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Abstract. This paper is devoted to the well-posedness for dissipative
KdV equations ut+uxxx+|Dx|

2αu+uux = 0, 0 < α ≤ 1. An optimal bilinear
estimate is obtained in Bourgain’s type spaces, which provides global well-
posedness in Hs(R), s > −3/4 for α ≤ 1/2 and s > −3/(5−2α) for α > 1/2.

1 Introduction

We study the initial value problem (IVP) for the dissipative KdV equations

{
ut + uxxx + |Dx|

2αu+ uux = 0, t ∈ R+, x ∈ R,
u(0, x) = u0(x), x ∈ R,

(1.1)

with 0 < α ≤ 1 and where |Dx|
2α denotes the Fourier multiplier with symbol

|ξ|2α. These equations can be viewed as a combinaison of the KdV equation

ut + uxxx + uux = 0 (1.2)

and Burgers equation
ut − uxx + uux = 0, (1.3)

involving both nonlinear dispersion and dissipation effects.
The Cauchy problem for the KdV equation has been studied by many

authors. In [2], Bourgain introduced new functional spaces adapted to the
linear symbol τ − ξ3 and showed that the IVP associated to (1.2) is locally
well-posed in L2(R). Due to the second conservation law, this result extends
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globally in time. Then, working in these spaces, Kenig, Ponce and Vega
obtained local well-posedness in Sobolev spaces Hs(R) for s > −5/8 in [8]
and for s > −3/4 in [9]. More recently, global well-posedness was obtained
for s > −3/4 in [5]. It is worth noticing that the index −3/4 is far away from
the index −3/2 suggested by standard scaling argument. However, −3/4 is
indeed the critical index for well-posedness. In fact, the solution map u0 7→ u
fails to be C3 in Hs(R), s < −3/4 (see [3]) and C2 in homogeneous spaces
Ḣs(R), s < −3/4 (see [15]). Moreover, the bilinear estimate in Xb,s spaces
used in [9] to prove local well-posedness is sharp with respect of s (see also
[12]).

Concerning the Cauchy problem for the Burgers equation, the situation
is quite different. By using the strong smoothing effect of the semigroup
related to the heat equation, one can solve (1.3) in the Sobolev space given
by an heuristic scaling argument. In [6], Dix proved local well-posedness of
(1.3) in Hs(R) for s > −1/2. Then, this result was extended to the case
s = −1/2 in [1]. Below this critical index, it has been showed in [6] that
uniqueness fails.

When α = 1/4, equation (1.1) models the evolution of the free surface
for shallow water waves damped by viscosity, see [13]. When α = 1, (1.1) is
the so-called KdV-Burgers equation which models the propagation of weakly
nonlinear dispersive long waves in some contexts when dissipative effects oc-
cur (see [13]). In [10], Molinet and Ribaud treat the KdV-B equation by
working in the usual Bourgain space related to the KdV equation, consider-
ing only the dispersive part of the equation. They were able to prove global
well-posedness for KdV-B in Hs(R), s > −3/4 − 1/24, getting a lower in-
dex than the critical indexes for (1.2) and (1.3). Then, the same authors
improved this result in [11] by going down to Hs(R), s > −1. The main
new ingredient is the introduction of a new Bourgain space containing both
dispersive and dissipative parts of the equation. For s < −1, the problem is
ill-behaved in the sense that the flow map u0 7→ u is not C2 in Hs(R).

Concerning the case 0 < α < 1 in (1.1), Molinet and Ribaud established
in [10] the global well-posedness for data in Hs(R), s > −3/4, whatever the
value of α. On the other hand, ill-posedness is known for (1.1) in Ḣs(R),
s < (α− 3)/(2(2 − α)), see [11].

In this paper we improve the results obtained in [10]. We show that the
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Cauchy problem (1.1) is globally well-posed in Hs(R), s > sα with

sα =

{
−3/4 if 0 < α ≤ 1/2,
− 3

5−2α if 1/2 < α ≤ 1
.

