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Comparing hierarchies of types

in models of linear logic

Paul-André Melliès 1

Abstract

We show that two models M and N of linear logic collapse to the same extensional hi-

erarchy of types, when (1) their monoidal categories C and D are related by a pair of

monoidal functors F : C ⇄ D : G and transformations IdC ⇒ GF and IdD ⇒ FG, and

(2) their exponentials !M and !N are related by distributive laws ̺ : !NF ⇒ F !M and

η : !MG ⇒ G !N commuting to the promotion rule. The key ingredient of the proof is a

notion of back-and-forth translation between the hierarchies of types induced by M and N.

We apply this result to compare (1) the qualitative and the quantitative hierarchies induced

by the coherence (or hypercoherence) space model, (2) several paradigms of games seman-

tics: error-free vs. error-aware, alternated vs. non-alternated, backtracking vs. repetitive,

uniform vs. non-uniform.
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1 Introduction

Coherence spaces. Girard designed linear logic after his discovery of the coherence

space model [19]. Coherence space is another name for “non-oriented graph”, that

is, a pair (|A|,⌢⌣A
) consisting of a web |A| and a reflexive and symmetric relation

⌢
⌣A

over the elements of |A|. A clique f of A is a subset of the web |A| such that:

∀a, b ∈ f, a ⌢⌣A
b.

The negation A⊥ = (|A|,⌣⌢A
) of a coherence space A = (|A|,⌢⌣A

) is its dual

graph, defined as

∀a, b ∈ |A|, a ⌣⌢A
b ⇐⇒ a = b or ¬(a ⌢⌣A

b).

The tensor product of two coherence spaces A = (|A|,⌢⌣A
) and B = (|B|,⌢⌣B

) is

their product as graphs: A⊗B = (|A| × |B|,⌢⌣A
×⌢
⌣B

). The category COH has

coherence spaces as objects, and cliques of A ⊸ B = (A ⊗ B⊥)⊥ as morphisms.

Morphisms are composed as in the category of sets and relations. The resulting

category COH is ∗-autonomous, and has finite products. As such, it is a model of

multiplicative additive linear logic.

The exponential modality ! of linear logic may be interpreted in two different ways,

inducing either a “qualitative” or a “quantitative” model of proofs:

• The qualitative exponential !set is introduced in Girard’s seminal article [19].

The commutative comonoid !setA has the finite cliques of A as elements of the

web, union of cliques as comultiplication, and the empty clique as counit. This

defines a comonad !set over the category COH, which “linearizes” Berry’s stable

model of PCF, in the sense that the co-kleisli category associated to !set embeds

(as a model of PCF) in the category of dI-domains and stable functions.

• The quantitative exponential !mset is formulated by Van de Wiele and Winskel

(and possibly others) who establish — in harmony with Lafont’s ideas in [25]

— that the exponential !mset is the free comonoidal construction in COH. The

commutative comonoid !msetA has the finite multi-cliques ofA as elements of the

web, addition of multi-cliques as comultiplication, and the empty multi-clique as

counit.
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We recall briefly that a multiset w over a set E is a function w : E −→ N to the set

of natural numbers. Its support is the subset

support(w) = {e ∈ E | w(e) > 0}.

Every subset x of E induces the “characteristic” multiset

char(x) :







e 7→ 1 if e is element of x

e 7→ 0 otherwise

A multi-clique of a coherence space A is a multiset with support a clique of A. A

multi-clique is finite (resp. empty) when its support is finite (resp. empty).

So, the category of coherence spaces induces a qualitative and a quantitative model

of linear logic. Are the two models related in some way? The answer is positive:

Barreiro and Ehrhard establish in [7] that the extensional collapse of the quanti-

tative hierarchy is precisely the qualitative hierarchy. But their proof is difficult:

what we call in french a tour de force. Here, we would like to prove the same re-

sult by another simpler route, starting from this elementary observation: For every

coherence space A, there exists an embedding-retraction pair (ηA, ̺A) making the

coherence space !setA a retract of the coherence space !msetA:

!setA
ηA // !msetA

̺A // !setA = !setA
id !setA // !setA (1)

ηA = {(support(w), w) | w is a finite multiclique of A}

̺A = {(char(x), x) | x is a finite clique of A}

The map ηA may be deduced from the fact that !msetA is the free comonoid over A.

It is the unique comonoidal morphism !setA −→ !msetA making the diagram below

commute:

!setA
ηA //

εset
A

!!CC
CC

CC
CC

CC
CC

CC
CC

!msetA

εmset
A

||zz
zz

zz
zz

zz
zz

zz
zz

z

A
On the other hand, the projection map ̺A is not comonoidal in general, since the

diagram below does not necessarily commute (take A = ⊥ the singleton coherence

space).

!msetA
̺A //

dmset
A

��

!setA

dset
A

��
!msetA⊗ !msetA

̺A⊗̺A // !setA⊗ !setA

(2)

Given a coherence space A and a clique f : 1 −→ A, let f set : 1 −→ !setA and

fmset : 1 −→ !msetA denote the clique f promoted with respect to !set and !mset
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respectively. Remarkably, the maps ηA and ̺A commute to the promotion rules of

!set and !mset, in the sense that:

f set = ̺A ◦ fmset and fmset = ηA ◦ f set. (3)

In particular,

dset
A ◦ f set = f set ⊗ f set = (̺A ⊗ ̺A) ◦ (fmset ⊗ fmset).

Thus, precomposing diagram (2) with the promoted map fmset : 1 −→ !msetA
induces a commutative diagram:

1
fmset

TTT
T

**TTT
T

fmset⊗fmset

''

f set

**
!msetA

̺A //

dmset
A

��

!setA

dset
A

��
!msetA⊗ !msetA

̺A⊗̺A // !setA⊗ !setA

(4)

To summarize, diagram (2) does not commute, but the object 1 believes that dia-

gram (2) commutes. Now, the object 1 plays a very special role for the hierarchies

[−]set and [−]mset which, we recall, are defined as hierarchies of global elements

1 −→ [T ]set and 1 −→ [T ]mset of the category COH, for T a simple type. So, when

it comes to hierarchies extracted from a model of linear logic, what really matters

is what the object 1 believes in the underlying monoidal category! And indeed, as

we will see in the course of the article, the equalities (3) are sufficient to deduce

diagrammatically that the hierarchies [−]set and [−]mset collapse to the same exten-

sional hierarchy: in that case, Berry’s stable hierarchy [−]set.
This proves Barreiro and Ehrhard’s collapse theorem by another route, and clarifies

the situation. New translations (called back-and-forth) are exhibited between the

qualitative and the quantitative hierarchies. These translations play a key role in

our proof that the two hierarchies [−]set and [−]mset collapse to the same extensional

hierarchy — see section 3 for details.

Game models. Many game models of (intuitionistic) linear logic have been intro-

duced in the last decade, but they are still poorly connected. We are working here

at building a “topography” which would connect these models in a dense network

of (effective) translations.

We are guided by the idea that all the sequential game models live roughly in the

same interactive universe, and differ only in the way the connectives (or constants)

of linear logic are reflected in it. So, the translations we are looking for should be

deduced algebraically from coercion laws between the various interpretations of

the tensor product, the exponential modality, etc. in this universe.

Coherence spaces illustrate this idea perfectly: the qualitative and quantitative hi-

erarchies differ only by their interpretation !set or !mset of the exponentials, and

the translations between the two hierarchies follow mechanically from the coercion

laws (1) between !set and !mset.
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We show in the last part of the article (section 7) that the same phenomenon oc-

curs in games semantics, and that it explains many differences between the exist-

ing models of sequentiality. We restrict ourselves to sequential games played on

decision trees [24,1,26,15,5] and leave the so-called arena games [22,32,3] for an-

other study. So, a sequential game means here a triple A = (MA, λA, PA) where

(MA, λA) is a polarized alphabet of moves, in which λA : MA −→ {−1,+1}
assigns a polarity +1 (Player) or −1 (Opponent) to every move; and PA is a non-

empty prefix-closed set of finite strings over the alphabet MA, called the plays of

the game A. We will consider only “negative” games, in which a play is either

empty, or starts by an Opponent move.

Every sequential game A is represented as a rooted tree, whose branches coincide

with the plays of A. A play s = m1 · · ·mk is called alternated when λA(mj) =
(−1)j for every 1 ≤ j ≤ k . The sub-tree of alternated plays is denoted alt(A). It is

a bipartite graph, whose nodes (=branches=plays) are assigned polarity +1 (Player)

when the distance to the root (=the length of the branch) is even, and polarity −1
(Opponent) otherwise. Note that the root has polarity Player in a negative game.

Now, a strategy σ of A is defined as a subtree of alt(A) which branches only at

Player nodes: that is, the moves m1 and m2 are equal when s ∈ σ is of odd-length,

and s · m1 ∈ σ and s · m2 ∈ σ. This definition is more liberal than what one

generally finds in the litterature, because it enables strategies to withdraw and play

“error” (or rather: “I loose”) at any point of the interaction. A strategy in the usual

sense is just an error-free strategy, that is, a strategy σ in which every odd-length

play s ∈ σ may be extended to a (necessarily unique) even-length play s ·m ∈ σ,

for m a Player move.

There exist several models of intuitionistic linear logic based on sequential games.

