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Bifurcation of equilibrium solutions and defects nucleation

Claude Stolz

Abstract The purpose of this article is to revise some

concepts on defects nucleation based on bifurcation

of equilibrium solutions. Equilibrium solutions are ob-

tained on a homogeneous body and on a body with an

infinitesimal defect such as cavity under the same pre-

scribed dead load. First void formation and growth in

non linear mechanics are examined. A branch of radial

transformation bifurcates from the undeformed con-

figuration in presence of a small cavity. Two cases of

behaviour are examined. One case is the growth of the

cavity by only the deformation of the shell. In another

modelling the cavity evolves like a damaged zone, the

transition between the sound part and the damaged one

is governed by a local criterium. Each configuration

leads to the definition of a nucleation criterion based

on a presence of a bifurcation state, common state of

the homogeneous body and a body with an infinitesimal

defect.

Keywords Bifurcation · Nucleation of defects ·

Hyperelasticity · Local damage · Composite sphere

1 Introduction

We consider a composite sphere with external radius

Re composed by a cavity of radius Ri surrounded by
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a material. Under a uniform radial tensile loading p,

the solution is assumed to be radial. We investigate the

possible branches of radially symmetric configurations

involving a traction free internal cavity bifurcation from

the homogeneous sphere. At the bifurcation point pc,

the equilibrium solution for the porous sphere under the

load pc tends to the equilibrium solution of the homo-

geneous sphere when the volume of the cavity tends to

zero.

Ball (1982) and Horgan and Pence (1989) have stud-

ied different classes of bifurcation problems for non lin-

ear incompressible elasticity, which simulate the

appearance of a cavity inside a homogeneous sphere.

Example in finite incompressible elastoplasticity have

been also investigated by Chung et al. (1987). In both

cases for all values of p one possible solution is that

the sphere remains solid, this is due to incompressibil-

ity. On the other hand, for a certain range of loading p

one has another configuration with an internal infini-

tesimal cavity. But as pointed out by Ball, only specific

classes of hyperelastic incompressible materials have

the possibility of such cavitation under radial dead load.

However if the core of the sphere is made by a damaged

material which does not suffer any tensile stress after

a critical stretch, we obtain a critical pressure for all

classes of hyperelastic incompressible materials. This

point generalizes the point of view of Ball and gives

new definition of nucleation of defects.

In Sect. 3, the possibility of cavitation is generalized

to other classes of materials in small strains.
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2 Extension of the Ball’s approach

Consider a sphere with internal cavity of radius Ri and

external radius Re. Under the radial loading, the actual

state is defined by the transformation r = f (R). The

deformation gradient tensor, denoted F, is then given

by

F = f ′er ⊗ ER +
f

R

(

eθ ⊗ E� + eφ ⊗ E�

)

. (1)

Taking the incompressibility condition into account,

the transformation f is reduced to

r3 = R3 + A (2)

where A is a constant whose value depends on the load-

ing.

For an isotropic hyperelastic incompressible mate-

rial the strain energy W is a symmetric function of the

principal stretches λk , k = 1, 2, 3: W (λ1, λ2, λ3).

2.1 The homogeneous sphere

When the sphere is homogeneous, for any dead load p

the stress σ = −p I is a solution of the equilibrium

state equation with λk = 1, k = 1, 2, 3. There is no

strain, that is a consequence of incompressibility of the

material.

2.2 The porous sphere

When a spherical cavity of radius Ri exists, the solution

has the form (2), the principal stretches are now

λ1 =
1

λ2
, λ2 = λ3 =

r

R
= λ. (3)

For this transformation, the strain energy has a value

governed only by the stretch λ,

ψ(λ) = W

(

1

λ2
, λ, λ

)

(4)

and the relation between the stretches and the external

load Pe is given by

Pe =

∫ λe

λi

dψ

dλ

dλ

λ3 − 1
= I (λi , λe). (5)

of Rivlin-Eriksen and is a classical and well-known

solution (Ogden 1997; Ball 1982). The values λi , λe

are linked by the relation (2)

(λ3(R) − 1)R3 = (λ3
i − 1)R3

i = (λ3
e − 1)R3

e = A (6)

2.3 Discussion

We must compare these results with those of the homo-

geneous sphere. For a given Pe, A �= 0 and the possi-

bility to λe to tends towards 1 is that Re tends to infinity.

