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Abstract The propagation of moving surface inside a body is analysed in the 

framework of thermodynamics, when the moving surface is associated 

with an irreversible change of mechanical properties. The thermody­

namical force associated to the propagation has the form of an energy 

release rate. Quasistatic rate boundary value problem is given when the 

propagation of the interface is governed by a normality rule. Extension 

to generalised media to study delamination is also investigated. 

1. INTRODUCTION
This paper is concerned mostly with the description of damage in­

volved on the evolution of a moving interface along which mechanical 
transformation occurs, (Pradeilles-Duval and Stolz, 1995). Some con­
nection can be made with the notion of configurational forces, (Gurtin, 
1995 ; Maugin, 1995; Truskinovsky, 1987). 

A domain n is composed of two distinct volumes n 1, !12 of two linear
elastic materials with different characteristics. The bounding between 
the two phases is perfect and the interface is denoted by r, (r = 8!11 n 
8!12). The external surface an is decomposed in two parts 8!1u and
8!1T on which the displacement '!!!..d and the loading Td are prescribed
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respectively. The material 1 changes into material 2 along the interface
r by an irreversible process. Hence r moves with the normal velocity
f = </>!!..in the reference state, where!!._ is the outward 02 normal vector 
and </> is positive. When the surface r is moving volume average of any
mechanical quantity f has a rate defined by:

d
d { f dO = { j dO - { [f Jr f.!!._ dS,
t Jri(r) Jri(r) Jr (1) 

where [ f lr = Ji - fz represents the jump of f accross r. The state
of the system is characterized by the displacement field y,_, from which
the strain field e is derived, and by the spatial distribution of the two
phases defined by the position of r. The two phases have the same mass
density p. The free energy density Wi is a quadratic function of the strain
e, PWi = �e : Ci 

: e in Oi. The potential energy £ of the structure 0
(01 U 02) has the following form 

When r is known, the body is a heterogeneous medium with two elastic
phases, and under prescribed loading an equilibrium state y,_801 is given
by the stationnarity of the potential energy written as 

(2) 

for all Jy,_ kinematically admissible field satisfying Jy,_ = 0 over 80u. Then
the solution y,_801 satisfies (PBI):

• the local constitutive relations: (j = p�, on oi,

• the momentum equations: div u = 0, on 0 , u.'I]._ = Td over 80T,

• the compatibility relations: 2e = \i'y,_ + \i'ty,_, in 0, y,_ = y,_d over
80u, 

• the perfect bounding over r: [ (j lr .!!._ = 0 and [ y,_Jr = 0.

For a prescribed history of the loading, we must determine the rate of 
all mechanical fields and the normal propagation </> to characterize the 
position of the interface r at each time. Let us introduce the convected
derivative Def> of any function f(Xr, t) defined by

""' f 1. f (Xr + </>!!._T, t + T) - f (Xr, t) U<f> = lm .T---+0 T 
(3) 
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For example, the equation of a moving surface is S(X r), t) = 0, then
D¢S = 0. This defines the normal velocity ¢ as ¢ = - �f / II gi II and
v - as I 11 as 11 

-
- - aK aK · 

Hadamard's relations. The bounding being perfect between the 
phases, the displacement and the stress vector are continuous along r. 
Their rates (Q, & ) have discontinuities according to the compatibility
conditions of Hadamard, rewritten with the convected derivative: the 
continuity of displacement induces 

and continuity of stress vector implies: 

The last equation is obtained taking the equilibrium equation into ac­
count and the surface divergence defined by divrF = divF - !:!._.\? F.!:!._. 

Orthogonality property for discontinuities. Since the displace-
ment and the stress vector are continuous along the interface, 

(6) 

the discontinuities of the stress <r and of \ly,_ have the property of or­
thogonality: 

Dissipation analysis. The total dissipation of the system is 

1 d 1 8£. 1 D = a : e dn - -
d 

pw dn = - !'.)r .r = Q¢ dS 2: o,
n(r) t n(r) u r 

(7) 

(8) 

taking the momentum conservation and the boundary conditions into 
account. The quantity Q(X r' t) = [ w lr -a : [ e Jr has an analogous form
to the driving traction force acting on a surface of strain discontinuity 
proposed by Abeyratne and Knowles, 1990. 