We will organize them here according to a series of simple distinctions:

(1) error-aware vs. error-free: a strategy is allowed (error-aware model) or is not

allowed (error-free model) to withdraw and play “error”;

(2) alternated vs. non alternated: the interpretation [T ] of every formula T is al-

ternated (ie. [T ] = alt([T ])) or not necessarily alternated;

(3) backtracking vs. repetitive: Opponent repeats the same question to Player as

many times as necessary (repetitive model) or Opponent remembers Player’s

answers, and thus does not need to repeat a question twice (backtracking

model);

(4) uniform vs. non uniform: this distinction holds only in repetitive models: when

Opponent asks Player the same question several times, Player always provides

the same answer to Opponent (uniform model) or may vary his answers in the

course of the interaction (non uniform model.) Note that every backtracking

model may be called uniform in the sense that Player provides his answer once

and for all.

Two remarkable models lie at both extremes of the spectrum:

• Lamarche [26] reformulates Berry and Curien sequential algorithm model of

PCF [9] as an error-free, alternated, backtracking, uniform game model of in-

tuitionistic linear logic. The interested reader will find a nice exposition of that
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work by Curien in [15,5]

• We indicate in section 7.5 that the less constrained of all arena game models,

introduced by Abramsky, Honda and McCusker [2] is equivalent to an error-

free, non alternated, repetitive, non uniform game model of intuitionistic linear

logic.

Intermediate models were also considered in the litterature, most notably an al-

ternated, repetitive, non uniform model by Hyland in [21]. We connect all these

models by coercion laws in section 7; and deduce the following “topography” of

models:

(a) All error-aware hierarchies are related by back-and-forth translations, and thus

collapse extensionally to the same hierarchy: Berry and Curien sequential al-

gorithm hierarchy with one error, what we call the manifestly sequential hier-

archy after Cartwright, Curien and Felleisen [9,14].

(b) All error-free hierarchies are related by back-and-forth translations, and thus

collapse extensionally to the same hierarchy: Bucciarelli and Ehrhard strongly

stable hierarchy, by Ehrhard collapse theorem [17].

(c) All error-aware and error-free hierarchies are related by back-and-forth trans-

lations when erroes are not taken into account in the base types (using partial

equivalence relations).

There is a recent thesis (defended by Longley [28] among others) that every suf-

ficiently expressive error-free model of sequential computations collapses to the

strongly stable hierarchy. After points (a)(b)(c), it is natural to factorize Longley’s

thesis into:

(1) a thesis: every sufficiently expressive error-aware model of sequential com-

putations collapses to the manifestly sequential hierarchy,

(2) a fact: the manifestly sequential hierarchy collapses to the strongly stable hi-

erarchy when errors are not taken into account in the base types.

Diagrammatically:

Any sufficiently expressive model of sequentiality with errors

extensional collapse (1)
��

Manifestly sequential hierarchy

extensional collapse (2)
��

Strongly stable hierarchy

This sits the manifestly sequential hierarchy (with one or several errors) at a key po-

sition in the theory of sequentiality, and reveals at the same time its true nature: the

extensional collapse of other (possibly more immediate) models of sequentiality.

Synopsis. In section 2, we deliver the necessary preliminaries on categorical models

of linear logic, hierarchies of simple types, and extensional collapse. In section 3,

we formulate the notion of back-and-forth translation between hierarchies of types,

and prove that two hierarchies related by a back-and-forth translation collapse to
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the same extensional hierarchy. In section 4, we axiomatize the notion of linear

coercion between models of linear logic. Our main theorem 15 appears in section

5. It states that two models related by a linear coercion, induce hierarchies related

by a back-and-forth translation. In section 6, we illustrate the theorem by relating

the qualitative and quantitative exponentials on coherence (and hypercoherence)

space models ; we also analyze in detail the action of the back-and-forth transla-

tion at types o ⇒ o and (o ⇒ o) ⇒ o. In section 7, we introduce the error-free

and error-aware variants of two categories of sequential games, and compare three

exponential structures on these categories: backtracking, repetitive uniform, and

repetitive non uniform. We establish a series of linear coercions between the ex-

ponentials and models, and deduce from it that (1) all error-aware models collapse

to the manifestly sequential hierarchy, and (2) all error-free models collapse to the

strongly stable hierarchy.

Related works. T. Ehrhard [17] proves that the sequential algorithm hierarchy [9]

collapses to the strongly stable hierarchy [13]. This result is important because it

relates for the first time a static and a dynamic model of sequentiality. The theorem

is proved another time by J. Van Oosten [36] and J. Longley [28] in a similar and

somewhat indirect way: first, they establish that every finite strongly stable func-

tional is equal to a PCF-term applied to some strongly stable functionals of small

order (several of them of order 2 in [17], exactly one of order 3 in [28]) ; then they

deduce Ehrhard’s collapse theorem by denotational techniques.

After publishing his collapse theorem in [17], T. Ehrhard started studying other

(possibly simpler) cases of extensional collapse, in order to extract general proof-

techniques, which would lead ideally to a more direct proof of his theorem. For

instance, T. Ehrhard establishes in collaboration with N. Barreiro [7] that the quan-

titative hierarchy of coherence spaces collapses to qualitative one, by exhibiting

an heterogeneous relation between the two hierarchies, which is then shown to be

onto for finite functionals. The same pattern of proof appears in A. Bucciarelli’s

work on bidomains [12]. One feels that a general proof-technique remains to be

extracted, but the proof in [7] does not help much, because it requires a very pre-

cise and “anatomic” description of the extensional collapse, which seems difficult

to generalize to other situations.

In a recent article inspired by concurrency [31], the author relates Lamarche se-

quential games and Ehrhard hypercoherence spaces; and delivers an “anatomic”

proof of Ehrhard’s collapse theorem based on games semantics. The present article

results from the author’s efforts to simplify the proof of [31] as much as possible:

in particular, a back-and-forth translation between the sequential algorithm hierar-

chies on the flat and on the lazy natural numbers enables to decompose the proof

of [31] in two steps: first, the finitely branching games are treated by a compact-

ness argument (König’s lemma); the result is then generalized to (possibly infinitely

branching) games like the flat natural numbers, by exhibiting the back-and-forth

translation and applying the results established in the present article.

Finally, recent discussions with J. Longley indicate that our definition of linear co-

ercion between models of linear logic makes sense in (a linear and typed version
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of) the 2-category of Partial Combinatory Algebra considered in [27]. This point

deserves to be further investigated, because it could very well lead to a more con-

ceptual proof of corollary 16 based on realisability.

2 Preliminaries

2.1 Monoidal closed categories

By monoidal closed category, we mean a monoidal category C in which the functor

(A ⊗ −) : C −→ C has a right adjoint (A ⊸ −) : C −→ C for every object A of

C. Thanks to a theorem on adjunctions with parameters [29], the family of functors

(A ⊸ −) may be seen as a bifunctor ⊸: Cop × C −→ C for which there exists a

family of bijections

φA,B,C : C(A⊗B,C) ∼= C(B,A ⊸ C)

natural in A contravariantly, in B,C covariantly. In particular, every morphism

f ∈ C(A,B) is in one-to-one relation with its name pfq ∈ C(1, A ⊸ B) defined

as pfq = φA,1,B(f ◦ ρ−1
A ).

Remark. We write 1 for the monoidal unit of the category C, instead of the usual

notation I . We follow here an habit of linear logic, dating back to the origin of the

subject [19].

By (symmetric) monoidal functor between (symmetric) monoidal categories, we

mean the lax definition, that is, a functor F : C −→ D equipped with mediating

natural transformations

mA,B : F (A) ⊗N F (B) −→ F (A⊗MB) m1M
: 1N −→ F (1M)

making the usual diagrams commute. It is worth mentioning here a useful property

of monoidal functors.

Lemma 1 Suppose that F : C −→ D is a monoidal functor between monoidal

closed categories. Then, there exist a family q of morphisms indexed by objects

A,B of C:

qA,B : F (A ⊸M B) −→ (FA ⊸N FB)

such that, for every morphism f : A −→ B, the diagram below commutes:

F (1M)
F (pfq) //F (A ⊸M B)

qA,B

��
1N

ppFfqq //

m1M

OO

(FA ⊸N FB)

(5)

where pfq and ppFfqq are the names of the morphisms f in C and Ff in D.
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PROOF The morphism qA,B is defined as the unique morphism making the diagram

below commute:

FA⊗N F (A ⊸M B)
mA,A⊸MB //

FA⊗qA,B

��

F (A⊗M (A ⊸M B))

F (evone
A,B

)

��
FA⊗N (FA ⊸N FB)

evtwo
FA,FB //FB

Commutativity of diagram (5) follows easily.

2.2 Models of intuitionistic linear logic

There exist several categorical definitions of what a model of intuitionistic linear

logic should be. Instead of reviewing them here, which we do in [30], we will only

indicate what properties of a model we need in this article. The reader interested in

full definitions is advised to look at [21,10,30].

So, every model M of intuitionistic linear logic is given by (among other things) a

symmetric monoidal closed category C equipped with what we call here an expo-

nential structure, that is:

• a functor ! of the category C into itself,

• a morphism εA : !A −→ A for every object A of the category,

• a morphism fbang : 1 −→!A for every morphism f : 1 −→ A of the category C,

verifying:

1
f //A = 1

fbang
// !A

εA //A (6)

and making the diagram below commute for every morphism g : A −→ B:

!A

!g

��

1

fbang 11

(g◦f)bang -- !B

(7)

Remark. Another property which should be mentioned here, even if it is not used in

the article, is that the endofunctor ! defines a comonad over the category C, whose

associated co-kleisli category happens to be cartesian closed.

2.3 Hierarchies of types

In this article, we consider the class of simple types T built over a fixed class K of

constant types κ ∈ K, given by the grammar below:

T ::= κ ∈ K | T ⇒ T.
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The typical example isK = {o, ι} where o and ι denote the boolean and the integer

base types respectively.

