a terminal O-link l of conclusion AOB.

Remove the O-link l from Θ. The resulting McyLL proof-structure Λ

translates as an MLL proof-net Λ∗ and has a planar surface ribbon(Λ).

We proceed by case analysis.

1. either the external border σ visits the conclusion of the terminal

O-link l of Θ, and we are done,

2. or the external border σ does not visit the conclusion of the O-link

l. Since σ is not the internal border of l either, σ is the residual of an

external border σ′ of ribbon(Λ) which does not visit the conclusions

A and B of Λ. This shows already that Λ is not the axiom-link. By

induction hypothesis on Λ, two cases may occur. Either the external

border σ′ visits the conclusion of a terminal O-link m of Λ. In that

case, the O-link remains terminal in Θ, and σ visits the conclusion of

m: we are done. Or the external border σ′ visits a splitting �-link (or

cut-link) m of Λ, which splits Λ in two McyLL proof-structures Λ1 and
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Λ2. Since the border σ visits the link m in Θ, the proof reduces to

showing that m is splitting in Θ. The surface ribbon(Θ) is the result of

glueing together the two conclusions A and B of ribbon(Λ). Planarity

of ribbon(Θ) implies that the two conclusions A and B appear on the

same border σ′′ of ribbon(Λ). This border σ′′ cannot be σ′ because σ′

does not visit the formulas A and B. Since the border σ′ is the unique

border of ribbon(Λ) visiting both Λ1 and Λ2, the border σ′′ is either a

border of ribbon(Λ1) or border of ribbon(Λ2). In the former case, A

and B are conclusions of Λ1, in the latter case, A and B are conclusions

of Λ2. In both cases, the link m remains splitting in Θ, and we are done.

[B] Suppose that Θ does not contain any terminal O-link. In that case,

Θ∗ is an MLL proof-net with no terminal
..............................................
...........
...................................... -link, and it follows that

the proof-structure Θ contains a splitting �-link or cut-link l, see [7, 9].

Remove the link l from Θ. The two resulting McyLL proof-structures

Λ1 and Λ2 translate as MLL proof-nets Λ∗
1 and Λ∗

2 and define planar

surfaces ribbon(Λ1) and ribbon(Λ2). Either σ visits both Λ1 and Λ2:

in that case, we are done, because σ visits the splitting link l. Or the

border σ visits Λ1 only, or Λ2 only. Suppose that we are in the first

situation. It follows by induction hypothesis on Λ1, which cannot be the

axiom-link, that the external border σ visits either the conclusion of a

terminal O-link m of Λ1, or a splitting �-link m of Λ1, or a splitting

cut-link m of of Λ1. In the two last cases, we are done, because the link

m remains splitting in Λ. In the first case, note that the conclusion of

m is not the premise in Θ of the splitting link l. Thus, the O-link m is a

terminal link in Θ, whose conclusion is visited by σ. We conclude.

Sequentialization. — We prove that every McyLL proof-net sequen-

tializes as an McyLL derivation tree, theorem 1.5.4. The proof is not

really complicated, except for the cut-link case, which requires the pre-

liminary lemma 1.5.3.

Theorem 1.5.4 (McyLL sequentialization) Every McyLL proof-net

is the translation of an McyLL derivation tree.

Proof We show by induction on the number of connectives in Θ, that

there exists an McyLL derivation tree π sequentializing the McyLL

proof-net Θ.

Suppose that Θ contains a terminal O-link of conclusion AOB. Re-

move this O-link l from Θ. The resulting McyLL proof-structure Λ is
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an McyLL proof-net. By induction hypothesis, there exists an McyLL

derivation tree π sequentializing Λ of, say, conclusion ` A0, ..., An−1.

Let i and j be the two indices 0 ≤ i, j ≤ n − 1 such that A = Ai and

B = Aj . We claim that j = i + 1 modulo n. Suppose not. Then, the

conclusions Ai+1, ..., Aj−1 appear on the segment of border between A

and B in Λ, thus on the internal border of a O-link l in Θ. This con-

tradicts the hypothesis that Θ is a McyLL proof-net. We conclude that

j = i + 1 modulo n. The McyLL derivation tree π′ sequentializing Θ

follows immediately from π, and we are done.

Suppose now that Θ contains no terminal O-link. We are done when

Θ is an axiom link. Otherwise, Θ∗ is an MLL proof-net without terminal
..............................................
...........
...................................... -link, and thus, there exists a splitting �-link or cut-link l in Θ, see

[7, 9]. Obviously, when l is a �-link, it connects two McyLL proof-nets

Λ1 and Λ2, and we conclude by a simple induction argument.

The remaining case, when there are only splitting cut-links, and no

splitting �-link, is more delicate. Indeed, removing an arbitrary splitting

cut-link l from Θ induces two McyLL proof-structures Λ1 and Λ2; and

one of them, say Λ1, may not be a McyLL proof-net. This case happens

when Λ2 has a unique conclusion A, whose dual formula A⊥ appears

on an internal border of the surface ribbon(Λ1). Note that in this

“pathological” case, the cut-link l is visited by an internal border of

ribbon(Θ). The situation is illustrated by the cut-link number 2 in the

McyLL proof-net below:

ax

∆

axax

cut

∆

ax

ax

cut

1
2

(1.6)

In other words, we need to choose which splitting cut-link should be

removed first from a McyLL proof-net, if we want to sequentialize it.

Typically, the cut-link number 1 must be removed before the cut-link

number 2 in the McyLL proof-net (1.6). Fortunately, there is always a

correct choice, induced by lemma 1.5.3. By hypothesis, the proof-net Θ

does not contain any terminal O-link, nor splitting �-link; moreover, by

definition of a McyLL proof-net, its translation Θ∗ is planar. It follows

by lemma 1.5.3 that the unique external border of Θ visits one splitting

cut-link l at least. We choose to remove this cut-link l from Θ first, and
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avoid in this way the “pathological” case. So, we obtain two McyLL

proof-nets Λ1 and Λ2 and conclude by a simple induction argument.