Of course the case α ≤ 1/2 is well-known, but our general proofs contain this
result. In suitable Xb,s spaces, we are going to perform a fixed point argu-
ment on the integral formulation of (1.1). This will be achieved by deriving
a bilinear estimate in these spaces. By Plancherel’s theorem and duality, it
reduces to estimating a weighted convolution of L2 functions. To recover
the lost derivative in the nonlinear term ∂x(u2), we take advantage of the
well-known algebraic smoothing relation (2.5) combined with several meth-
ods. On one hand, we use Strichartz’s type estimates and some techniques
introduced in [9]. On the other hand, these techniques are not sufficient in
certain regions to go down below −3/4 and we are lead tu use dyadic de-
composition. In [14], Tao studied some nonlinear dispersive equations like
KdV, Schrödinger or wave equation by using such dyadic decomposition and
orthogonality. He obtained sharp estimates on dyadic blocs, which leads to
multilinear estimates in the Xb,s spaces, usable in many contexts. Note
that very recently, such a method was exploited in [4] for the dissipative
modified-KdV equation ut + uxxx + |Dx|

2αu+ u2ux = 0.
It is worth pointing out that (1.1) has no scaling invariance, so it is

not clear that sα is the critical index for well-posedness. However, the
fundamental bilinear estimate used to prove our results is optimal.

1.1 Notations

For two positive reals A and B, we write A . B if there exists a constant
C > 0 such that A ≤ CB. When this constant is supposed to be sufficiently
small, we write A ≪ B. Similarly, we use the notations A & B, A ∼ B
and A ≫ B. When x ∈ R, x+ denotes its positive part max(0, x). For
f ∈ S ′(RN ), we define its Fourier transform F(f) (or f̂) by

Ff(ξ) =

∫

RN

e−i〈x,ξ〉f(x)dx.

The Lebesgue spaces are endowed with the norm

‖f‖Lp(RN ) =
( ∫

RN

|f(x)|pdx
)1/p

, 1 ≤ p <∞
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with the usual modification for p = ∞. We also consider the space-time
Lebesgue spaces Lp

xL
q
t defined by

‖f‖Lp
xLq

t
=

∥∥∥‖f‖Lp
x(R)

∥∥∥
Lq

t (R)
.

For b, s ∈ R, we define the Sobolev spaces Hs(R) and their space-time
versions Hb,s(R2) by the norms

‖f‖Hs =
(∫

R

〈ξ〉2s|f̂(ξ)|2dξ
)1/2

,

‖u‖Hb,s =
( ∫

R2

〈τ〉2b〈ξ〉2s|û(τ, ξ)|2dτdξ
)1/2

,

with 〈·〉 = (1 + | · |2)1/2.
Let U(t)ϕ denote the solution of the Airy equation

{
ut + uxxx = 0
u(0) = ϕ

,

that is,
∀t ∈ R, Fx(U(t)ϕ)(ξ) = exp(iξ3t)ϕ̂(ξ), ϕ ∈ S ′.

In [11], Molinet and Ribaud introduced the function spaces Xb,s
α related to

the linear symbol i(τ − ξ3) + |ξ|2α and defined by the norm

‖u‖
Xb,s

α
=

∥∥〈i(τ − ξ3) + |ξ|2α〉b〈ξ〉sû
∥∥

L2(R2)
.

Note that since F(U(−t)u)(τ, ξ) = û(τ + ξ3, ξ), we can re-express the norm

of Xb,s
α as

‖u‖
Xb,s

α
=

∥∥〈iτ + |ξ|2α〉b〈ξ〉sû(τ + ξ3, ξ)
∥∥

L2(R2)

=
∥∥〈iτ + |ξ|2α〉b〈ξ〉sF(U(−t)u)(τ, ξ)

∥∥
L2(R2)

∼ ‖U(−t)u‖Hb,s + ‖u‖L2
t Hs+2αb

x
.

We will also work in the restricted spaces Xb,s
α,T , T ≥ 0, equipped with the

norm
‖u‖

Xb,s
α,T

= inf
w∈Xb,s

α

{‖w‖
Xb,s

α
, w(t) = u(t) on [0, T ]}.