A hierarchy ([−], ·,∼) over K consists of:

(1) a family of sets [T ] indexed by simple type T ,

(2) a family of functions indexed by simple types U, V :

·UV : [U ⇒ V ] × [U ] −→ [V ].

(3) a partial equivalence relation ∼T over the set [T ], for every simple type T ,

which verifies that, for every simple types U, V , and every elements f, g ∈
[U ⇒ V ]:

f ∼U⇒V g ⇐⇒ (∀x, y ∈ [U ], x ∼U y ⇒ f · x ∼V g · y). (8)

Given f ∈ [U ⇒ V ] and x ∈ [U ], we write f ·UV x or even f · x for the image of

(f, x) by ·UV in [V ].

Remark. For expository reasons mainly, we add the family of partial equivalence

relations (point 3 above) to the usual definition of a hierarchy ([−], ·). Let us clarify

this. Property (8) implies that the family of partial equivalence relations is generated

by the sub-family (∼κ)κ∈K of partial equivalence relations at constant types. So, a

hierarchy in our sense is simply a hierarchy ([−], ·) in the usual sense, equipped

with a partial equivalence relation ∼κ for every constant type κ ∈ K. We find

convenient to integrate this family (∼κ)κ∈K in our definition, in order to discuss

cases of extensional collapse in which the choice of (∼κ)κ∈K matters.

2.4 Models of linear logic over a class of constants

A model M of intuitionistic linear logic over a class K of constants, is a model of

intuitionistic linear logic equipped, for every constant type κ ∈ K, with:

(1) an object Xκ of the underlying monoidal category C,

(2) a partial equivalence relation ∼M
κ over the set C(1, Xκ) of global elements of

Xκ in the category C.

Any such model M induces a hierarchy ([−], ·,∼) over K, obtained by regarding

every object [T ] of the category C as its set HomC(1, [T ]) of global elements. The

construction goes as follows. Every constant type κ ∈ K is associated to the object

[κ] = Xκ; and every simple type T = U ⇒ V is associated to the object [T ]
deduced from [U ] and [V ] by Girard’s formula:

[U ⇒ V ] = ! [U ] ⊸ [V ].

The function ·UV : [U ⇒ V ] × [U ] −→ [V ] associates to the pair f : 1 −→ [U ⇒
V ] and x : 1 −→ [U ] the composite f · x : 1 −→ [V ] in the category C:

1
f ·x // [V ] = 1 xbang // ![U ]

xfy // [V ]

10



Here, the morphism xfy denotes the “co-name” of f , that is the unique morphism

![U ] −→ [V ] such that f = pxfyq.

The partial equivalence relation ∼T over the set of global elements HomC(1, [T ])
is given by ∼M

κ at a constant type κ ∈ K, and deduced from ∼U and ∼V by property

(8) at a simple type T = U ⇒ V .

2.5 Extensional collapse

A hierarchy ([−], ·,∼) is extensional when the partial equivalence relation ∼T is

the equality at every simple type T . In that case, it follows from property (8) that,

for every type U ⇒ V and elements f, g of [U ⇒ V ], one has:

(∀x ∈ [U ], f · x = g · x) ⇒ f = g.

Every hierarchy ([−], ·,∼) induces an extensional hierarchy ([−]ext, �,=) called

its extensional collapse. The construction goes as follows: [T ]ext denotes the set

[T ]/∼T of ∼T -classes in [T ]; while f �UV a denotes the ∼V -class of f ·UV a, for

every two elements f of the ∼U⇒V -class f and a of the ∼U -class a. We leave

the reader check that the definition works, and induces an extensional hierarchy

([−]ext, �,=).

3 Back-and-forth translations between hierarchies of types

In this section, we introduce the notion of back-and-forth translation between hier-

archies of types, and show that two hierarchies related by such a translation collapse

to the same extensional hierarchy (lemma 6).

3.1 The definition of back-and-forth translation

Definition 2 A back-and-forth translation between two hierarchies of types

([−], ·,∼) and ([[−]], ·,≈)

is the data of two families of (set-theoretic) functions

φT : [T ] −→ [[T ]] ψT : [[T ]] −→ [T ]

indexed by simple types, such that

(1) the two functions φκ and ψκ preserve the partial equivalence relations at any

base type κ ∈ K, that is:

∀x, y ∈ [κ], x ∼κ y ⇒ φκ(x) ≈κ φκ(y),

∀x, y ∈ [[κ]], x ≈κ y ⇒ ψκ(x) ∼κ ψκ(y),

11



(2) the two functions φκ and ψκ are “weak inverse” at any base type κ ∈ K, that

is:

∀x, y ∈ [κ], x ∼κ y ⇒ x ∼κ ψκ(φκ(y)),

∀x, y ∈ [[κ]], x ≈κ y ⇒ x ≈κ φκ(ψκ(y)),

(3) for every types U, V , and elements f ∈ [U ⇒ V ] and h ∈ [[U ]]:

φU⇒V (f) · h ≈V φV (f · ψU(h)), (9)

(4) for every types U, V , and elements f ∈ [[U ⇒ V ]] and h ∈ [U ]:

ψU⇒V (f) · h ∼V ψV (f · φU(h)). (10)

Remark. Our definition of back-and-forth translation may be weakened by requir-

ing equivalence (9) only when f ∼U⇒V f and h ≈U h, and similarly for equiva-

lence (10). Our main result, lemma 6, still holds in that weaker situation — which

we find for example in lemma 26.

Remark. Back-and-forth translations define a category between hierarchies, with

obvious identities, and composition defined as follows. Suppose that families of

functions:

φT : [T ] ⇄ [[T ]] : ψT φ′
T : [[T ]] ⇄ [[[T ]]] : ψ′

T

define back-and-forth translations between the hierarchies [−] and [[−]] on one hand,

and between the hierarchies [[−]] and [[[−]]] on the other hand. Then, the families of

functions obtained by composition:

φ′
T ◦ φT : [T ] ⇄ [[[T ]]] : ψT ◦ ψ′

T

defines a back-and-forth translation between the hierarchies [−] and [[[−]]].

3.2 Back-and-forth translation and extensional collapse

Here, we prove that the existence of a back-and-forth translation between [−] and

[[−]] implies that the two hierarchies collapse to the same extensional hierarchy.

Lemma 3 (preservation) ∼T and ≈T are preserved by translation. More precisely:

∀f, g ∈ [T ], f ∼T g ⇒ φT (f) ≈T φT (g),

∀f, g ∈ [[T ]], f ≈T g ⇒ ψT (f) ∼T ψT (g).

PROOF By induction on T . The property holds for every base type κ ∈ K by

definition of a back-and-forth translation, point (1). Then, suppose that the property

is established for types U and V ; and consider any two elements f, g ∈ [U ⇒ V ]
such that f ∼U⇒V g. We want to show that

φU⇒V (f) ≈U⇒V φU⇒V (g). (11)

12



To that purpose, we consider h ≈U h
′ and prove that

φU⇒V (f) · h ≈V φU⇒V (g) · h′.

By definition of the back-and-forth translation, this reduces to

φV (f · ψU(h)) ≈V φV (g · ψU(h′)). (12)

Let us prove claim (12). By induction hypothesis on U , and hypothesis h ≈U h
′:

ψU(h) ∼U ψU(h′).

From this, and hypothesis f ∼U⇒V g, it follows:

f · ψU(h) ∼V g · ψU(h′).

We conclude that claim (12) holds by induction hypothesis on V . We have just

proved (11). We prove

∀f, g ∈ [[U ⇒ V ]], f ≈U⇒V g ⇒ ψU⇒V (f) ∼U⇒V ψU⇒V (g)

in a similar fashion. This concludes our proof by induction.

Lemma 4 (forth and back)

∀f, g ∈ [T ], f ∼T g ⇒ f ∼T ψT (φT (g)).

PROOF By induction on T . The property holds for every base type κ ∈ K by

definition of a back-and-forth translation, point (2). Now, suppose that f ∼U⇒V g.

We prove that

f ∼U⇒V ψU⇒V (φU⇒V (g))

by establishing that, for every h ∼U h
′:

f · h ∼V ψU⇒V (φU⇒V (g)) · h′. (13)

The right-hand side of the equivalence may be reformulated by definition of a back-

and-forth translation:

ψU⇒V (φU⇒V (g)) · h′ ∼V ψV (φU⇒V (g) · φU(h′))

∼V ψV (φV (g · ψU(φU(h′)))).

Equation (13) follows by induction hypothesis onU and V , and hypothesis f ∼U⇒V

g.

Lemma 5 (back and forth)

∀f, g ∈ [[T ]], f ≈T g ⇒ f ≈T φT (ψT (g)).

Lemma 6 Two hierarchies related by a back-and-forth translation, collapse to the

same extensional hierarchy.
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4 Linear coercion between models of linear logic

In sections 4.2, 4.3 and 4.4, we define what we mean by a linear coercion between

two models M and N of intuitionistic linear logic over a class K of base types.

Before that, in section 4.1, we focus on the particular case of two models M and N

constructed over the same underlying monoidal category C, and the same interpre-

tation Xκ and ∼κ of the base types κ ∈ K.

Notation: in this section 4, as well as in section 5, we instantiate the notation fbang

introduced in section 2.2, and write

1M

f† // !MA 1N

g†† // !NB

for the morphisms induced from the exponential structures of M and N applied on

the morphism f : 1M −→ A in C and g : 1N −→ B in D, respectively.