Simultaneously when the cavity is reduced to a point,

λi tends to infinity. In fact the cavity is embedded in

an infinite matrix and for some value Pe, the cavity is

not detectable from an external point of view. From

this constatation, Ball studies the convergence of the

integral I with the bounds λi = ∞, λe = 1.

For example, let us consider a density of energy of

the form W = µα

∑

k λα
k , where µα is a constant mod-

ulus associated to the power α of the principal stretches.

In this case, the pressure Pe = Pc is finite under the

condition λi = ∞, λe = 1 if −1 < α < 2.

The point (λe, Pe) describes a loading path for some

range of Pe which intersects the loading path of the

homogeneous sphere at point (1, Pc). This is the criti-

cal value for cavitation. But locally the strain energy is

not finite and the local solution with fixed R does not

tend to the homogeneous one.

The Neohookean material has a critical pressure

equal to 5µo, the Mooney-Rivlin material can not have

cavitation under finite pressure.

2.4 Additional assumptions and remarks

However, the hyperelastic media cannot suffer infinite

stretch without rupture. Assume now that the core of

the sphere is made by a damaged material which can-

not suffer any tensile stress after some critical value

given in terms of stretches. The boundary between the

sound material and the damaged one is now a spherical

interface of radius Ri along which the stress vector is

null and the stretch ri/Ri has the critical value λc. The

inner surface is stress free.

With these additional assumptions, the external load

Pe is always finite for a finite porous sphere and is given

by the preceding results

Pe =

∫ λe

λc

dψ

dλ

dλ

λ3 − 1
= I (λc, λe), (7)

This equation is derived from the equilibrium elastic

problem for the radial deformation of a sphere when

the inner surface is stress free. The inflation of a thick

walled sphere is an universal deformation in the sense
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and the link between the stretches is preserved:

A = (λ3
c − 1)R3

i = (λ3
e − 1)R3

e = (λ3(R) − 1)R3.

(8)

Now when the radius of the damaged zone Ri tends

to zero, A tends to zero, λe tends to 1 and the pressure

Pe tends to the finite value given by

Pc =

∫ λe

λc

dψ

dλ

dλ

λ3 − 1
= I (λc, 1). (9)

We have now a finite value for all hyperelastic incom-

pressible materials which does not support stretching

greater than λc. Moreover, when A tends to zero, it

is easy to show that λ(R) tends to 1 at fixed material

point R, the local solution tends to the solution of the

homogeneous sphere.

Introducing the concept of local damage extends the

point of view of Ball of bifurcated equilibrium solution

and gives rise to an upper bound for the critical value

for nucleation of a spherical defect in a homogeneous

sphere.

We examine now the case of elastic brittle material

in small strain.

3 Case of elastic brittle material

Consider a composite sphere, whose shell (material 1)

and core (material 2) are linear elastic materials with

different elastic modulus. The bulk moduli are denoted

by κi and the shear moduli are µi , i = 1, 2. κ1 is

supposed greater than κ2.

The sphere is submitted to an isotropic loading, the

radial displacement is prescribed on the external bound-

ary (R = Re) (Fig. 1). The solution of the elasticity

problem is given considering a radial displacement

u = ui (R)er , ui (R) = Ai R +
Bi

R2
, i = 1, 2. (10)

The boundary conditions imply:

u1(Re) = E Re, u2(0) = 0, B2 = 0. (11)

For a given history of E , the external surface is submit-

ted to a radial force:

σ1(Re) · er = 
er . (12)

Re

Ri

1

2

Fig. 1 The composite sphere

For given volume fraction of material 2, c =
R3

i

R3
e

, the

solution of heterogeneous elastic sphere is

b =
B1

R3
i

=
3(κ1 − κ2)A1

3κ2 + 4µ1

E =
D(c)

3κ2 + 4µ1
A1


 = σrr (Re) =
3E

D(c)
((3κ2 + 4µ1)κ1 − 4µ1c(κ1−κ2))

where

D(c) = 3κ2 + 4µ1 + 3c(κ1 − κ2), c =
R3

i

R3
e

.