Finally, we denote by Wα the semigroup associated with the free evolution
of (1.1),

∀t ≥ 0, Fx(Wα(t)ϕ)(ξ) = exp[−|ξ|2αt+ iξ3t]ϕ̂(ξ), ϕ ∈ S ′,
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and we extend Wα to a linear operator defined on the whole real axis by
setting

∀t ∈ R, Fx(Wα(t)ϕ)(ξ) = exp[−|ξ|2α|t| + iξ3t]ϕ̂(ξ), ϕ ∈ S ′. (1.4)

1.2 Main results

Let us first state our crucial bilinear estimate.

Theorem 1.1 Given s > sα, there exist ν, δ > 0 such that for any u, v ∈

X
1/2,s
α with compact support in [−T,+T ],

‖∂x(uv)‖
X

−1/2+δ,s
α

. T ν‖u‖
X

1/2,s
α

‖v‖
X

1/2,s
α

. (1.5)

This result is optimal in the following sense.

Theorem 1.2 For all s ≤ sα and ν, δ > 0, there exist u, v ∈ X
1/2,s
α with

compact support in [−T,+T ] such that the estimate (1.5) fails.

Let ψ be a cutoff function such that

ψ ∈ C∞
0 (R), suppψ ⊂ [−2, 2], ψ ≡ 1 on [−1, 1],

and define ψT (·) = ψ(·/T ) for all T > 0. By Duhamel’s principle, the
solution to the problem (1.1) can be locally written in the integral form as

u(t) = ψ(t)
[
Wα(t)u0 −

χR+(t)

2

∫ t

0
Wα(t− t′)∂x(ψ2

T (t′)u2(t′))dt′
]
. (1.6)

Clearly, if u is a solution of (1.6) on [−T,+T ], then u solves (1.1) on [0, T/2].
As a consequence of Theorem 1.1 together with linear estimates of Sec-

tion 2.1, we obtain the following global well-posedness result.

Theorem 1.3 Let α ∈ (0, 1] and u0 ∈ Hs(R) with s > sα. Then for any
T > 0, there exists a unique solution u of (1.1) in

ZT = C([0, T ],Hs(R)) ∩X
1/2,s
α,T .

Moreover, the map u0 7→ u is smooth from Hs(R) to ZT and u belongs to
C((0, T ],H∞(R)).

Remark 1.1 Actually, we shall prove Theorems 1.1 and 1.3 in the most
difficult case. In the sequel we assume

{
sα < s < −1/2 if α ≤ 1/2,
sα < s < −3/4 if α > 1/2.

(1.7)
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Remark 1.2 Theorem 1.3 is known to be sharp in the case α = 0 (KdV
equation) and in the case α = 1 (KdV-B equation). On the other hand,
as far as we know, most of nonlinear equations for which the multilinear
estimate fails in the related Xb,s space are ill-posed in Hs. Therefore it is
reasonable to conjecture that sα is really the critical index for (1.1). The
fact that sα = −3/4 for α ≤ 1/2 could mean that the dissipative part in
(1.1), when becoming small enough, has no effect on the low regularity of
the equation.

Remark 1.3 It is an interesting problem to consider the periodic dissipative
KdV equation

{
ut + uxxx − |Dx|

2αu+ uux = 0, t ∈ R+, x ∈ T,
u(0, x) = u0(x), x ∈ T,

. (1.8)

Concerning the KdV equation on T, global well-posedness is known in H1/2(T)
(see [5]) and the result is optimal (see [3]). For KdV-B, it is established in
[11] that the indexes of the critical spaces are the same on the real line and

on the circle. We believe that working in the space X̃
1/2,s
α endowed with the

norm

‖u‖
X̃

1/2,s
α

=
( ∑

n∈Z

〈n〉2s

∫

R

〈i(τ − n3) + |n|2α〉|û(τ, n)|2dτ
)1/2

,

and using Tao’s [k;Z]-multiplier norm estimates [14], one could get well-
posedness results for the IVP (1.8) in Hs(T), s > s̃α with s̃0 = −1/2 and
s̃1 = −1. We do not pursue this issue here.

The remainder of this paper is organized as follows. In Section 2, we
recall some linear estimates on the operators Wα and Lα, and we introduce
Tao’s [k;Z]-multiplier norm estimates. Section 3 is devoted to the proof of
the bilinear estimate (1.5). Theorem 1.3 is established in Section 4. Finally,
we show the optimality of (1.5) in Section 5.