4.1 Linear coercion between exponential structures

We specialize our later definition of linear coercion (see section 4.4) to the particu-

lar case of two models M and N of linear logic with the same underlying monoidal

category C. In that case, the two models M and N are only distinguished by their

respective exponential structures !M and !N.

Definition 7 (linear coercion) A linear coercion between two exponential struc-

tures !M and !N consists in two families η and ̺ of morphisms indexed by objects

of the category C

!MA
ηA // !NA

̺A // !MA

making the two diagrams below commute,

!MA

ηA

��

1

f† 22

f†† ,,
!NA

!NA

̺A

��

1

f†† 22

f† ,,
!MA

for every morphism f : 1 −→ A of the category C.

Definition 7 is an instance of a linear coercion between two models of intuitionistic

linear logic over K, as formulated in section 4.4. More precisely, every choice of

a family (Xκ)κ∈K of objects of the category, and of a family (∼κ)κ∈K of partial

equivalence relations over their global elements, induces a model M and N of intu-

itionistic linear logic over K. The linear coercion between !M and !N formulated

in definition 7 induces a linear coercion between the two models M and N in the

sense of definition 10. In particular, theorem 15 holds, and thus, for any choice

of families (Xκ)κ∈K and (∼κ)κ∈K , the two hierarchies deduced from !M and !N

collapse to the same extensional hierarchy.
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4.2 Monoidal elementwise transformation

Definition 8 (monoidal elementwise transformation) A monoidal elementwise trans-

formation ξ : F ⇒ G between two monoidal functors (F,m) : C −→ D and

(G, n) : C −→ D is a family of morphisms ξA : F (A) −→ G(A) indexed by

objects of C, making the two diagrams commute:

F (1C)

ξ1C

��

1D

m1C

88

n1C &&
G(1C)

F (1C)

ξ1C

��

F (f) //F (A)

ξA

��
G(1C)

G(f) //G(A)

for every morphism f : 1C −→ A.

Remark. Elementwise means that the naturality diagram commutes for every global

elements f : 1 −→ A; and monoidal that the object 1 believes that the two coher-

ence diagrams of monoidal natural transformations commute. Check in particular

that, for every global element f : 1C −→ A and g : 1C −→ B, the diagram below

commutes:

F (A) ⊗ F (B)
mA,B //

ξA⊗ξB
��

F (A⊗B)

ξA⊗B

��
G(A) ⊗G(B)

nA,B //G(A⊗B)

when precomposed with the global element (F (f) ⊗ F (g)) ◦ (m1C
⊗m1C

) ◦ ρ−1
1D

.

Remark. In the particular case of two monoidal functors F : C −→ D and G :
D −→ C, a monoidal elementwise transformation ξ : IdC ⇒ GF (resp. ζ : IdD ⇒
FG) is alternatively defined as a family of morphisms making the lefthand (resp.

righthand) diagram below commute:

1C

f //

n1D

��

A

ξA

��

G(1D)

G(m1C
)

��
GF (1C)

GF (f) //GF (A)

1D

g //

m1C

��

B

ζB

��

F (1C)

F (n1D
)

��
FG(1D)

FG(g) //FG(B)

(14)

for every pair of global elements f : 1C −→ A and g : 1D −→ B.

4.3 Distributive law

Suppose given two models M and N of intuitionistic linear logic, and a monoidal

functor (F,m) : (C,⊗M, 1M) −→ (D,⊗N, 1N) between their underlying monoidal
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categories C and D.

Definition 9 (distributive law) A distributive law

̺ : !NF ⇒ F !M

is a family of morphisms (̺A) of D indexed by objects of C, making the diagram

below commute for every morphism f : 1M −→ A of the category C:

1N

m1M

��

(F (f) ◦ m1M
)
††

// !NF (A)

̺A

��
F (1M)

F (f†) //F ( !MA)

(15)

Remark. In every model of intuitionistic linear logic, the functor ! defines a mo-

noidal comonad, see [21,10,30]. So, a condition stronger than commutativity of

diagram (15) would be to require that ̺ is a monoidal natural transformation ̺ :
!NF

·
−→ F !M. Commutativity of diagram (15) would then follow from commu-

tativity of the diagram below, which follows from monoidality (lefthand-side) and

naturality (righthand-side) of ̺. Note that m1M
and n1N

denote the monoidal coer-

cions of !M and !N respectively.

1N

n1N //

m1M

��

!N1N

!Nm1M // !NF (1M)

̺1M

��

!NF (f) // !NF (A)

̺A

��
F (1M)

F (m1M
)

//F ( !M1M)
F ( !Mf) //F ( !MA)

We choose definition 9 instead of this more conceptual definition, for practical

reasons. In the introduction, we exhibit a family of morphisms ̺A : !msetA −→ !setA
in the category of coherence spaces, see (1). This family defines a distributive law

in our sense (definition 9) but at the same time, is not natural in A. Indeed, if

∆ : A −→ A&A denotes the diagonal morphism induced by the cartesian product

&, the diagram below does not necessarily commute, for similar reasons as diagram

(2) (again, take A = ⊥ the singleton coherence space).

!msetA
̺A //

!mset∆A

��

!setA

!set∆A

��
!mset(A&A)

̺A&A // !set(A&A)

Remark. Our definition differs also from Hyland and Schalk’s definition [23] of

a linearly distributive law λ : !NF ⇒ F !N as a distributive law in the sense of

Beck [8,34] respecting the comonoid structure, that is, making the diagram below
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commute:

1N

m1M

��

!NF (A)
eN

FAoo
dN

F (A) //

λA

��

!NF (A)⊗N !NFA

λA⊗NλA

��
F ( !MA) ⊗N F ( !MA)

m
!MA, !MA

��
F (1M) F ( !MA)

F (eM

A
)oo F (dM

A
) //F ( !MA⊗M !MA)

(16)

for every object A of the category C. This definition implies that the functor F
lifts to a functor between the kleisli category of cofree coalgebras — which does

not necessarily happen with our notion of distributivity. Again, we choose a less

conceptual definition for practical reasons: diagram (16) specializes as diagram (2)

when applied to the category COH equipped with the qualitative and quantitative

exponentials !set and !mset, and this diagram (2) does not commute generally.

4.4 Linear coercion between models of linear logic

In this section, we consider two models M and N of intuitionistic linear logic over

a class K of constants, as formulated in section 2.4. Their underlying monoidal

categories are denoted C and D, and their families of constants (Xκ,∼κ)κ∈K and

(Yκ,≈κ)κ∈K respectively.

Definition 10 (linear coercion) A linear coercion between M and N is given by:

(1) a pair of monoidal functors (F,m) : C −→ D and (G, n) : D −→ C,
(2) a pair of monoidal elementwise transformations ξ : IdC ⇒ GF and ζ :

IdD ⇒ FG,

(3) a pair of distributive laws η : !MG⇒ G !N and ̺ : !NF ⇒ F !M,

(4) for every constant κ ∈ K, a pair of morphisms φκ : F (Xκ) −→ Yκ and

ψκ : G(Yκ) −→ Xκ making the two diagrams below commute modulo ≈κ and

∼κ respectively, when the two morphisms x, y : 1M −→ Xκ verify x ∼κ y:

F (1M)
F (x) //F (Xκ)

φκ

��
1N

m1M

88

m1M &&

≈κ Yκ

F (1M)
F (y)

//F (Xκ)
φκ

CC

1M

n1N

��

x //

∼κ

Xκ

G(1N)

G(m1M
)

��

G(Yκ)

ψκ

OO

GF (1M)
GF (y)

//GF (Xκ)

G(φκ)

OO

and making the two diagrams below commute modulo ∼κ and ≈κ respectively,
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when the two morphisms x, y : 1N −→ Yκ verify x ≈κ y:

G(1N)
G(x) //G(Yκ)

ψκ

��
1M

n1N

77

n1N ''

∼κ Xκ

G(1N)
G(y)

//G(Yκ)
ψκ

CC

1N

m1M

��

x //

≈κ

Yκ

F (1M)

F (n1N
)

��

F (Xκ)

φκ

OO

FG(1N)
FG(y)

//FG(Yκ)

F (ψκ)

OO

Remark. It is not difficult to show that, given a linear coercion between M and N,

the diagrams below commute for every pair of morphisms f : 1M −→ A in the

category C and g : 1N −→ B in the category D:

1M

n1N

��

f† // !MA
!MξA��

!MGF (A)
ηF (A)
��

G(1N)
G( F (f) ◦ m1M

)
††

//G !NF (A)

1N

m1M

��

g†† // !NB
!MζB��

!NFG(B)
̺G(B)
��

F (1M)
F( G(g) ◦ n1N

)
†

//F !MG(B)

(17)

Point (2) of definition 10 is slightly enigmatic. It is mainly here to ensure the exis-

tence of morphisms A −→ G !NF (A) and B −→ F !MG(B) making the diagrams

(17) commute. In fact, we could very well remove point (2) of definition 10 and

forget the two transformations ξ and ζ, but at a heavy price: we need to replace the

distributive laws of point (3) by the (slightly unorthodox) laws !M ⇒ F !NG and

!N ⇒ G !NF ; and we must require accordingly that the straightforward variant of

diagram (17) commutes. If we do so, our main result (theorem 15 in section 5) still

holds.

5 From linear coercions to back-and-forth translations

We prove our main result here (theorem 15). Given two models M and N of in-

tuitionistic linear logic over a class K of constants, we proceed as in section 2.4,

and derive their respective hierarchies ([−], ·,∼) and ([[−]], ·,≈). Theorem 15 states

that there exists a back-and-forth translation between the hierarchies ([−], ·,∼) and

([[−]], ·,≈) when there exists a linear coercion between the two models M and N.