Planarity 2. — We recall another elementary property of planar sur-

faces, that we shall use in our proof of cut-elimination. If one cuts (with

scisors) a planar surface S which is connected, from a border σ1 to a

border σ2 of S, one obtains a surface S ′ with:

• two connected components when σ1 = σ2,

• one connected component and one border less than S, when σ1 6= σ2.

Cut-elimination. — The planarity criterion, definition 1.5.2, enables

to prove cut-elimination of McyLL in a simple and intuitive way.

Corollary 1.5.5 McyLL enjoys cut-elimination.

Proof We prove that McyLL proof-nets are preserved by cut-elimination.

Let Θ be an McyLL proof-net containing a cut-elimination pattern R.

We prove that the McyLL proof-structure Λ obtained after rewriting

the pattern R, is an McyLL proof-net. Cut-elimination in MLL ensures

already that Λ translates as an MLL proof-net Λ∗. There remains to

show that ribbon(Λ) is planar, and has a unique external border visiting

all conclusions of Λ.

Topologically, cut-elimination consists in cutting (with scisors) the

surface separating two borders σ1 and σ2 of ribbon(Θ). One border,

say σ1, visits the internal border of the O-link l of R, while the other

border σ2 visits the �-link. Planarity of ribbon(Λ) follows. Besides,

the surface ribbon(Λ) is connected because Λ translates as an MLL

proof-net Λ∗. We conclude that the two borders σ1 and σ2 are different

in ribbon(Θ).

Let σ3 denote the border of ribbon(Λ) obtained by “merging” the

two borders σ1 and σ2 of ribbon(Θ). We mentioned that every internal

border of ribbon(Θ) has index one, for a McyLL proof-net like Θ, see

the remark after definition 1.5.2. In particular, the O-link l is the unique

O-link visited internally by σ1. Since cut-elimination removes this O-link

l, the index of σ2 and σ3 are equal.

It follows that ribbon(Λ) has a unique external border σ. This border

σ is the border σ3 when the border σ2 is external, and the residual of

the external border of ribbon(Θ) when the border σ2 is internal. In
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each case, the border σ visits all conclusions of Λ. We conclude that the

proof-structure Λ is a McyLL proof-net.

We have just proved that McyLL proof-nets are preserved by cut-

elimination. The end of the proof is easy. Suppose that π1 and π2 are

McyLL derivation trees of conclusion ` Γ, A and ` A⊥, ∆. By sound-

ness, the derivation trees π1 and π2 define McyLL proof-nets Λ1 and

Λ2, respectively. Now, connect Λ1 to Λ2 by a cut-link between the con-

clusions A and A⊥. This defines a McyLL proof-net Θ which reduces

by cut-elimination to a cut-free McyLL proof-net Θ′. The proof-net Θ′

sequentializes to a cut-free McyLL derivation tree π′, by theorem 1.5.4.

The derivation tree π′ has conclusion ` Γ, ∆. We conclude that McyLL

enjoys cut-elimination.

Remark. — The proof-structure (1.3) appears independently in Robert

Schneck’s work on non-symmetric linearly distributive categories [21].

Motivated by this example, Schneck strengthens the planarity criterion

for negation-free multiplicative linear logic, and formulates a new crite-

rion, in a similar way as we do above.

1.6 Non commutative logic

Non commutative logic (NL) was introduced by Paul Ruet in his PhD

thesis [19] and developped with collaborators in a series of articles [3,

20, 13]. It is a conservative extension of both commutative linear logic

(LL) and cyclic linear logic (cyLL). The idea is to equip every sequent

` A0, ..., Ak−1 with additional information on the relative positions of

the conclusions, provided by an order variety on the set of (occurrences

of) formulas A1, ..., Ak.

Order varieties. — An order variety α on a set X is a ternary relation

which is:

(i) cyclic: ∀x, y, z ∈ E, α(x, y, z) ⇒ α(y, z, x),

(ii) anti-reflexive: ∀x, y ∈ E,¬α(x, x, y),

(iii) transitive: ∀x, y, z, t ∈ E, α(x, y, z) ∧ α(x, z, t) ⇒ α(x, y, t),

(iv) spreading: ∀x, y, z, t ∈ E, α(x, y, z) ⇒ α(t, y, z) ∨ α(x, t, z) ∨

α(x, y, t).

The three first properties define a cyclic order, as introduced by Novak
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in [18]. A cyclic order is total when it verifies the additional property:

∀x, y, z ∈ E, x 6= y 6= z 6= x ⇒ α(x, y, z) ∨ α(x, z, y)

A total cyclic order is often called oriented cycle on X , because, at least

when X is finite, it can be described by a graph (X,→) which relates

x → y when there exists no z ∈ X such that α(x, z, y). This graph

contains a unique cycle, and α(x, y, z) simply means in that case that

“y stands between x and z”.

Order varieties generalize total cyclic orders, like partial orders gen-

eralize total orders. Every order variety on X becomes a partial order

on X − {x} once an origin x is fixed in X — in a reversible way, in the

sense that the order variety on X may be reconstructed from the partial

order on X − {x}. The following properties are established in [3, 20].

Focusing. — Given an order variety α on X and an element x ∈ X ,

define the partial order αx on X − {x}, called focus of α on x, by:

∀y, z ∈ X − {x}, αx(y, z) ⇐⇒ α(x, y, z)

Conversely, given a partial order ω = (X, <) on X and an element z ∈ X ,

define the binary relation on X :

x
z
< y ⇐⇒ x < y and z is comparable with neither x nor y.

Then, the order variety ω on X , the closure of ω on X , is defined as the

ternary relation ω(x, y, z) on X :

x < y < z or y < z < x or z < x < y or x
z
< y or y

x
< z or z

y
< x.