Acknowledgment

The author would like to express his gratitude to Francis Ribaud for his
availability and his constant encouragements.
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2 Preliminaries

2.1 Linear estimates

In this subsection, we collect together several linear estimates on the oper-
ators Wα introduced in (1.4) and Lα defined by

Lα : f 7→ χR+(t)ψ(t)

∫ t

0
Wα(t− t′)f(t′)dt′.

All the results stated here were proved in [11] for α = 1 and in [4] for the
general case.

Lemma 2.1 For all s ∈ R and all ϕ ∈ Hs(R),

‖ψ(t)Wα(t)ϕ‖
X

1/2,s
α

. ‖ϕ‖Hs . (2.1)

Lemma 2.2 Let s ∈ R.

(a) For all v ∈ S(R2),

∥∥∥χR+(t)ψ(t)

∫ t

0
Wα(t− t′)v(t′)dt′

∥∥∥
X

1/2,s
α

. ‖v‖
X

−1/2,s
α

+
( ∫

R
〈ξ〉2s

( ∫
R

|v̂(τ+ξ3,ξ)|
〈iτ+|ξ|2α〉 dτ

)
dξ

)1/2
.

(b) For all 0 < δ < 1/2 and all v ∈ X
−1/2+δ,s
α ,

∥∥∥χR+(t)ψ(t)

∫ t

0
Wα(t− t′)v(t′)dt′

∥∥∥
X

1/2,s
α

. ‖v‖
X

−1/2+δ,s
α

. (2.2)

To globalize our solution, we will need the next lemma.

Lemma 2.3 Let s ∈ R and δ > 0. Then for any f ∈ X
−1/2+δ,s
α ,

t 7−→

∫ t

0
Wα(t− t′)f(t′)dt′ ∈ C(R+,H

s+2αδ).

Moreover, if (fn) is a sequence satisfying fn → 0 in X
−1/2+δ,s
α , then

∥∥∥
∫ t

0
Wα(t− t′)fn(t′)dt′

∥∥∥
L∞(R+,Hs+2αδ)

−→ 0.
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Finally, we recall the following L4 Strichartz’s type estimate showed in
[8, 10].

Lemma 2.4 Let f ∈ L2(R2) with compact support (in time) in [−T,+T ].
For 0 ≤ θ ≤ 1/8 and ρ > 3/8, there exists ν > 0 such that

∥∥∥F−1
(〈ξ〉θ f̂(τ, ξ)

〈τ − ξ3〉ρ

)∥∥∥
L4

xt

. T ν‖f‖L2
xt
.

2.2 Tao’s [k; Z]-multipliers

Now we turn to Tao’s [k;Z]-multiplier norm estimates. For more details,
please refer to [14].

Let Z be any abelian additive group with an invariant measure dξ. For
any integer k ≥ 2 we define the hyperplane

Γk(Z) = {(ξ1, ..., ξk) ∈ Zk : ξ1 + ...+ ξk = 0}

which is endowed with the measure
∫

Γk(Z)
f =

∫

Zk−1

f(ξ1, ..., ξk−1,−(ξ1 + ...+ ξk−1))dξ1...dξk−1.

A [k;Z]-multiplier is defined to be any function m : Γk(Z) → C. The
multiplier norm ‖m‖[k;Z] is defined to be the best constant such that the
inequality

∣∣∣
∫

Γk(Z)
m(ξ)

k∏

j=1

fj(ξj)
∣∣∣ ≤ ‖m‖[k;Z]

k∏

j=1

‖fj‖L2(Z) (2.3)

holds for all test functions f1, ..., fk on Z. In other words,

‖m‖[k;Z] = sup
fj∈S(Z)

‖fj‖L2(Z)≤1

∣∣∣
∫

Γk(Z)
m(ξ)

k∏

j=1

fj(ξj)
∣∣∣.