So, we suppose from now on that the two models M and N are related by a linear

coercion, with same notations as in section 4.4. Our first step is to extend to every

simple type T the families of coercion maps (φκ)κ∈K and (ψκ)κ∈K given at constant

types in definition 10.

Definition 11 (coercion maps at every type (1)) The two families of morphisms

below

F ([T ])
φT // [[T ]] G([[T ]])

ψT // [T ]
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indexed by simple types T , are defined by structural induction:

φU⇒V =
((

F ( !MψU) ◦ ̺G[[U ]]◦ !Nζ[[U ]]

)

⊸N φV

)

◦ qF!M [U ],[V ]

ψU⇒V =
((

G( !NφU) ◦ ηF [U ]◦ !Mξ[U ]

)

⊸M ψV

)

◦ qG!N [[U ]],[[V ]]

Definition 12 (coercion maps at every type (2)) For every element f ∈ [T ], the

element φT (f) ∈ [[T ]] is defined as follows:

1N

m1M //F (1M)
F (f) //F ([T ])

φT // [[T ]]

Similarly, for every element f ∈ [[T ]], the element ψT (f) ∈ [T ] is defined as follows:

1M

n1N //G(1N)
G(f) //G([[T ]])

ψT // [T ]

Lemma 13 For every element f ∈ [U ⇒ V ] and h ∈ [[U ]],

φU⇒V (f) · h = φV (f · ψU(h)).

PROOF Consider two elements f ∈ [U ⇒ V ] and h ∈ [[U ]].
It is worth recalling that the element φU⇒V (f) · h ∈ [[V ]] is defined in section 2.4

as the composite:

1N
h†† // ![[U ]]

xxφU⇒V (f)yy // [[V ]]

where xxφU⇒V (f)yy denotes the morphism of name φU⇒V (f) ∈ [[U ⇒ V ]]. Now,

let

xfy : !M[U ] −→ [V ]

denote the morphism of name f = pxfyq in the category C; and let

ppFxfyqq : 1N −→ F ( !M[U ]) ⊸N F ([V ])

denote the name of the morphism Fxfy in the category D.

By lemma 1, the diagram below commutes:

F (1M)
Ff //F ( !M[U ] ⊸M [V ])

qF

!M [U ],[V ]

��
1N

ppFxfyqq //

m1M

OO

(F !M[U ]) ⊸N F ([V ])

From this and definitions 11 and 12, it follows that φU⇒V (f) is equal to the mor-

phism

1N

ppFxfyqq //F ( !M[U ]) ⊸N F ([V ])
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post-composed with

(

F ( !MψU) ◦ ̺G[[U ]]◦ !Nζ[[U ]]

)

⊸N φV .

From this, and naturality in A and B of the bijection

D(A,B) ∼= D(1N, A ⊸N B)

the diagram below commutes:

!N[[U ]]
xxφU⇒V (f)yy //

!Nζ[[U ]]

��

[[V ]]

!NFG[[U ]]

̺G[[U ]]

��
F !MG[[U ]]

F !MψU

��
F !M[U ]

Fxfy //F [V ]

φV

OO

(18)

Now, we show that diagram (19) commutes. Diagram a. commutes by the property

of exponential structures recalled in section 2.2. Diagram b. commutes by defi-

nition 8 of a monoidal elementwise transformation ζ : IdC ⇒ FG. Diagram c.

commutes by definition of the distributive law ρ. Finally, diagram d. commutes by

definition 12 of ψU(h) as the composite

ψU(h) = ψU ◦G(h) ◦m1N

and functoriality of F . We conclude that diagram (19) commutes.

1N
h†† //

a.

!N[[U ]]
xxφU⇒V (f)yy //

!Nζ[[U ]]

��

[[V ]]

1N (ζ[[U ]] ◦ h)
†† //

b.

!NFG[[U ]]

1N (F (G(h) ◦ n1N
) ◦ m1M

)
†† //

m1M

��
c.

!NFG[[U ]]

̺G[[U ]]

��
F (1M) F( G(h) ◦ n1N

)
† //

d.

F !MG[[U ]]

F !MψU

��
F (1M)

F( ψU (h) )
†

//F !M[U ]
Fxfy //F [V ]

φV

OO

(19)

It follows that φU⇒V (f) · h is equal to the composite

1N

m1M //F (1M)
F (f · ψU (h)) //F [V ]

φV // [[V ]]

20



which is precisely the element φV (f · ψU(h)). This concludes the proof.

Lemma 14 For every elements f ∈ [[U ⇒ V ]] and h ∈ [U ],

ψU⇒V (f) · h = ψV (f · φU(h)).

PROOF As for lemma 13.

Theorem 15 (main result) Suppose that two models of intuitionistic linear logic

over a class K of constant types M and N are related by a linear coercion. Then,

their associated hierarchies ([−], ·,∼) and ([[−]], ·,≈) are related by a back-and-

forth translation.

In that case, it follows from lemma 6 that:

Corollary 16 The two hierarchies ([−], ·,∼) and ([[−]], ·,≈) collapse to the same

extensional hierarchy.

6 Application 1: coherence and hypercoherence spaces

6.1 A linear coercion between the qualitative and the quantitative exponentials

In the introduction, we exhibit a family of embedding-retraction pairs (1) in the

category COH of coherence spaces:

ηA : !setA −→ !msetA, ̺A : !msetA −→ !setA.

We claim that the families η and ̺ define a linear coercion (in the sense of definition

7) between the exponentials !set and !mset. Indeed, consider any morphism f :
1 −→ A, or equivalently any clique f of A. The cliques f set of !setA and fmset of

!msetA are defined as follows:

f set = {x ∈ | !setA|
∣
∣
∣ x ⊂ f}, fmset = {w ∈ | !msetA|

∣
∣
∣ support(w) ⊂ f}.

The equality f set ◦ ηA = fmset holds by definition of fmset; while the equality

fmset ◦ ̺A = f set holds because for every element x ∈ | !setA|,

x ⊂ f ⇐⇒ support(char(x)) ⊂ f.

So, theorem 15 implies:

Corollary 17 (Barreiro-Ehrhard) The qualitative hierarchy over coherence spaces,

(also called the stable hierarchy) is the extensional collapse of the quantitative one.

Theorem 15 applied in a similar fashion to the hypercoherence space model intro-

duced in [16], shows that:

Corollary 18 The qualitative hierarchy over hypercoherence spaces (also called

the strongly stable hierarchy) is the extensional collapse of the quantitative one.

Remark. The interested reader will find theorem 15 applied in Boudes’ PhD the-

sis [11] to relate refinements of the quantitative and qualitative strongly stable hier-

archies.
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6.2 An illustration at types o⇒ o and (o⇒ o) ⇒ o

In our proof of corollary 17, we exhibit for every type T an embedding-retraction

pair

[T ]set
φT // [T ]mset ψT // [T ]set

between the qualitative and quantitative interpretations [T ]set and [T ]mset in the cat-

egory of coherence spaces. The morphism ψT transports any clique in [T ]mset to

its “extensional content” in [T ]set, while φT transports any function in [T ]set to a

“canonical representative” in [T ]mset. By construction, the composite ψT ◦φT is the

identity on [T ]set, and the composite p = φT ◦ψT transports every clique f ∈ [T ]mset

to a “canonical form” p(f) ∈ [T ]mset. In order to illustrate this, let us compute the

canonical form of a clique, for the types T = o ⇒ o and T = (o ⇒ o) ⇒ o
of the hierarchy over the boolean base type (that is: K = {o}). We recall that the

coherence space Xo = 1 ⊕ 1 representing the booleans has exactly two elements

true and false in its web, which are incoherent.

When T = (o⇒ o), the elements f ∈ [o⇒ o]mset are of five possible forms:

(1) f is empty, (2) f = {([−], b)} is constant,

(3) f = {(

k
︷ ︸︸ ︷

true, ..., true], b)}, (4) f = {([

k
︷ ︸︸ ︷

false, ..., false], b)},

(5) f = {([

k
︷ ︸︸ ︷

true, ..., true], b), ([

k′
︷ ︸︸ ︷

false, ..., false], b′)}.

for b, b′ ∈ {true, false} and k, k′ ≥ 1. The canonical form p(f) is computed as

follows:

• p(f) = f when f is empty, or constant,

• otherwise, p(f) is f in which every element ([b, ..., b], b′) ∈ f is altered into the

element ([b], b′) ∈ p(f), for b = true and b = false.

Intuitively, transforming f into p(f) amounts to replacing the “stuttering” f by the

clique p(f) which “asks its questions only once”.

When T = (o ⇒ o) ⇒ o, a clique f ∈ [T ]mset contains elements of five possible

forms only:

(1)
(

[−], b
)

(2)
([

j
︷ ︸︸ ︷

([−], b), ..., ([−], b)
]

, b′
)

(3)
([

j
︷ ︸︸ ︷

([truek], b), ..., ([truek], b)
]

, b′
)

(4)
([

j
︷ ︸︸ ︷

([falsek], b), ..., ([falsek], b)
]

, b′
)

(5)
([

j
︷ ︸︸ ︷

([truek], b), ..., ([truek], b),

j′

︷ ︸︸ ︷

([falsek
′

], b′), ..., ([falsek
′

], b′)
]

, b′′
)

.

for b, b′, b′′ ∈ {true, false} and j, j′, k, k′ ≥ 1. Here, [truek] and [falsek] are shorter

notations for the multi-sets [true, ..., true] and [false, ..., false] of cardinality k.
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The translation of f ∈ [T ]mset into p(f) ∈ [T ]mset proceeds as follows:

• step a: if
(

[−], b
)

is element of f , keep it in p(f),

• step b: translate every element in f of the form (2) into the element
(

[([−], b)], b′
)

in p(f),
• step c: remove from f every element of the form (3,4,5) in which k > 1 or

k′ > 1;

• step d: translate every remaining element x of the form (3,4,5) in f , into all

elements of the corresponding form (3,4,5) for every pair of integers k, k′ ≥ 1:

(3)
([

([true, ..., true
︸ ︷︷ ︸

k

], b)
]

, b′
)

,

(4)
([

([false, ..., false
︸ ︷︷ ︸

k

], b)
]

, b′
)

,

(5)
([

([true, ..., true
︸ ︷︷ ︸

k

], b), ([false, ..., false
︸ ︷︷ ︸

k′

], b′)
]

, b′′
)

.