Parallel and series. — Given two partial orders ω on X and ω′ on Y ,

define the partial orders ω
∣

∣ω′ (called ω parallel ω′) and ω < ω′ (called ω

series ω′) on X + Y .

x(ω
∣

∣ω′)y ⇐⇒

{

x ∈ X and y ∈ X and xωy

x ∈ Y and y ∈ Y and xω′y

x(ω < ω′)y ⇐⇒







x ∈ X and y ∈ Y

x ∈ X and y ∈ X and xωy

x ∈ Y and y ∈ Y and xω′y

Glueing. — If ω and ω′ are two partial orders on disjoint sets X and
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Y , then the following equality holds:

ω < ω′ = ω
∣

∣ω′ = ω′ < ω

This enables to glue two partial orders ω on X and ω′ on Y , and obtain

an order variety ω ∗ ω′ = ω
∣

∣ω′ on X + Y . The two main properties of

glueing are:

(αx) ∗ x = α (ω ∗ x)x = ω

for α an order variety on X , x an element of X , and ω a partial order

on X − {x}.

Next and tensor. — Given two order varieties α on X and β on Y ,

and two elements x ∈ X and y ∈ Y , one glues α and β together on

x and y, in a series or parallel fashion, to obtain an order variety on

(X − {x}) + (Y − {y}) + {z}:

α �z
x,y β = αx < z < βy = (βy < αx) ∗ z

α ⊗z
x,y β = αx

∣

∣z
∣

∣βy = (βy

∣

∣αx) ∗ z

Interior. — Every cyclic order α on X contains a largest order variety

\α. The order variety \α is called the interior of the cyclic order α, and

defined as

\α =
⋂

x∈X

αx ∗ x

Notation. — Consider an order variety α on X , and a subset Y of X .

We write α �Y the order variety obtained by restricting the ternary rela-

tion α to the subset Y of X . Given an element x of X , the order variety

α[z/x] is the order variety on (X − {x}) + {z} obtained by replacing x

by z in X .

Par. — Given an order variety α on X and two different elements

x, y ∈ X , one defines the order variety α[z/x, y] on (X − {x, y}) + {z}

as

α[z/x, y] = \ (α �X−{y} [z/x] ∩ α �X−{x} [z/y])

We write α[x, y] when x and y are two different elements of X .

MNL. — The multiplicative fragment (without units) of non commu-

tative logic (MNL) extends both MLL and McyLL. Its formulas are
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R

∆

∆

L

∆

∆

∆

∆

3

Fig. 1.3. Abrusci-Ruet switching positions for next and sequential

constructed using the connectives ⊗,
..............................................
...........
...................................... (from MLL) and �, O (from

McyLL). Negation in MNL simply extends negation in MLL and McyLL.

An MNL sequent ` ω is an order variety on a finite set of (occurrences

of) MNL formulas. An MNL derivation tree is a tree of MNL sequents

constructed according to the following rules.

(Ax)
` A⊥ ∗ A

(Cut)
` ω ∗ A ` A⊥ ∗ ω′

` ω ∗ ω′

(⊗)
` ω ∗A ` ω′ ∗ B

` (ω
∣

∣ω′) ∗ A ⊗ B
(
..............................................
...........
...................................... )

` α[A, B]

` α[A
..............................................
...........
...................................... B/A, B]

(�)
` ω ∗A ` ω′ ∗ B

` (ω < ω′) ∗ A � B
(O)

` ω ∗ (A < B)

` ω ∗ AOB

1.7 Abrusci and Ruet’s long trip criterion for MNL

In this section, we recall the correctness criterion for McyLL and MNL

developped by V. Michele Abrusci and then Paul Ruet in [2, 3]. The

criterion adapts Girard long trip condition for MLL, by:

• keeping the switching positions of MLL for ⊗ and
..............................................
...........
...................................... links,

• considering �-links as ⊗-links limited to the unique switching position

� = ⊗R,

• considering O-links as
..............................................
...........
...................................... -links with the usual switching positions

OL =
..............................................
...........
......................................
L and OR =

..............................................
...........
......................................
R, and an additional switching position O3.

Abrusci-Ruet switching positions appear in figures 1.1 and 1.3. Contrarily

to the other switching positions, the position O3 is not total: a O-link in

position O3 does not necessarily reemit a particle which enters it! Ac-

cordingly, Abrusci and Ruet weaken Girard’s long trip condition in defi-

nition 1.7.2, and require only that, for a given proof-net Θ and switching

s, there exists a unique cycle in trip(Θ, s) which visits all the conclu-

sions, but not necessarily all the proof-net Θ.
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MNL switching. — A switching of an MNL proof-structure Θ is the

data of

• a switching position in {⊗L,⊗R} for every ⊗-link of Θ,

• a switching position in {
..............................................
............
.....................................
L,

..............................................
............
.....................................
R} for every

..............................................
............
..................................... -link of Θ,

• a switching position in {OL, OR, O3} for every O-link of Θ.

Every MNL switching s defines a switched proof-structure trip(Θ, s) as

in section 1.2.

Bilaterality. — An additional (and technical) condition of “bilateral-

ity” is required on the cycle. The condition ensures for instance that

the proof-structure illustrated in (1.1) with ⊗-links replaced by �-links,

is not a proof-net.

Definition 1.7.1 (bilateral) Let Θ be an MNL proof-structure, and s

an MNL switching of Θ. A trip σ in trip(Θ, s) is bilateral if σ is not of

the form

Ax, ..., By, ..., Ax, ..., By

where A and B are occurrences of formulas in Θ, and ↑ =↓, ↓ =↑.