In his paper [14], Tao used the following notations. Capitalized variables
Nj , Lj (j = 1, ..., k) are presumed to be dyadic, i.e. range over numbers
of the form 2ℓ, ℓ ∈ Z. In this paper, we only consider the case k = 3,
which corresponds to the quadratic nonlinearity in the equation. It will be
convenient to define the quantities Nmax ≥ Nmed ≥ Nmin to be the max-
imum, median and minimum of N1, N2, N3 respectively. Similarly, define
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Lmax ≥ Lmed ≥ Lmin whenever L1, L2, L3 > 0. The quantities Nj will
measure the magnitude of frequencies of our waves, while Lj measures how
closely our waves approximate a free solution.

Here we consider [3,R × R]-multipliers and we parameterize R × R by
(τ, ξ) endowed with the Lebesgue measure dτdξ. If τ, τ1, ξ, ξ1 are given, we
set

σ = σ(τ, ξ) = τ − ξ3, σ1 = σ(τ1, ξ1), σ2 = σ(τ − τ1, ξ − ξ1). (2.4)

From the identity σ1 +σ2 −σ = 3ξξ1(ξ− ξ1) one can deduce the well-known
smoothing relation

max(|σ|, |σ1|, |σ2|) ≥ |ξξ1(ξ − ξ1)| (2.5)

which will be extensively used in Section 3.
By a dyadic decomposition of the variables ξ1, ξ2 = −ξ, ξ3 = ξ− ξ1, and

σ1, σ2, σ3 = −σ, we are lead to consider

∥∥∥
3∏

j=1

χ|ξj |∼Nj
χ|σj |∼Lj

∥∥∥
[3;R×R]

. (2.6)

We can now state the fundamental dyadic estimates for the KdV equation
on the real line ([14], Proposition 6.1).

Lemma 2.5 Let N1, N2, N3, L1, L2, L3 satisfying

Nmax ∼ Nmed,

Lmax ∼ max(N1N2N3, Lmed).

1. ((++) Coherence) If Nmax ∼ Nmin and Lmax ∼ N1N2N3 then we have

(2.6) . L
1/2
minN

−1/4
max L

1/4
med. (2.7)

2. ((+-) Coherence) If N2 ∼ N3 ≫ N1 and N1N2N3 ∼ L1 & L2, L3 then

(2.6) . L
1/2
minN

−1
max min

(
N1N2N3,

Nmax

Nmin
Lmed

)1/2
. (2.8)

Similarly for permutations.

3. In all other cases, we have

(2.6) . L
1/2
minN

−1
max min(N1N2N3, Lmed)

1/2. (2.9)
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Because only one region needs to be controlled by using a dyadic ap-
proach, we just require the (+-) coherence case. On the other hand, these
estimates are sharp. In particular, testing (2.3) with

f1(τ, ξ) = χ|ξ|∼N1;|τ−3N2
2 ξ|.N2

1N2
,

f2(τ, ξ) = χ|ξ−N2|.N1;|σ|.L2
,

f3(τ, ξ) = χ|ξ+N2|.N1;|σ|.L3
,

one obtain the optimality of bound (2.8) in the case N2 ∼ N3 & N1 and
N1N2N3 ∼ L1 & L2 & L3. This will be crucial in the proof of Theorem 1.2.

3 Bilinear estimate

In this section, we derive the bilinear estimate (1.5). To get the required
contraction factor T ν in our estimates, the next lemma is very useful (see
[7]).

Lemma 3.1 Let f ∈ L2(R2) with compact support (in time) in [−T,+T ].
For any θ > 0, there exists ν = ν(θ) > 0 such that

∥∥∥F−1
( f̂(τ, ξ)

〈τ − ξ3〉θ

)∥∥∥
L2

xt

. T ν‖f‖L2
xt
.

We will also need the following elementary calculus inequalities.

Lemma 3.2 (a) For b, b′ ∈]14 ,
1
2 [ and α, β ∈ R,

∫

R

dx

〈x− α〉2b〈x− β〉2b′
.

1

〈α− β〉2b+2b′−1
. (3.1)

(b) For b, b′ ∈]14 ,
1
2 [ and α, β ∈ R,

∫

|x|≤|β|

dx

〈x〉2b+2b′−1
√

|α− x|
.