So, intuitively, transforming f into p(f) at type (o⇒ o) ⇒ o amounts to:

• step a: keep the constants,

• step b: replace every Player’s “stuttering questions” by a “single question”,

• step c: remove every check by Player of Opponent’s “stuttering questions”,

• step d: expand every check by Player of an Opponent’s “single question”, by a

check on all equivalent Opponent’s “stuttering questions”.

We would like to illustrate this transformation with an example. Consider the clique

Φ of [((o⇒ o) ⇒ o]mset introduced by Barreiro and Ehrhard in [7]:

Φ = {([[true], true], true), ([[true, true], true], false)}.

The clique Φ “tastes” whether a “function” h ∈ [o ⇒ o]mset requires its argument

true once or twice, before answering true. Since the two cliques {([true], true)}}
and {([true, true], true)}} are equivalent at type o⇒ o, the taster Φ which separates

them, is not equivalent to itself modulo ≈(o⇒o)⇒o.

Now, observe that the clique Φ is transported by ψ(o⇒o)⇒o to the element Ψ ∈
[(o⇒ o) ⇒ o]set below:

Ψ = {{({true}, true)}, true)}.

Part of the information has disappeared in the translation. Recall that the qualitative

hierarchy [−]set is extensional. So, ∼(o⇒o)⇒o is just the equality, and the singleton

Ψ is therefore equivalent to itself modulo ∼(o⇒o)⇒o. The function ψT transports Ψ
back to the canonical element p(Φ) of [(o⇒ o) ⇒ o]mset:

p(Φ) = {([([true, ..., true
︸ ︷︷ ︸

k

], true)], true) | k ≥ 1}

It follows from lemma 3 that p(Φ) is equivalent to itself modulo ≈(o⇒o)⇒o. This

illustrates the fact that the embedding-retraction between [T ]set and [T ]mset defines
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a procedure which “repairs” cliques of [T ]mset by pruning out their non-extensional

behaviours.

Remark. The choice of the projection map ̺A is somewhat arbitrary. For instance,

we may have chosen any of the alternative family of cliques

̺nA = {(n× char(x), x) | x is a finite clique of A}

to play the role of ̺ = ̺1. To clarify our notation, n × char(x) denotes here the

characteristic function of the set x, multiplied by the integer n ≥ 1: that is, the

multiset of support x in which every element is repeated n times. Any of the ̺nA
defines with ηA a linear coercion (and even embedding-projection pair) between

!set and !mset. Observe that the projection p explicated above is already altered at

types o ⇒ o and (o ⇒ o) ⇒ o, by a choice of coercion ̺n different from ̺. For

instance, p(Φ) is replaced by

p′(Φ) = {([([true, ..., true
︸ ︷︷ ︸

k

], true)], false) | k ≥ 1}

when n = 2.

Remark. In their proof that the quantitative hierarchy collapses to the stable hi-

erarchy, Barreiro and Ehrhard deliver an interesting “anatomy” of the extensional

collapse, quite far from what we explain here. It would be instructive to understand

how the two analysis are precisely related.

7 Application 2: sequential games

The definitions of sequential game A = (MA, λA, PA) and of sequential strategy σ
are given in the introduction, and we do not recall them. We only mention that a

strategy σ of A is alternatively defined as a set of alternated plays of A verifying

that, for every play s and moves m,n1, n2:

(1) σ is nonempty: the empty play ǫ is element of σ,

(2) σ is closed under prefix: if s ·m ∈ σ, then s ∈ σ,

(3) σ is deterministic: if s ·m ·n1 ∈ σ and s ·m ·n2 ∈ σ and λA(n1) = λA(n2) =
+1, then s ·m · n1 = s ·m · n2.

As already indicated, this definition enables a strategy to withdraw at any point of

the interaction, and play “error”. The usual definition of error-free strategy is given

in definition 20.

Definition 19 (deadlock,error,fixpoint) We suppose below that σ is a strategy.

• a play s is called maximal in σ when s ∈ σ and ∀m ∈MA, s ·m 6∈ σ,

• a deadlock of σ is an odd-length play s ·m such that s ·m 6∈ σ but s ∈ σ,

• an error of σ is an odd-length play s ·m maximal in σ,

• a fixpoint of σ is an error or an even-length play of σ.

Notation: We write P even
A , P odd

A and P alt
A for the even-length, odd-length and alter-

nated plays of a sequential game A. We write σ : A when σ is a strategy of A, and
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even(σ) and error(σ) and fix(σ) = even(σ) ∪ error(σ) for the sets of even-length

plays, errors and fixpoints of σ respectively.

Definition 20 (error-free strategy) A strategy σ : A is error-free when error(σ) =
∅, or equivalently, when:

∀s ∈ P odd
A , s ∈ σ ⇒ ∃m ∈MA, s ·m ∈ σ.

Remark. Every strategy σ may be recovered from fix(σ) by the equality below:

σ = fix(σ) ∪ {s ∈ PA,∃m ∈MA, s ·m ∈ fix(σ)}. (20)

In particular, every error-free strategy is characterized by the set even(σ) which

coincides with fix(σ) in that case.

7.1 The category Gerr of sequential games (error-aware)

The category Gerr is a negative and error-aware variant of the category of Conway

games formulated by Joyal in [24]. By negative, we mean that all games start by an

Opponent move; and by error-aware, that the strategies possibly admit errors.

The category Gerr has sequential games as objects and strategies of A ⊸ B as

morphisms A −→ B. Given two sequential games A,B, the sequential game A ⊸

B is defined by reversing the polarities of the moves of A, and interleaving the

plays of A and B:

• MA⊸B = MA +MB and λA⊸B = [−λA, λB],
• a play s of A ⊸ B is a string over the alphabet MA⊸B such that (1) the projec-

tion s|A over MA is a play of A and (2) the projection s|B over MB is a play of

B and (3) s starts by a move of B if non empty.

Composition is defined in Gerr by sequential composition + hiding, identities by

copycat strategies, in the usual fashion, see e.g. [1,21]. In the presence of errors,

the composition and identity laws are better defined on sets of fixpoints, rather than

on strategies — just as in concurrent games [4]. Typically, the identity of A has

fixpoints;

fix(idA) = {s ∈ P even
A⊸A,∀t ∈ P even

A⊸A, t is prefix of s⇒ t|A1 = t|A2}

where the indices 1, 2 indicate on which component of A1 ⊸ A2 the play t is

projected. The composite of two strategies σ : A ⊸ B and τ : B ⊸ C is the

strategy τ ◦ σ : A ⊸ C whose set of fixpoints fix(τ ◦ σ) is given by:

{s ∈ P alt
A⊸C | ∃t ∈ (MA +MB +MC)∗, t|A,B ∈ fix(σ), t|B,C ∈ fix(τ), t|A,C = s}

where (MA+MB +MC)∗ denotes the set of finite strings (=words) on the alphabet

MA +MB +MC .

The category Gerr is symmetric monoidal closed, with tensor product A⊗B of two

sequential games A,B defined as the sequential game obtained by ”freely inter-

leaving” the plays of A and B:
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• MA⊗B = MA +MB and λA⊗B = [λA, λB],
• a play of A⊗B is a string of moves in MA⊗B such that s|A ∈ PA and s|B ∈ PB.

The monoidal unit 1 is the game with an empty set of moves.

7.2 The category Aerr of alternated games (error-aware)

The category Aerr is an error-aware variant of the category of negative alternated

games generally considered in the litterature, typically in [1,26,15,21,5]. The cate-

gory Aerr is defined as the full subcategory of alternated games in Gerr. The resulting

category Aerr is not a submonoidal category of Gerr, since the tensor product of two

alternated games in Aerr may not be alternated. But fortunately, the category Aerr

is the “intersection” of a reflective subcategory and a co-reflective subcategory of

Gerr, and the monoidal structure of Aerr may be deduced from that. Let us explain

this point below.

Call a sequential game OP-alternated (resp. PO-alternated) when only Player (resp.

Opponent) may play two successive moves in a play of the gameA. The full subcat-

egory of OP-alternated games is reflective in Gerr: every strategyA −→ B to an OP-

alternated game B factorizes as A −→ T (A) −→ B in a unique way, where T (A)
is the OP-alternated game obtained from A by removing every play containing two

successive Opponent moves, and A −→ T (A) is the obvious error-free copycat

strategy. Dually, the full subcategory of PO-alternated games is coreflective, with

counit D(A) −→ A the copycat strategy between A and the PO-alternated game

obtained by removing every play containing two successive Player moves in A.

The category Aerr is symmetric monoidal closed, with tensor and closed structure

deduced from their counterpart in Gerr, as follows. Let A and B denote two alter-

nated games:

• their tensor productA⊗altB in the category Aerr is the alternated game T (A⊗B),
• their closed structure A ⊸alt B is the alternated game D(A ⊸ B),
• the monoidal units of Gerr and Aerr coincide.