2. EVOLUTION OF THE INTERFACE
Let denotes r+ = { x E r I 9 ( x) = G c} and let considers the rule de­

fined as a generalization of Griffith's law: ¢ 2: 0, on r+, ¢ = 0, otherwise.
At the point xr(t) E r+, we have Q(xr(t), t) = Ge, this is an implicit
equation for the position of the interface, and the derivative of 9 follow­
ing the moving surface vanishes: D¢9 = 0. This leads to the consistency
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condition written for all point on r+ 

( ¢ - ¢*)'D¢9 ?: 0, \:/¢* ?: 0, over r+, (9) 

and ¢ and ¢* are in K = {,8 / (3 ?: 0 on r+, (3 = 0 otherwise}. The
evaluation of 'D¢9 is obtained easily 

'D¢9 = 'D¢[ W Jr - 'Dcp<r2 : [ \7:g_Jr - <r2 : [ 'D¢ \7:g_Jr (10) 
= [ <r Jr : \7.1'.1 - &2 : [ \7:g_Jr - ¢Gn, (11) 

where Gn = -[<r]r: (\7\71J.1·.!!.) + \7<r2._!!_: [\71J.]r.

The rate boundary value problem. The solution is governed by 
the derivation of (PBl) relatively to time, taking account of Hadamard's 
relations (4,5) along r and of the propagation law (9). Defining the 
functional F 

the solution satisfies the inequality 

8F * 8F
o :S 8'.Q ('.!2. - .1'. ) + 8¢ (/3 - ¢)'

amoung the set K.A of admissible fields (.1'.*, ¢*) : 

(12) 

(13) 

(14) 

K.A={(.1'.,¢)/ .1'.= .1'.d over80u,'D¢1!-.=0, onr, ¢EK} . (15)

Some typical examples are presented in Pradeilles-Duval and Stolz, 1995. 

Stability and bifurcation. Consider the velocity .1'. solution of 
the rate boundary value problem for any given velocity ¢. This field 
'.!!. is solution of a classical problem of heterogeneous elasticity with non 
classical boundary conditions on r : 'D¢([ (7' lr·.!!.) = 0, 'D¢[1!-.lr = 0.
Consider the value W of F for this solution :!!.( ¢, .1'.d, Td)

d"d d·d ·d W(¢, .1'. ,T )=F(.11.(¢,.1'. ,T ),¢,T ). (16) 

The stability of the actual state is determined by the condition of the 
existence of a solution 

(17) 
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and the uniqueness and non bifurcation is characterized by 
82W 8¢ 8¢8¢ 8¢ 2 O, 8¢ E {f3/f3 = O over r - r+} - {O}. (18) 

3. DELAMINATION OF LAMINATES
The change of mechanical characteristics along moving front is used 

for the study of the degradation of laminates. We consider that a sound 
laminate (domain 0) with known characteristics is transformed into two 
laminates (1 and 2), separated by the crack of delamination as shown is 
the figure 26.1. Each laminate is described by an homogeneous plate or 
by an homogeneous beam, whose middle surface is denoted by S. The
sound part has suffix 0, the two others parts are designed by suffices 1, 2. 

0 0 

r r 
Figure 26.1. Modelization with beams. 

The kinematic modeling of the beams or of the plates has a great in­
fluence on the behaviour of the delamination as well as the modeling 
of the continuity relations on the displacement along the delamination 
front which induces specific value for the energy release rate. 

Kinematics of plates. A point of the middle surface S has curvi­
linear coordinates (x1,x2). The normal to this surface is denoted by�·
The normal coordinate is x3. The displacement of the point (x1, x2, x3) 
is defined by : 

� = �(x1,x2) + w(x1,x2)� + (j_(x1,x2)x3, (x1,x2) E S. (19) 

where � is the plane displacement, w is the normal displacement and e 
is the local rotation of the normal vector to the middle surface. With 
these fields, the strain inside the plate has the following form : 

1 e(�) = e(�) + -(�3 Q9 / + / Q9 �) - x3K.- 2 - - (20) 

The distortion / is defined by / = \lw - (}_ ; the local rotation (}_gives
K = �(\1(}_ + \lT(j_), and the �embrane strain e(�) satisfies 2e(�) = 
(\1� + 'VT�). The free energy of the plate is choosen naturally as a 
function of the generalized strains : W = W(e(:g_), K, J'..)·
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The assemblage of plates.  Consider the generalized parameters 
<]_i = ( �i' wiifli) and the generalized strains \l <]_i = (\! �i' \lwi, \lfL). We
obtain the generalized stresses derived from the free energy Wi: 