〈β〉2(1−b−b′)

〈α〉1/2
. (3.2)

Proof of Theorem 1.1 : By duality, (1.5) is equivalent to

∣∣∣
∫

R2

∂x(uv)w
∣∣∣ . T ν‖w‖

X
1/2−δ,−s
α

‖u‖
X

1/2,s
α

‖v‖
X

1/2,s
α

10



for all w ∈ X
1/2,s
α , and setting

f̂(τ, ξ) = 〈i(τ − ξ3) + |ξ|2α〉1/2〈ξ〉sû(τ, ξ),

ĝ(τ, ξ) = 〈i(τ − ξ3) + |ξ|2α〉1/2〈ξ〉sv̂(τ, ξ),

ĥ(τ, ξ) = 〈i(τ − ξ3) + |ξ|2α〉1/2−δ〈ξ〉−sŵ(τ, ξ),

it is equivalent to show that

I =

∫

R4

K(τ, τ1, ξ, ξ1)ĥ(τ, ξ)f̂ (τ1, ξ1)ĝ(τ−τ1, ξ−ξ1)dτdτ1dξdξ1 . T ν‖f‖L2
xt
‖g‖L2

xt
‖h‖L2

xt

with

K =
|ξ|〈ξ〉s

〈iσ + |ξ|2α〉1/2−δ

〈ξ1〉
−s

〈iσ1 + |ξ1|2α〉1/2

〈ξ − ξ1〉
−s

〈iσ2 + |ξ − ξ1|2α〉1/2
.

By Fubini’s theorem, we can always assume f̂ , ĝ, ĥ ≥ 0. By symmetry, one
can reduce the integration domain of I to Ω = {(τ, τ1, ξ, ξ1) ∈ R

4, |σ1| ≥
|σ2|}. Split Ω into four regions,

Ω1 = {(τ, τ1, ξ, ξ1) ∈ Ω : |ξ1| ≤ 1, |ξ − ξ1| ≤ 1},

Ω2 = {(τ, τ1, ξ, ξ1) ∈ Ω : |ξ1| ≤ 1, |ξ − ξ1| ≥ 1},

Ω3 = {(τ, τ1, ξ, ξ1) ∈ Ω : |ξ1| ≥ 1, |ξ − ξ1| ≤ 1},

Ω4 = {(τ, τ1, ξ, ξ1) ∈ Ω : |ξ1| ≥ 1, |ξ − ξ1| ≥ 1}.

Estimate in Ω1

Using Cauchy-Schwarz inequality and Lemma 3.1, we easily obtain

I1 . sup
τ,ξ

[ |ξ|〈ξ〉s

〈iσ + |ξ|2α〉1/2−δ/2

(∫

Ω̃1

〈ξ1〉
−2s〈ξ − ξ1〉

−2s

〈iσ1 + |ξ1|2α〉〈iσ2 + |ξ − ξ1|2α〉
dτ1dξ1

)1/2]

× T ν‖f‖L2
xt
‖g‖L2

xt
‖h‖L2

xt

(3.3)

with Ω̃1 = {(τ1, ξ1) : ∃τ, ξ ∈ R, (τ, τ1, ξ, ξ1) ∈ Ω1}.
In Ω1, one has |ξ| ≤ 2 ans thus if K1 denotes the term between brackets in
(3.3),

K1 .
( ∫

Ω̃1

dτ1dξ1
〈σ1〉〈σ2〉

)1/2
.

(∫

|ξ1|≤1

(∫

R

dτ1
〈σ2〉2

)
dξ1

)1/2
. 1.

Estimate in Ω2

We split Ω2 into

Ω21 = {(τ, τ1, ξ, ξ1) ∈ Ω2 : |σ| ≥ |σ1|},

Ω22 = {(τ, τ1, ξ, ξ1) ∈ Ω2 : |σ1| ≥ |σ|}.
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Estimate in Ω21 : Note that in this region, |ξ − ξ1| ∼ 〈ξ − ξ1〉 and 〈ξ〉 &

〈ξ − ξ1〉. Thus using (3.3) as well as (2.5), it follows that

K21 . 〈ξ〉1/2+s+δ/2
( ∫

Ω̃21

〈ξ − ξ1〉
−2s−1+δ

|ξ1|1−δ〈σ1〉〈σ2〉ε〈ξ − ξ1〉2α(1−ε)
dτ1dξ1

)1/2

.
( ∫

|ξ1|≤1

〈ξ − ξ1〉
−2α(1−ε)+2δ

|ξ1|1−δ

( ∫

R

dτ1
〈σ1〉〈σ2〉ε

)
dξ1

)1/2

.
( ∫

|ξ1|≤1

dξ1
|ξ1|1−δ

)1/2

. 1.