There is certainly more to say about the categorical situation: for instance, the

monad T distributes over the comonad D in the sense of [35,33], the distributive

law λ : TD ⇒ DT being just the identity; and the category Aerr is precisely the

category of λ-bialgebras. An axiomatic account in the vein of [6] would be interest-

ing, but beyond the scope of this article. We indicate only what is needed to build a

linear coercion between Gerr and Aerr.

We write U : Aerr −→ Gerr for the inclusion functor and alt : Gerr −→ Aerr

for the functor which transports every morphism f : A −→ B to the morphism

DT (f) : DT (A) −→ DT (B). These two functors define monoidal functors (U,m)
and (alt, n) with mediating natural transformations:

• mA,B : A ⊗ B −→ A ⊗alt B is the unit of T at instance A ⊗ B; and m1 is the

identity of 1 = U(1);
• nA,B : alt(A) ⊗alt alt(B) −→ alt(A ⊗ B) is the obvious error-free copycat

strategy restricted to the plays of alt(A) ⊗alt alt(B); and n1 is the identity of

1 = alt(1).

26



Every morphism σ : 1 −→ B in the category Gerr is a strategy of B, thus a set of

alternated plays of B. It follows that the diagram below commutes:

1 σ //

alt(σ) ''OOOOOOOOOOOOO B

ζB
��

alt(B)

for ζB : B −→ alt(B) the obvious error-free copycat strategy. On the other hand,

the functor (alt ◦ U) coincides with the identity functor of the category Aerr. Thus,

the family (ξA) = (idA) of identities indexed by alternated games, and the family

(ζB) indexed by sequential games, define two monoidal elementwise transforma-

tions ξ : Id⇒ alt ◦ U and ζ : Id⇒ U ◦ alt in the sense of definition 8 — see also

diagram (14).

7.3 The categories G and A of sequential and alternated games (error-free)

We write G and A for the subcategories of error-free strategies in the categories Gerr

and Aerr respectively. The two categories G and A are symmetric monoidal closed,

their structure being inherited in each case from the surrounding category Gerr and

Aerr.

7.4 Three models on alternated games (error-aware + error-free)

Each category Aerr and A gives rise to three models of intuitionistic linear logic,

which differ only in their interpretation of the exponential modality, either as the

backtracking !btk, the repetitive non uniform !rpt or the repetitive uniform !unif

exponential. Each exponential structure !btk and !rpt and !unif expresses a particular

memory or uniformity paradigm, which we recall briefly now.

The backtracking exponential !btk is defined by Lamarche [26] on the category

A, but is easily adapted to the error-aware setting of Aerr. The reader is advised

to follow the presentation of Lamarche’s work by Curien [15,5]. The model of

intuitionistic linear logic induced by A and !btk linearizes the sequential algo-

rithm model of PCF [9], in the sense that the co-kleisli category associated to the

comonad !btk embeds (as a model of PCF) in the category of concrete data struc-

tures and sequential algorithms. Similarly, the model of intuitionistic linear logic

based on Aerr and !btk linearizes an error-aware variant of the sequential algorithm

model, already formulated by Cartwright, Curien and Felleisen in [14]: the mani-

festly sequential function model of PCF — with exactly one error. The associated

hierarchy of types — which we call the manifestly sequential hierarchy — is exten-

sional. This important fact reappears in corollary 22.

The repetitive non uniform exponential !rpt is defined by Hyland in his course

notes on game semantics [21]. Like the exponential !btk, the exponential !rpt is

defined on the category A but is easily adapted to the error-aware setting of Aerr. In

the sequential game !btkA defined by Lamarche, Opponent has some kind of “mem-

ory” of the past, and thus does not need to ask Player the same question twice in the

27



course of the interaction. Instead, Opponent simply backtracks to Player’s previous

answer to the question. In contrast, in the sequential game !rptA, Opponent does not

memorize Player’s answer, and thus asks Player the same question as many times

as necessary. This “repetitive” style enables “non-uniform” behaviours by Player,

in which the same answer is not necessarily given to the same question repeated by

Opponent. Technically, the plays of the alternated game !rptA are defined in [21] as

the finite alternated strings over the alphabet MA×N such that (i) every projection

over i ∈ N is a play in A, and (ii) the first move in the (i + 1)-th copy is made

after the first move in the i-th copy. The resulting game models are closer to arena

games: in section 7.5, we observe that, once adapted to non-alternated games, the

exponential !rpt linearizes a well-known arena game model of the litterature.

The repetitive uniform exponential !unif is a variant of the exponential !rpt in

which copies are regulated by a “uniformity” principle. A play of !rptA is called

uniform when there exists a strategy σ of A, such that every projection s|i ∈ PA
is element of σ. The alternated game !unifA is simply defined as the game !rptA
restricted to its uniform plays.

Linear coercions between the exponentials !btk and !rpt and !unif may be exhib-

ited in each category Aerr and A, inducing in each case two families of embedding-

retraction pairs indexed by alternated games A:

!btkA
ηA // !unifA

̺A // !btkA, !unifA
η′

A // !rptA
̺′

A // !unifA. (21)

It follows from this and theorem 15 that in the error-aware setting:

Lemma 21 The backtracking, the repetitive non uniform and the repetitive uniform

error-aware sequential hierarchies are related by back-and-forth translations.

As already noted, the backtracking sequential hierarchy is the manifestly sequential

hierarchy formulated by Cartwright, Curien and Felleisen in [14]. This hierarchy is

extensional, and it follows from lemma 6 that:

Corollary 22 The three error-aware hierarchies collapse to the manifestly sequen-

tial hierarchy.

It also follows from the linear coercions (21) and Ehrhard’s collapse theorem [17]

that in the error-free setting:

Lemma 23 The backtracking, the repetitive non uniform and the repetitive uniform

error-free sequential hierarchies are related by back-and-forth translations, and

thus collapse to the strongly stable hierarchy.

Remark. Because (21) exhibits embedding-retraction pairs and not just linear coer-

cions, the resulting back-and-forth translations are embedding-retraction pairs; that

is, both morphisms

[T ]btk −→ [T ]unif −→ [T ]btk and [T ]unif −→ [T ]rpt −→ [T ]unif

compose as identities. It is worth indicating briefly the action of the associated

projection maps p = p ◦ p and q = q ◦ q on the elements of [T ]rpt and [T ]unif . The

projection map p : [T ]rpt −→ [T ]rpt prunes out all “non-uniform” plays from the
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!rptbool −→ bool

(1) ∗

(2) (∗, 0)

(3) (true, 0)

(4) (∗, 1)

(5) (false, 1)

(6) false

Fig. 1. A “non-uniform” play in the interpretation [M ]rpt

!unifbool −→ bool

(1) ∗

(2) (∗, 0)

(3) (true, 0)

(4) (∗, 1)

(5) (true, 1)

(6) true

Fig. 2. A “stuttering” play in the interpretation [N ]unif

strategies of [T ]rpt. For instance, the play of figure 1 disappears after applying p to

the interpretation [M ]rpt of the PCF-term:

M = if b then (if b then true else false) else true.

Similarly, the projection map q : [T ]unif −→ [T ]unif prunes out all ”stuttering” plays

(as in figure 2) from the interpretation [N ]unif of the PCF-term N .

N = if b then (if b then true else true) else true.

Finally, combining the action of the two projection maps p and q transports the

interpretation of M and N in [o ⇒ o]rpt to the interpretation [P ]rpt of the PCF-

term:

P = if b then true else true.

Note that these projections p and q are very similar to the projections on cliques

described in our section 6.2 on coherence spaces.

7.5 Two models on sequential games (error-aware + error-free)

It is not difficult to adapt the two exponentials !rpt and !unif defined on alternated

games in section 7.4 to two exponentials !rpt and !unif on general sequential games.
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In that way, each category Gerr and G gives rise to a so-called uniform and non-

uniform model of intuitionistic linear logic. Note that the two exponential structures

!rpt and !unif are related by a linear coercion in each category Gerr and G, in the same

way as in section 7.4.

Notations: For clarity’s sake, we write !alt for the exponential !rpt in the categories

Aerr and A, and keep the notation !rpt for the categories Gerr and G. The notation

!unif is retained in the four categories Aerr, Gerr, A and G.

Remark. It is worth stressing that the error-free category G of Conway games equip-

ped with the repetitive non uniform exponential !rpt linearizes a well-known and

particularly simple arena game model. Arena game models were introduced in or-

der to characterize PCF sequentiality by two constraints on strategies, called inno-

cence and well-bracketedness [22,32] . In a series of subsequent papers, Abramsky

and McCusker demonstrated that many programming mechanisms, like ground-

type reference, are captured in a fully abstract way, by relaxing some of these

constraints, see [3] for a survey. Eventually, by relaxing all these constraints but

single-threadedness, Abramsky, Honda and McCusker [2] obtain a fully abstract

model of a programming language with general reference à la ML, see also [20].

This model is precisely the arena game model linearized by the category G and the

exponential !rpt. We establish below (lemma 24) that the single-threaded hierarchy

collapses to the strongly stable hierarchy, and that its error-aware variant collapses

to the manifestly sequential hierarchy.