Abrusci-Ruet long trip criterion. —

Definition 1.7.2 (Abrusci-Ruet proof-net) An Abrusci-Ruet proof-

net is an MNL proof-structure Θ such that, for every MNL switching s:

(i) there is exactly one cycle σ in trip(Θ, s), called the long trip,

(ii) σ contains all the conclusions,

(iii) σ is bilateral.

Three important properties are established in [3].

(i) soundness: every MNL derivation tree of conclusion ` α trans-

lates as an Abrusci-Ruet proof-net Θ, in such a way that α is

the largest order variety contained in each αs, where αs denotes

the total cyclic order (or oriented cycle) on the conclusions of Θ

defined by the long trip of trip(Θ, s), for s an MNL switching. It

is worth noting for section 1.8 that the characterization of α still

works when the switchings s are restricted to the {OL, OR}-free

ones,

(ii) sequentialization: every cut-free Abrusci-Ruet proof-net sequen-

tializes as an MNL derivation tree,
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(iii) cut-elimination: MNL enjoys cut-elimination.

In fact, points 2. and 3. are proved using an alternative characterization

of Abrusci-Ruet proof-nets, rather than the original definition 1.7.2. —

see theorem 2.20 in [3], or the discussion in section 1.9.

Remark. — Virgil Mogbil and Quintijn Puite observe in [15] that

the bilaterality condition of definition 1.7.2 (point (iii)) may be replaced

by the condition that the MNL proof-structure Θ translates as a MLL

proof-net Θ∗. Obviously, this condition also rejects the proof-structure

illustrated in (1.1).

1.8 A planarity correctness criterion for MNL

In this section, we extend to MNL the well-known planarity criterion

for McyLL, discussed at length in section 1.5. We will see in section

1.9 that the resulting planarity criterion for MNL reformulates topologi-

cally Abrusci-Ruet long trip criterion. Thus, just as in the commutative

case of MLL, the topological point of view federates seemingly different

correctness criteria (eg. planarity vs. long trip).

Topological switching. — A topological switching of an MNL proof-

structure Θ is simply defined as a {OL, OR}-free MNL switching of Θ.

Alternatively, it is the data of

• a switching position in {⊗L,⊗R} for every ⊗-link of Θ,

• a switching position in {
..............................................
...........
......................................
L,

..............................................
...........
......................................
R} for every

..............................................
...........
...................................... -link of Θ.

Switched surface. — To every MNL proof-structure Θ and topological

switching s, we associate the surface ribbon(Θ, s) by replacing every ⊗

and
..............................................
............
..................................... -link by the ribbon diagram corresponding to its MNL switching

R L
R L

& &

and every � or O or axiom or cut-link and conclusion by the ribbon
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diagram

∆ ax

cut
C

Planarity criterion for MNL. — Just as for McyLL in section 1.5,

requiring planarity of ribbon(Θ, s) for every switching s is not sufficient

to characterize MNL proofs. We have seen that requiring in addition

that all conclusions lie on the same border of ribbon(Θ) is sufficient

to characterize cut-free McyLL proofs. Note that this is not even the

case in MNL. For instance, the cut-free proof-structure of conclusion

` (B �A) ( (A�B) which is not sequentializable in MNL, has its two

switched surfaces planar, with all conclusions (= one conclusion in each

case) on the same border.
&

ax ax

∆

&

ax ax

∆
(1.7)

Fortunately, proof-structures like (1.7) may be rejected in the same way

as in McyLL: by considering external and internal borders. These no-

tions are adapted to MNL in the obvious way: given an MNL proof-

structure Θ and a topological switching s, the index of a border b of the

surface ribbon(Θ, s), is the number of internal sides of O-link of Θ the

border b visits; A border of ribbon(Θ, s) is external or internal when it

is of index 0, and of index 1 or more, respectively. The criterion below

is a “conservative” extension to MNL of definition 1.5.2 for McyLL.

Definition 1.8.1 (topological MNL proof-net) A topological MNL

proof-net is an MNL proof-structure Θ

1. whose commutative translation Θ∗ is an MLL proof-net,
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and such that, for every topological switching s:

2. the switched surface ribbon(Θ, s) is planar and has a unique

external border σ,

3. σ contains all the conclusions.

Obviously, the proof-structure (1.7) is rejected by the criterion: its

unique conclusion lies on an internal border when
..............................................
...........
...................................... is switched in

position
..............................................
...........
......................................
R.

Remark. — For the same reasons as in section 1.5, definition 1.5.2, it

follows from definition 1.8.1 that every internal border of ribbon(Θ, s) is

of index 1, when Θ is an MNL proof-net, and s is a topological switching.

Soundness. — Given a proof derivation π, its associated proof-structure

Θ in MNL, and a topological switching s, one proves by structural induc-

tion on π that the long trip in the proof-structure trip(Θ, s) is precisely

the external border of the switched surface ribbon(Θ, s). It follows that

the long trip of trip(Θ, s) visits the conclusions of Θ in the same order

as the external border of ribbon(Θ, s). By property of soundness, in

section 1.7, the order variety ` α is the maximal order variety on the

conclusions of Θ included in all oriented cycles induced by the external

border of ribbon(Θ, s), for s a topological switching of Θ. Soundness

follows easily.

Sequentialization. — Just as in [3, 12] we limit our sequentialization

theorem to cut-free MNL proof-nets.

Theorem 1.8.2 (MNL sequentialization) Every cut-free MNL proof-

net is the translation of an MNL derivation tree.