8Fi 8Fi Wi(e(�i),Ki,"fi)=Fi(<]_i,\lq_i), O'i= o\lq.' Ti= oq.· (21)
-i -i 

Along the front, the section of the sound plate ( i = 0) imposes its motion
to the two others plates ( i = 1, 2) : 

(22) 

These continuity conditions are easily rewritten with the set of general­
ized parameters : 

q. = li· q , � E r. (23) 
-i -0 

Hence the corresponding Hadamard's compatiblity relations are 

Equilibrium state. A state of equilibrium q is a stationnary value
of the potential energy £ of the system:

-

2 
£(�, Td) = L r Fi(q_, \l <]_) dS - r Td .q_ ds. (25) 

i=O lsi lasr 
The variation of £ amoung the set of kinematically admissible fields

JC.A.= { q/ q = qd over 8Sq, q. = li. q . over r} , - - - -i -0 
gives rize to the equilibrium equations : 

(26) 

(27) 
i=l 

0'0.J]_, along 8Sr. (28) 

where the tractions Id are imposed on 8Sr complementary part of 8Sq. 
We have introduced the usefull notation [If llr =Jo - L:?=l fili.

Analysis of the dissipation. The dissipation is given by the 
balance of the power of external loading and the reversible stored energy : 

(29) 
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where the thermodynamical force g is the field :

at: 2 
Q(s) = -ar (s) =Fa - !!_.<Ta.V <.la·!!. - I)Fi - !!_.<Ti.v <Ji·!!_). (30)

i=l 

Propagation law. The propagation law is defined as before : 

Q(s, t) <Ge, </> = 0 and Q(s, t) =Ge, </> 2 0. (31) 
The propagation is then possible when the critical value is reached. The 
velocity </> is included in the set of admissible propagation : 

K = {</>*/</>*(s) 2 O, Q(s) =Ge, </>*= O,otherwise}.

The rate boundary value problem. The rate boundary value 
problem is written in terms of rate of displacement. The solution ( q, </>)
of the rate boundary value satisfies the set of local equations obtained 
by the derivation of the constitutive law (21) and of the conservation of 
the momentum (26) with respect to time, the continuity relations along 
the front (24), the continuity relations on the stress vector : 

'Dcp(!!_.[lulJr) = !!_.[j&jJr - divr(</>[lulJr) + ¢[1 TIJr = 0, (32)
the propagation law: 

(</> - </>*) 'DcpQ 2 0, </>EK, \:/¢* EK, (33) 

and the boundary conditions: q = q_d over a Sq and &.n = Td over asr.
The effective expression of the consistency condition gives a relation 
between the rate of the displacement and the velocity of propagation. 
The variation of g is given by :

2 
'DcpQ = [lulJr : V g_a +[I Tllr· g_a + L cTi: (V <Ji - kV <J) - </>Gn,

i=l 
2 

Gn = -[lulJr : VV <.la·!!. - [I TIJr.V <.la·!!. + °L(Vui.J!.): (V <Ji - li.V <J)·
i=l 

Introducing now the potential F( g_, ¢, Td) :

T � J 1 
( . r:J2 Fi . . a2 Fi '7 . 

J = L....J -2 
q . . a a .q. + q . . a a'7 .v q.. s. -i q . q. -i -i q . v q. -i 

i=O ' -i -i -i -i 
. a2 Fi . . a2Fi + v q ··av a · q · + v q · · av av · v q_ · ) dS
-t q . q . -i -i q . q. -i 

-t -i -t -i 

- Ir ( riulJr : V g_a + [I Tllr· g_a) ¢ dS + Ir �2 
Gn dS - ksr Td. g_ ds,
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the solution of the rate boundary value problem ( q, J) E K.A is a solu-
tion of the variational inequality: 

-

8:F - - 8:F - ---:;.( q - q*) + -- . (¢ - cj/) ?: 0,
8g_ - - 8¢ 

amongs the set (q*,¢*) E JC.A. 

JC.A. { (q,J)/ 1i + ¢\1 g_i.J!. = li-(�0 + ¢\1 g_0.!!_), over r, 
g_0 = g_d over 8Sq, ¢EK}·

(34) 

This framework can be extended to different models of beams or plates 
and to dynamics using of kinetic energy and hamiltonian formalism, 
( Stolz, 1995, 2000).
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