We carry on our topography of models, and establish linear coercions between the

two models of sequential games based on Gerr and G described above, and the three

models of alternated games described in section 7.4. Instead of treating all models,

we focus on the two error-aware models M and N of intuitionistic linear logic over

a class K of constants, built respectively from the categories Aerr and Gerr and the

exponentials !alt and !rpt. To fix notations, every constant type κ ∈ K is interpreted:

• in M as an alternated game Xκ and a partial equivalence relation ∼κ over the set

of strategies Aerr(1, Xκ),
• in N as a sequential game Yκ and a partial equivalence relation ≈κ over the set

of strategies Gerr(1, Yκ).
We defined in section 7.2 two symmetric monoidal functors (U,m) : Aerr −→ Gerr

and (alt, n) : Gerr −→ Aerr related by monoidal elementwise transformations ξ :
Id ⇒ alt ◦ U and ζ : Id ⇒ U ◦ alt. For every alternated game A and sequential

game B, we let:

ηA : !rptU(A) −→ U( !altA) ̺B : !altalt(B) −→ alt( !rptB)

denote the error-free copycat strategies restricted to the plays of U( !altA) and

!altalt(B) respectively. We let the reader check that each family η and ̺ defines

a distributive law in the sense of section 4.3, that is, that the two diagrams below
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commute, for every pair of strategies σ : A and τ : B.

!rptU(A)

ηA

��

1

(U(τ))rpt 33

U(τ alt)
++
U( !altA)

!altalt(B)

̺B

��

1

(alt(σ))alt 33

alt(σrpt)
++
alt( !rptB)

We need to be more careful here about the constant types κ ∈ K than in section 7.4

because the monoidal categories underlying the models M and N are different.

Suppose that for every κ ∈ K, Xκ = alt(Yκ) and that the two partial equivalence

relations ∼κ and ≈κ are the identity relations on Aerr(1, Xκ) = Gerr(1, Yκ). Define

the morphism φκ : Xκ −→ Yκ as the strategy with same plays as the identity on

Xκ, and the morphism ψκ : alt(Yκ) −→ Xκ as the identity on Xκ. In that case, one

obtains a linear coercion between the two models M and N. This implies that:

Lemma 24 The error-aware single-threaded hierarchy collapses to the manifestly

sequential hierarchy.

Similar results are established in the uniform case, as well as in the error-free uni-

form and non-uniform cases.

7.6 Error-free vs. error-aware models

We have established that all our game models collapse to exactly two extensional

hierarchies: the manifestly sequential hierarchy for the error-aware models and the

strongly stable hierarchy for the error-free models. There remains to connect the

two extensional hierarchies, by establishing that the manifestly sequential hierarchy

collapses to the strongly stable hierarchy when errors are not taken into account in

the base types.

To that purpose, we consider two models M and N built respectively from the

categories A and Aerr equipped with the backtracking exponential !btk. We suppose

that every constant κ ∈ K is interpreted in the two models as the same alternated

game Xκ = Yκ equipped with the partial equivalence relations defined as:

• ∼κ is the identity over A(1, Xκ),
• ≈κ relates two strategies σ, τ ∈ Aerr(1, Xκ) exactly when even(σ) = even(τ).
We write F : A −→ Aerr for the inclusion functor, and G : Aerr −→ A for the

functor which transports every strategy σ : A −→ B to the error-free strategy

G(σ) : A −→ B defined as: fix(G(σ)) = even(σ). Note that every simple type T
is interpreted by the “same” alternated game in the two models M and N, what we

may write: F ([T ]) = [[T ]] and that G([[T ]]) = [T ].
One difficulty now is that the pair of functors F and G (equipped with identities

as mediating morphisms) does not define a linear coercion in the sense of defini-

tion 10. More precisely, points 1, 3, 4 of definition 10 are verified, but not point 2

when it comes to the definition of ζ. Indeed, one would like to define ζA as the iden-

tity A −→ F ◦G(A) for every alternated game A = F ◦G(A). Unfortunately, this

does not define an elementwise transformation ζ : Id ⇒ F ◦G, since the diagram
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below commutes in the category Aerr only when the strategy σ : A is error-free:

A

ζA=idA

��

1

σ
11

F◦G(σ) --A

(22)

So, we need to proceed in another way: we show directly that the pair of monoidal

functors F and G defines a back-and-forth coercion between the two hierarchies.

We prove slightly more in fact. The definitions of ∼κ and ≈κ imply that for every

constant type κ ∈ K and strategies σ, τ ∈ Aerr(1, Xκ):

σ ≈κ τ ⇐⇒ G(σ) ∼κ G(τ). (23)

We show below (lemma 25) that the equivalence (23) generalizes at every simple

type T in fact. Before starting the proof, we indicate two useful equations (24) and

(25) verified at every simple type T = U ⇒ V . First, for every strategies σ ∈ [[T ]]
and ν ∈ [[U ]], we have the equality:

G(σ · ν) = G(σ) · G(ν). (24)

Then, by instantiating ν by F (µ) in (24) and by observing that G ◦ F (µ) = µ, we

obtain the equality below for every strategies σ ∈ [[T ]] and µ ∈ [U ]:

G(σ) · µ = G(σ · F (µ)). (25)

Using these equations, we prove that for every simple type T :

Lemma 25 ∀σ, τ ∈ [[T ]], σ ≈T τ ⇐⇒ G(σ) ∼T G(τ).
PROOF By structural induction on the simple type T . We have already indicated

in (23) that the assertion holds at every base type κ ∈ K. Suppose now that the

assertion holds at instance U and V , and that T = U ⇒ V . We establish that the

assertion holds at instance T in two steps: we prove first the implication (⇒) then

the implication (⇐).
(⇒) Suppose that σ ≈T τ and consider any ∼U -equivalent pair of strategies µ, µ′ ∈
[U ]. The strategies G ◦ F (µ) and G ◦ F (µ′) are equal to µ and µ′ respectively, and

thus ∼U -equivalent. It follows by induction hypothesis (⇐) on U , that the error-

free strategies F (µ) and F (µ′) are ≈U -equivalent. Thus,

G(σ) · µ = G(σ · F (µ)) by equation (25) on σ and µ,

∼V G(τ · F (µ′)) by σ ≈T τ , F (µ) ≈U F (µ′), induction hyp (⇒) on V ,

= G(τ) · µ′ by equation (25) on τ and µ′.

We conclude that G(σ) · µ and G(τ) · µ′ are ∼V -equivalent for every pair of ∼U -

equivalent strategies µ, µ′ ∈ [U ]. Thus, G(σ) ∼T G(τ).

32



(⇐) Suppose that two strategies σ, τ ∈ [[T ]] verify G(σ) ∼T G(σ), and consider

any pair of ≈U -equivalent strategies ν, ν ′ ∈ [[U ]]. The equivalence G(ν) ∼U G(ν ′)
follows from our induction hypothesis (⇒) on U . We have:

G(σ · ν) = G(σ) · G(ν) by equation (24) on σ and ν,

∼V G(τ) · G(ν ′) by definition of G(σ) ∼T G(τ) and G(ν) ∼U G(ν ′),

= G(τ · ν ′) by equation (24) on τ and ν ′.

We conclude by induction hypothesis (⇐) on V that σ · ν ≈V τ · ν
′ for every pair

of ≈U -equivalent strategies ν, ν ′ ∈ [[U ]]. Thus, σ ≈T τ . This concludes our proof

by induction.

When added to the fact that the function σ 7→ G(σ) is onto from the set of error-

aware strategies [[T ]] to the set of error-free strategies [T ], lemma 25 implies that

the two hierarchies [−] and [[−]] collapse to the same extensional hierarchy. This

is the result we were aiming at in the section. But there is another interesting fact.

Equation (24) together with the equality G ◦ F = IdA implies the equality below

for every strategies σ ∈ [T ] and ν ∈ [[T ]]:

G(F (σ) · ν) = σ · G(ν).

and thus:

G(F (σ) · ν) = G(F (σ · G(ν))).

We deduce easily from lemma 25 that for every strategies σ ∈ [T ] and ν ∈ [[T ]]:

σ ∼T σ and ν ≈T ν ⇒ F (σ) · ν ≈T F (σ · G(ν)). (26)

Now, we conclude from equations (25) and (26) that, if we shift to the weaker

definition of back-and-forth translation indicated after definition 2 (section 3.1):

Lemma 26 The hierarchies ([−],∼) and ([[−]],≈) induced by M and N are related

by a back-and-forth translation.

We deduce from lemma 26, or more directly from lemma 25, what we claimed at

the beginning of the section:

Corollary 27 The manifestly sequential hierarchy collapses to the strongly stable

hierarchy when errors are not taken into account in the base types.

8 Conclusion

We formulate a series of categorical axioms which ensures that two models of in-

tuitionistic linear logic collapse to the same extensional hierarchy. We illustrate our

axiomatization on two families of models:

• clique models based on either coherence or hypercoherence spaces, and their

qualitative or quantitative exponentials,
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• sequential games, based on either error-free or error-aware strategies, and on ei-

ther a backtracking, or a repetitive uniform, or a repetitive non uniform treatment

of exponential modality.

In the case of sequential games, we deduce a “topography” of models in which:

• all error-aware models collapse to the manifestly sequential hierarchy [14],

• all error-free models collapse to the strongly stable hierarchy [17],

• the manifestly sequential hierarchy collapses to the strongly stable hierarchy

when errors are not taken into account in the base types.

The topography enables to revisit and possibly refine the so-called Longley’s the-

sis [28] that every sufficiently expressive model of sequential computations col-

lapses to the strongly stable hierarchy. More, by revealing that the manifestly se-

quential hierarchy is an artefact deduced by “extensional collapse” from other

(more immediate) models of sequentiality, the topography provides a precious hint

in the ongoing quest for concurrency in games semantics: the exploration should

probably start from somewhere else.
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