Proof The proof proceeds as in theorem 1.5.4 for � and O-links. ⊗-links

can be treated as �-link, and
..............................................
...........
...................................... -links are treated as follows. Suppose

that l is a terminal
..............................................
...........
...................................... -link of conclusion A

..............................................
...........
...................................... B in a cut-free MNL proof-

net Θ. Let Λ be the proof-structure obtained by removing l from Θ. Its

MLL translation is a proof-net. There remains to check on Λ conditions

2 and 3 of definition 1.8.1. Let s be a topological switching of Λ, and

sL = s + {l 7→
..............................................
...........
......................................
L} and sR = s + {l 7→

..............................................
...........
......................................
R} the two associated topo-

logical switchings on Θ. Obviously, ribbon(Λ, s), ribbon(Θ, sL) and

ribbon(Θ, sR) denote the same surface S. Planarity of ribbon(Λ, s) fol-

lows. Moreover, the unique external border of ribbon(Θ, sL) (on which

A lies in ribbon(Λ, s)) and the unique external border of ribbon(Θ, sR)
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(on which B lies in ribbon(Λ, s)) are necessarily the same border of S.

It follows that ribbon(Λ, s) has a unique external border, on which A

and B lie. We conclude that Λ is an MNL proof-net.

Cut-elimination. — The proof of cut-elimination for MNL follows a

purely topological argument, instead of the algebraic one presented by

Abrusci and Ruet in [3].

Corollary 1.8.3 MNL enjoys cut-elimination.

Proof Follows from soundness and sequentialization of MNL proof-nets

in the same way as corollary 1.5.5 follows from soundness and sequen-

tialization of McyLL proof-nets. The only difficulty is to establish that

MNL proof-nets are preserved by cut-elimination.

Consider a topological MNL proof-net Θ containing a cut-elimination

pattern, and the MNL proof-structure Λ obtained after cut-elimination

of the pattern. We prove that Λ is a proof-net. Two cases may occur: ei-

ther the cut-elimination pattern is “non-commutative”, that is, involves

a � and a O link, in which case we proceed as in corollary 1.5.5, with

an obvious adaptation regarding preservation of uniqueness of the ex-

ternal border; or the cut-elimination pattern is “commutative”, that is,

involves a ⊗ link l⊗ and a
..............................................
...........
...................................... link l.........................................................

...................................... , with respective conclusions A⊗B

and B⊥..............................................
...........
...................................... A⊥, in which case we proceed as follows. We fix a topological

switching s of Λ, and consider the four topological switchings of Θ

sXY = s + (l.........................................................
...................................... 7→

..............................................
...........
......................................
X) + (l⊗ 7→ ⊗Y )

for X, Y ∈ {L, R}. From now on, we call S the surface obtained by

cutting (with scisors) the branch A of the ⊗-link l⊗ in ribbon(Θ, sLR).

Like ribbon(Θ, sLR), the surface S is planar. The cut-link between

l⊗ and l.........................................................
...................................... has two borders σ and τ in S, which may be distinguished

by indicating that the surfaces ribbon(Θ, sLR) and ribbon(Θ, sLL) are

obtained from S by glueing the branch of conclusion A to the borders

σ and τ , respectively. We show by case analysis that ribbon(Λ, s) is

planar, and has a unique external border, which visits all the conclusions

of Λ.

[A] When the two borders σ and τ are different, planarity of both

ribbon(Θ, sLR) and ribbon(Θ, sLL) implies that the surface S is not

connected. More, S has two disconnected components S1 and S2, with

the branch A in one component, say S1, and the borders σ and τ in the
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other component S2. The surface ribbon(Λ, s) is the result of glueing

A in S1 and A⊥ in S2. This shows that ribbon(Λ, s) is planar. By

our correctness criterion, each border of the surface ribbon(Θ, sLR) or

ribbon(Θ, sLL) visits either all the conclusions of Θ, or the internal bor-

der of exactly one O-link. Call ν the border of A in S1. We claim that

ν does not visit any conclusion, nor any internal border of a O-link. We

proceed by contradiction. Suppose that the border ν visits a conclusion

of S1; then, by the last remark on ribbon(Θ, sLR) or ribbon(Θ, sLL),

neither σ nor τ visits the internal border of a O-link in S2; thus, two

borders of ribbon(Θ, sLR) are external; this contradicts the hypothesis

that Θ is a proof-net. Suppose now that ν visits the internal border

of a O-link; then, for the same reason as above, neither σ nor τ visits

the internal border of a O-link in S2, or a conclusion of S2; it follows

that the external border of ribbon(Θ, sLL) is the residual of the border

σ after glueing τ and ν together; the border visits no conclusion of Θ;

according to the correctness criterion, the proof-net Θ does not have any

conclusion; this contradicts the fact that Θ translates as an MLL proof-

net. This proves our claim that ν visits no internal border of a O-link,

and no conclusion of S1. From this, we conclude easily that just like

ribbon(Θ, sLR), the surface ribbon(Λ, s) has a unique external border,

visiting all the conclusions of Λ.

[B] When σ = τ , and the surface S has two connected components, we

call S1 the component containing the branch A, and S23 the component

containing the border σ = τ . The surface ribbon(Λ, s) is connected

because the proof-structure Λ translates as a MLL proof-net. This en-

sures that the branch A⊥ appears in S23, not in S1; and implies that

the proof-structure ribbon(Λ, s) is planar. There remains to show that

ribbon(Λ, s) contains a unique external border, visiting all the conclu-

sions of Λ. We proceed by case analysis. Either σ visits, or does not

visit, the branch with conclusion A⊥ in S. When σ visits A⊥, the surface

ribbon(Θ, sLR) may be deformed into ribbon(Λ, s) by letting the com-

ponent S1 “slide” along the border σ of S23, until S1 reaches the branch

A⊥. It follows that, like ribbon(Θ, sLR), the surface ribbon(Λ, s) has

a unique external border visiting all conclusions of Λ.

Now, we treat the case when the border σ does not visit the branch

with conclusion A⊥ in S. Let S′ denote the surface obtained by cutting

(with scisors) the branch B⊥ in the surface S23. By planarity of S23 and

equality of borders σ = τ , the surface S ′ has two connected components:

one component, called S3, contains the branch with conclusion B⊥; the
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other component, called S2, contains the cut-elimination pattern l.........................................................
...................................... , l⊗.