The last equation defines the global behaviour of the

composite sphere as having an effective bulk modulus

κe f f =
(3κ2 + 4µ1)κ1 − 4µ1c(κ1 − κ2)

3κ2 + 4µ1 + 3c(κ1 − κ2)
(13)

Then it is obvious that when c tends to zero, κe f f tends

to κ1.

When the radius Ri increases, the rigidity of the

composite sphere decreases and some dissipation

occurs. The dissipation is given by the rate

4π R2
i G(Ri , E)Ṙi = −

∂W

∂ Ri

Ṙi (14)

This defines the analogous way the energy release rate

associated with the dissipation along a moving surface

(Stolz and Pradeilles-Duval 1997, 2004).

Along the interface Ŵ the energy release rate has the

value

G(Ri , E) =
9E2

D2(c)
(κ1 − κ2)(3κ2 + 4µ1)(3κ1 + 4µ1)

(15)
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3.1 The response under monotonic loading

The loading parameter E is increasing. Initially, the

core does not evolve, the critical value Gc is not reac-

hed. At one time the critical value Gc is reached, the

strain is Ec(co). After that the actual value of Ri is

determined by the implicit equation

G(Ri (t), E(t)) = Gc (16)

this is the consistency condition. During this phase the

internal radius Ri increases monotonical with E and

attains the value Re at the value ET of the loading.

To any choosen critical value Gc corresponds a

Griffith type local criterion for fracture, and this in-

duces that the local stretch u(Ri )/Ri is a constant pro-

portional of the square root of Gc. From Eqs. 15 and

16 we deduce that when the damage occurs

E

D(c)
= αc (17)

where αc is a constant. We remark that D is an increas-

ing function of c. During the damage evolution A1 =

Ec

αc =
Ec

3κ2 + 4µ1
=

1

3κ1 + 4µ1

u(Ri )

Ri

. (18)

At intermediate time t < T the sphere is not com-

pletely transformed, G(Ri (t), E) < Gc for any E <

E(t), then the composite sphere has the answer of an

elastic heterogeneous medium with new concentration

c = R3
i /R3

e . The global bulk modulus decreases with

the transformation.

With the given propagation law of the interface, from

it’s initial position determined by co = R3
i (O)/R3

e , we

have successively for an increasing function E(t):
⎧

⎪

⎪

⎨

⎪

⎪

⎩

E(t)<Ec(co), G(Ri , E(t))<Gc, Ri (t)=Ri (0)

E(t)≥Ec(co), G(Ri (t), E(t))=Gc, Ri (t)= f (E(t)),

E(t) = ET , G(Re, ET ) = Gc Ri (T )=Re

E(t) ≥ ET , Ri (t)=Re

Fig. 2 The response of the composite sphere

of a small defect of volume ω with a given evolution

law. Conserving the evolution law, when the volume ω

tends to zero, we consider the applied load as the criti-

cal load for nucleation of defect if this value coincides

with the value of the original volume without defect for

the same value of global strain.

In this sense, we cannot distinguish at the global

level for this state of equilibrium if there exists or not

an infinitesimal defect.

4 Conclusion

We have investigated the approach of a critical value

for nucleation of defects inside an homogeneous body

based on a bifurcation analysis of equilibrium solu-

tions.

The nucleation of defects is considered with two

differents points of view. One is the point of view of

Ball and other authors, with locally infinite stretches

and energy. This point of view defines different classes

of materials, on one side we can have for same range

cavitation, on the other side the cavitation is prohibited.

By introducing the concept of local damage, the

nucleation of defects is possible for any materials,

whose strains are limited in amplitude. Using this char-

acteristic for governing the propagation of the damaged

zone, a new point of view has been presented for critical

value of defects nucleation.

(19)

and the answer can be plotted as in Fig. 2.

Conserving the value G = Gc when the concentra-

tion of damaged zone tends to zero (co → O+), the 
global bulk modulus tends to κ1, Ec(co) → Ec

o and 
 

tends to Pc = 3κ1 Ec
o. The local energy remains finite 

and the local stresses at fixed R tend to the response of 
the homogeneous sphere.

This defines a new manner to consider a critical value 
for nucleation of defects. Let us assume the existence
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We point out that this point of view gives for each

configuration an upper bound for the critical value of

nucleation because the approach is based on an analysis

of bifurcation, then the value depends on the geometry

and of the path of the loading.
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