Estimate in Ω22 : By similar arguments, we estimate

K22 .
|ξ|〈ξ〉s

〈ξ〉α(1−δ)

(∫

Ω̃22

〈ξ − ξ1〉
−2s

|ξξ1(ξ − ξ1)|1−ε〈σ1〉ε〈σ2〉
dτ1dξ1

)1/2

. 〈ξ〉1/2+s−α(1−δ)+ε/2
( ∫

|ξ1|≤1

〈ξ − ξ1〉
−2s−1+ε

|ξ1|1−ε
dξ1

)1/2

. 〈ξ〉−α(1−δ)+ε

. 1.

Estimate in Ω3

By symmetry, the desired bound in this region can be obtained in the same
way.

Estimate in Ω4

Divide Ω4 into

Ω41 = {(τ, τ1, ξ, ξ1) ∈ Ω4 : |σ1| ≥ |σ|},

Ω42 = {(τ, τ1, ξ, ξ1) ∈ Ω4 : |σ| ≥ |σ1|}.

Estimate in Ω41

We write Ω41 = Ω411 ∪ Ω412 ∪ Ω413 with

Ω411 = {(τ, τ1, ξ, ξ1) ∈ Ω41 : |ξ1| ≤ 100|ξ|},

Ω412 = {(τ, τ1, ξ, ξ1) ∈ Ω41 : |ξ1| ≥ 100|ξ|, 3|ξξ1(ξ − ξ1)| ≤
1

2
|σ1|},

Ω413 = {(τ, τ1, ξ, ξ1) ∈ Ω41 : |ξ1| ≥ 100|ξ|, 3|ξξ1(ξ − ξ1)| ≥
1

2
|σ1|}.
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Estimate in Ω411 : We have 〈ξ1〉 . 〈ξ〉 and 〈ξ−ξ1〉 . 〈ξ〉 thus with (2.5),
we deduce for 0 < λ < 1,

K411 .
〈ξ〉1/2+s

〈σ〉λ/2〈ξ〉α(1−λ−2δ)
〈ξ1〉

−s−1/2 〈ξ − ξ1〉
−s−1/2

〈σ2〉λ/2〈ξ − ξ1〉α(1−λ)

.
〈ξ〉[−s/2−1/4−α(1−λ−δ)]+

〈σ〉λ/2

〈ξ − ξ1〉
[−s/2−1/4−α(1−λ−δ)]+

〈σ2〉λ/2
.

Consequently, using Plancherel’s theorem and Hölder inequality,

I411 .

∫

R2

F−1
(〈ξ〉[−s/2−1/4−α(1−λ−δ)]+ ĥ

〈σ〉λ/2

)
F−1(f̂)F−1

(〈ξ〉[−s/2−1/4−α(1−λ−δ)]+ ĝ

〈σ〉λ/2

)
dtdx

.
∥∥∥F−1

(〈ξ〉[−s/2−1/4−α(1−λ−δ)]+ ĥ

〈σ〉λ/2

)∥∥∥
L4

xt

‖f‖L2
xt

∥∥∥F−1
( 〈ξ〉[−s/2−1/4−α(1−λ−δ)]+ ĝ

〈σ〉λ/2

)∥∥∥
L4

xt

.

Now we choose λ = 3/4 + δ so that λ/2 > 3/8 and for s > −3/4 − α/2 and
δ > 0 small enough,

−
s

2
−

1

4
− α(1 − λ− δ) =

1

8
−

1

2

(
s+

3

4
+
α

2

)
+ 2αδ ≤

1

8
.

Hence with help of Lemma 2.4, I411 . T ν‖f‖L2
xt
‖g‖L2

xt
‖h‖L2

xt
.