The three components S1, S2 and S3 are also the result of cutting (with

scisors) the branch B⊥ in ribbon(Θ, sLR), this resulting in two compo-

nents S12 and S3; then of cutting (with scisors) the branch A in S12, this

resulting in the two components S1 and S2. Let σ1 denote the border

of A in S1, and σ2 and σ12 denote the border of the cut-elimination

pattern l⊗, l.........................................................
...................................... in S2 and S12 respectively. The surface ribbon(Θ, sRR)

is obtained by glueing the border σ12 with the border of A⊥ in S12 +S3.

Connectedness of ribbon(Θ, sRR) implies that A⊥ appears in the com-

ponent S3, not in the component S12. Now, let τA and τB denote the

borders of A⊥ and B⊥ in the component S3, respectively. We claim

that τA and τB are different, and prove it as follows: the surface S is the

result of glueing σ2 in S2 with τB in S3; if τA and τB were equal in S3,

the border σ would visit A⊥, contradicting our hypothesis. Now, the

surfaces ribbon(Θ, sLR) and ribbon(Θ, sRR) are obtained by pasting

(with glue) the borders σ12 in S12 with the borders τB and τA in S3,

respectively. It follows from this and the inequality τA 6= τB and an ar-

gument similar to case [A] that the border σ12 visits no internal border

of a O-link, and no conclusion of Θ. A fortiori, the border σ1 of A in

S1, which is (in a sense) a segment of the border σ12, visits no internal

border of a O-link, and no conclusion of Θ. We conclude easily that the

surface ribbon(Λ, s) which is obtained by glueing the conclusion A⊥ in

S23 to the border σ1 in S1, has a unique external border, visiting all the

conclusions of Λ.

[C] When σ = τ , and the surface S is connected, we may suppose by

symmetry, wlog. that the surface S ′ obtained by cutting (with scisors)

the branch B of the ⊗-link l⊗ in ribbon(Θ, sRR) is also connected, and

that the two borders σ′ and τ ′ of the cut-elimination pattern l.........................................................
...................................... , l⊗ are

equal in S′. Removing the cut-link connecting B and B⊥ in S induces

the same surface (denoted T ) as removing the cut-link connecting A and

A⊥ in S′, or as removing the cut-elimination pattern l.........................................................
...................................... , l⊗ from the

surface ribbon(Θ, sXY ) for any X, Y ∈ {L, R}. The equality σ = τ ,

alternatively the equality σ′ = τ ′, implies that the surface T has two

connected components. We call T1 the component of the conclusion B

and T2 the component of the conclusion B⊥, and claim that T1 is also the

component of the conclusion A and T2 the component of the conclusion

A⊥. Indeed, consider the {O3}-free MNL switching s′ of Θ obtained by

replacing in s every switching position O3 by the switching position OL;

let T ′ be the surface obtained from ribbon(Θ, s′LR) or ribbon(Θ, s′RR)
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by cutting (with scisors) the two branches A and B of the ⊗-link l⊗.

Because Θ translates as an MLL proof-net Θ∗, the surface T ′ has three

components: one component contains A, the other component contains

B, and the last component contains both A⊥ and B⊥. The surface T

is obtained by replacing some of the positions OL in s′ by the position

O3 in s. Consequently, the two formulas A⊥ and B⊥ which appear in

the same component of T ′, appear a fortiori in the same component of

T . The component T2 is this component of A⊥ and B⊥; while T1 is the

component of A and B. Let σA and σB denote the respective borders

of the conclusions A⊥ and B⊥ in T2.

Now, the surface ribbon(Θ, sLR) is obtained from S by gluing the

branch of conclusion A to the border σ. The surface S is connected,

and the surface ribbon(Θ, sLR) is planar. So, the border σ visits the

conclusion A in S. On the other hand, after cutting (with scisors) the

branch B in S, the border σ becomes the border σ′ of B in T1. From

these two facts, it follows that the conclusions A and B lie on the same

border σ′ of the component T1. Glue these two conclusions A and B

together in T1, and call T ′ the resulting surface. The operation divides

the border σ′ of T1 into two borders of T ′. The borders may be denoted

σ′
1 and σ′

2 in such a way that (1) the surface ribbon(Θ, sLR) is obtained

by glueing B⊥ in T2 to σ′
1 in T ′, and (2) the surface ribbon(Θ, sLL)

is obtained by glueing B⊥ in T2 to σ′
2 in T ′. The correctness criterion,

together with an argument similar to case [A] implies that each border

σ′
1 and σ′

2 visits exactly one internal border of a O-link in T ′; and that

the border σB of B⊥ in T2 visits no internal border of a O-link, and no

conclusion of Θ. Now, the surface ribbon(Θ, sRR) is obtained by glueing

the conclusion A⊥ in T2 to σ′
1 in T ′. It follows from the correctness

criterion that (F) the border σA of A⊥ in T ′ visits no internal border

of a O-link, and no conclusion of Θ.

We claim that the two border σA and σB coincide in T2. Suppose

not: σA 6= σB . In that case, the external border of ribbon(Θ, sLR) is

the residual of σA after glueing B⊥ and σ′
2. It follows that the external

border of ribbon(Θ, sLR) visits no conclusion of Θ by our previous

result (F). We conclude from our correctness criterion that Θ has no

conclusion, which contradicts the fact that Θ translates as a MLL proof-

net Θ∗. This establishes the claim: σA = σB . We are nearly done.

Recall that the border σA visits no internal border of a O-link, and no

conclusion of Θ. It follows that ribbon(Θ, sLR) may be deformed into

ribbon(Λ, s) by “sliding” A along σA in T2, until it reaches A⊥. This
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proves that ribbon(Λ, s) is planar, has a unique external border, which

visits all its conclusions.

Remark. — Try this alternative (but wrong!) definition of MNL proof-

net: relax the condition on internal and external borders, and consider

the class of MNL proof-structures Θ translating as an MLL proof-net Θ∗,

and whose surface ribbon(Θ, s) is planar for every topological switching

s. It happens that the class is not closed under cut-elimination, as the

proof-structure below of conclusion ` (B � A) −•(A � B) illustrates.

&

∆

axax

ax

ax

∆

cut

It should be noted that in the figure above, we use a topological notation

for proof-structures, adapted from our notation for switchings. This is

discussed in the appendix, section 1.10.

1.9 The planarity vs. the long trip criterion for MNL

Here, we reformulate our definition of MNL topological proof-nets in

three different ways. The first formulation is topological, but emanci-

pated of all reference to MLL, in V. Michele Abrusci’s style. We call

the second formulation intermediate because it prepares the third for-

mulation, in which any reference to the topology disappears. Planarity

is replaced by a well-bracketing condition on the O-links of the switched

proof-structures. We benefit from the fact that this third formulation

appears already in [3] and characterizes Abrusci-Ruet proof-nets, to con-

clude that our planarity criterion coincides with the long trip criterion

for MNL.

Switched surface (2). — Here, we want to extend the definition of

section 1.8, and define a surface ribbon(Θ, s) for every MNL proof-

structure Θ and MNL switching s, instead of {OL, OR}-free switchings.

This is easy. The surface ribbon(Θ, s) is defined as before, except that
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every O-link l is replaced by the ribbon diagram of its switching position

OL, OR or O3:

∆

3L

∆

R

∆

The previous definitions of index, of external and internal borders are

extended in the obvious way: only O-links in position O3 increase the

index of a border of ribbon(Θ, s).

The emancipated criterion. — An alternative characterization of

topological MNL proof-nets follows, which does not mention commuta-

tive linear logic.

Lemma 1.9.1 An MNL proof-structure Θ is a topological MNL proof-

net iff for every MNL switching s:

(i) the surface ribbon(Θ, s) is planar and has a unique external bor-

der σ,

(ii) σ contains all the conclusions.

Note that the formulation is very close to Abrusci and Ruet definition

1.7.2 of an MNL proof-net, except that bilaterality is replaced here by

planarity.

The intermediate criterion. — The next criterion makes the first

step towards a non topological reformulation of our topological crite-

rion, definition 1.8.1. Consider an MNL proof-structure Θ whose MLL-

translation is an MLL proof-net Θ∗. Obviously, every O3-free switching

s of Θ defines a surface ribbon(Θ, s) homeomorphic to the disk. The

positions of each O-link l of Θ may be indicated on the unique border σ

of ribbon(Θ, s):

• by an opening bracket (l

• by a closing bracket )l.

in such a way that the segment of σ put inside brackets (l...)l coincides

with the internal border of the surface ribbon(Θ, s + (l 7→ O3)). Then,

a necessary and sufficient condition for Θ to be a topological proof-net

is that, for every O3-free switching s of Θ:
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(i) the brackets (l and )l may be pasted together in ribbon(Θ, s) in

such a way that the surface remains planar,

(ii) no conclusion of Θ appears inside brackets.

The well-bracketing criterion. — Now, we make topology disappear

entirely from the intermediate criterion, by reformulating the planarity

condition of point (i) as a well-bracketing condition on (l...)l.

Lemma 1.9.2 A MNL proof-structure Θ is a topological MNL proof-net

iff:

1. its MLL translation Θ∗ is an MLL proof-net,

and for every O3-free switching s of Θ:

2. the brackets (l and )l are well-bracketed on the border trip(Θ, s)

of ribbon(Θ, s),

3. no conclusion of Θ appears inside brackets.

The planarity and the long trip criteria coincide. — The series

of conditions in lemma 1.9.2 is already mentioned in [3], theorem 2.20,

where it characterizes Abrusci-Ruet MNL proof-nets. We conclude that

Theorem 1.9.3

The topological MNL proof-nets coincide with the Abrusci-Ruet MNL

proof-nets.

Remark. — The remark by Mogbil and Puite about bilaterality (see

the end of section 1.7) adapted to our topological setting, indicates that

the planarity condition of lemma 1.9.1 may be replaced by the hypothe-

sis that the proof-structure Θ translates as a MLL proof-net Θ∗. Indeed,

a topological argument shows that in that case, the surface ribbon(Θ, s)

is planar for every MNL switching s. Suppose not: there exists a MNL

switching s making ribbon(Θ, s) non planar. Let s′ denote the O3-free

switching obtained by switching as OL (or OR) all O-links switched O3 in

the switching s. The surface ribbon(Θ, s′) is homeomorphic to the disk

because Θ∗ is a MLL proof-net, and the MNL switching s′ is O3-free.

Lemma 1.9.2 indicates that there exist two O-links l1 and l2 switched

as O3 in the MNL switching s such that the surface ribbon(Θ, s′′) is

already non planar, when one alters s′ into s′′ = s′ + (l1, l2 7→ O3). We

leave the reader check that the surface ribbon(Θ, s′′) has a unique bor-

der σ, of index 2, which visits all the conclusions of Θ. This contradicts
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the other hypothesis of lemma 1.9.1 (there exists a unique external bor-

der, which visits all conclusions) and we conclude that ribbon(Θ, s) is

planar, for every MNL switching s.

We also leave the reader check (hint: by a counter-example in McyLL)

that the planarity condition is necessary in our definition 1.8.1 of topo-

logical proof-net, despite the fact that we assume that Θ translates as

MLL proof-net Θ∗. The difference with lemma 1.9.1 is that MNL switch-

ings are restricted here to topological (that is: {OL, OR}-free) switch-

ings.

1.10 Appendix: is MNL an embedded logic?

In this article, we advocate that switchings are better expressed as topo-

logical objects, than as graphs. One may go further, and declare boldly

that proofs themselves are topological objects, from which switched sur-

faces are deduced by topological surgery. From that perspective, the

MLL proof π of ` A⊥..............................................
............
..................................... A defines a surface homeomorphic to the annu-

lus.

&

ax

Each of the switching positions
..............................................
...........
......................................
L and

..............................................
...........
......................................
R of the

..............................................
...........
...................................... -link indicates

to cut (with scisors) the annulus π from one border σ1 to the other

border σ2. In each case, one obtains a surface homeomorphic to the

disk. Except for inessential details in the presentation of proofs (ribbon

diagrams vs. simplicial complexes) this topological presentation may be

found in [14]. It may be worth stressing that the topology of proofs

is understood internally. In particular, neither the proof theory, nor

the topology, reflects the fact that the annulus π may be embedded in

several ways in the ambient space, forming all kinds of “twisted knots”

like:
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&

ax

&

ax

&

ax

etc...

The idea of representing a proof as a surface embedded in an ambi-

ent space appears in [6] where Arnaud Fleury interprets the exchange

rule as a “braided” permutation, and introduces a “twist” operation on

formulas, inspired by similar operations in tortile tensor categories [11].

In the resulting “embedded logic” MLL, every embedding of the annulus

π in the ambient space happens to be a particular proof of the formula

` A⊥..............................................
...........
...................................... A. More generally, a MLL proof is either constructed sequen-

tially, or characterized geometrically (this is the correctness criterion) as

a proof-structure embedded in space, whose switchings are all homeo-

morphic to the disk. Similarly, one defines an embedded version McyLL

of McyLL, whose proofs π are the proofs of MLL verifying the extra

condition that π is planar, and has a unique external border visiting all

conclusions.

In contrast, there does not seem to exist any satisfactory embedded

version of MNL, for the following reason. Consider the MNL proof

` A⊥, A ` B, B⊥

⊗
` A⊥, A ⊗ B, B⊥

..............................................
...........
......................................

` A⊥, (A ⊗ B)
..............................................
...........
...................................... B⊥

O
` A⊥O((A ⊗ B)

..............................................
...........
...................................... B⊥)

(1.8)
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As in the case of the annulus, there may be several way to embed the

proof in ambient space. We choose one of them, which we draw below.

&

ax

ax

∆

In this particular embedding of the MNL proof (1.8), the switching po-

sition s

O 7→ O3
..............................................
...........
...................................... 7→

..............................................
...........
......................................
R ⊗ 7→ ⊗L

induces a surface admitting a “twist” between the formulas A⊥ and

(A ⊗ B)
..............................................
...........
...................................... B⊥.

&

∆

axax

(1.9)

So, the switched surface, seen as embedded in ambient space, is not

planar. More generally, there exists no embedding of (1.8) able to induce

only planar MNL switching surfaces. The phenomenon is a consequence

of the see-saw rule of non-commutative logic, which says that every proof

of ` A
..............................................
...........
...................................... B is also a proof of ` AOB. This principle is fine when the

topology of proofs is understood internally, but becomes problematic

when the topology of proofs is embedded in an ambient space — at

least in our ribbon presentation. Typically, the see-saw rule justifies the

last O-introduction rule of the derivation tree (1.8) which implies in turn

that the surface (1.9) is not planar.
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1.11 Conclusion

In their correctness criteria [2, 3] Abrusci and Ruet characterize McyLL

and MNL proof-nets without mentioning commutative MLL. This con-

veyed the hope for a theory of McyLL and MNL “emancipated” from any

reference to MLL. In this article, we choose to step back, and understand

McyLL and MNL as commutative MLL + a planarity condition:

• MLL + planarity of proof-nets, for McyLL,

• MLL + planarity of switched proof-nets, for MNL.

One reason is that cut-elimination of McyLL and MNL follows essen-

tially from planarity — and its preservation by cut-elimination in MLL.

Another reason is that the switching positions
..............................................
...........
......................................
L and

..............................................
...........
......................................
R are inter-

nalized in MLL by the “linear” distributivity formulas below, see [5, 1]:

A ⊗ (B
..............................................
...........
...................................... C) ( (A ⊗ B)

..............................................
...........
...................................... C, A ⊗ (B

..............................................
...........
...................................... C) ( B

..............................................
...........
...................................... (A ⊗ C).

In contrast, there exists (today) no such internal justification in McyLL

or MNL for the “emancipated” criteria formulated in [2, 3] and recalled

in sections 1.7 and 1.9.

To conclude, we will mention the open problem of designing a cor-

rectness criterion for MNL proof-structures with cuts. Abrusci and Ruet

illustrate this problem in [3] by exhibiting the MNL proof-net (1.10)

which cannot be sequentialized in MNL. (Here again, we use a topologi-

cal notation to draw the proof-net (1.10), as discussed in the appendix.)

∆

ax ax

cut

ax

axax

∆∆

&

(1.10)

Finding a satisfactory solution may require to alter MNL — as cyclic

linear logic was altered into planar logic in section 1.5. For what matters

is not the details of the logic, but its relationship to a geometric (or

computational) property of proofs, preserved by cut-elimination.
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[18] V. Novàk. Cyclically ordered sets. Czech Math. J., 32(107):460-473, 1982.
[19] P. Ruet. Non commutative logic and concurrent constraint programming.

PhD thesis, Paris 7, 1997.



40 P.-A. Melliès

[20] P. Ruet. Non-commutative logic II : sequent calculus and phase
semantics. Mathematical Structures in Computer Science, 10(2), 2000.

[21] R. R. Schneck. Natural deduction and coherence for non-symmetric
linearly distributive categories. Theory and Applications of Categories,
Vol. 6, No. 9, 1999.

[22] D. N. Yetter. Quantales and (non-commutative) linear logic. Journal of
Symbolic Logic, 55(1), 1990.