Estimate in Ω412 : Using the same arguments that for (3.3), we show
that

I412 . sup
τ1,ξ1

[ 〈ξ1〉
−s

〈iσ1 + |ξ1|2α〉1/2

(∫

Ω̃412

|ξ|2〈ξ〉2s〈ξ − ξ1〉
−2s

〈iσ + |ξ|2α〉1−δ〈iσ2 + |ξ − ξ1|2α〉
dτdξ

)1/2]

× T ν‖f‖L2
xt
‖g‖L2

xt
‖h‖L2

xt

(3.4)

with Ω̃412 = {(τ, ξ) : ∃τ1, ξ1 ∈ R, (τ, τ1, ξ, ξ1) ∈ Ω422}. Moreover, we easily
check that in Ω412,

|σ1 + 3ξξ1(ξ − ξ1)| ≥
1

2
|σ1|

and
|ξ| ≤ |σ1|,
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which combined with (3.1) and smoothing relation (2.5) yield

K422 .
1

〈σ1〉1/2

(∫

Ω̃412

〈ξξ1(ξ − ξ1)〉
−2s〈ξ〉2+4s

〈σ〉1−δ〈σ2〉1−δ
dτdξ

)1/2

. 〈σ1〉
−s−1/2

( ∫

Ω′

412

〈ξ〉2+4s

〈σ1 + 3ξξ1(ξ − ξ1)〉1−2δ
dξ

)1/2

. 〈σ1〉
−s−1+δ

( ∫

|ξ|≤|σ1|

dξ

〈ξ〉−4s−2

)1/2
,

(we have set Ω′
412 = {ξ : ∃τ, τ1, ξ1 ∈ R, (τ, τ1, ξ, ξ1) ∈ Ω412}).

Now from the assumptions (1.7) on s we see that

K422 . 〈σ1〉
−s−1+δ〈σ1〉

2s+3/2 . 1

if α ≤ 1/2 and
K422 . 〈σ1〉

−s−1+δ . 1

otherwise.

Estimate in Ω413 : In this domain, |ξ1| ∼ |ξ − ξ1| thus using (3.4) it
follows that

K413 .
〈ξ1〉

−s−1/2+δ

〈σ1〉δ

( ∫

Ω̃413

〈ξ〉2s+1+2δ〈ξ − ξ1〉
−2s−1+2δ

〈σ〉1−δ〈σ2〉1−δ
dτdξ

)1/2

.
〈ξ1〉

−2s−1+2δ

〈σ1〉δ

( ∫

Ω′

413

dξ

〈σ1 + 3ξξ1(ξ − ξ1)〉1−2δ

)1/2
.

Following the works of Kenig, Ponce and Vega [9], we perform the change of

variables µ1 = σ1 + 3ξξ1(ξ − ξ1). Thus, since dξ ∼
dµ1

|ξ1|1/2
√

|4τ1 − ξ31 − 4µ1|
and in view of (3.2), we bound K413 by

K413 .
〈ξ1〉

−2s−5/4+2δ

〈σ1〉δ

(∫

|µ1|≤2|σ1|

dµ1

〈µ1〉1−2δ
√

|4τ1 − ξ31 − 4µ1|

)1/2

.
〈ξ1〉

−2s−5/4+2δ

〈σ1〉δ
〈σ1〉

δ

〈4τ1 − ξ31〉
1/4

. 〈ξ1〉
−2s−5/4+2δ〈4τ1 − ξ31〉

−1/4.

Note that in Ω413, we have |σ1| ≤
12
100 |ξ1|

3, which leads to

3|ξ1|
3 ≤ |4σ1 + 3ξ31 | + 4|σ1| ≤ |4τ1 − ξ31 | +

48

100
|ξ1|

3

14



and thus |ξ1|
3 . |4τ1 − ξ31 |. One deduce that for −2s− 5/4 + 2δ > 0,

K413 . 〈4τ1 − ξ31〉
1
3
(−2s−5/4+2δ)−1/4 . 〈4τ1 − ξ31〉

− 2
3
(s+1)+2δ/3 . 1.

Estimate in Ω42

We split this region in two components :

Ω421 = {(τ, τ1, ξ, ξ1) ∈ Ω42 : |ξ1| ≤ 100|ξ|},

Ω422 = {(τ, τ1, ξ, ξ1) ∈ Ω42 : |ξ1| ≥ 100|ξ|}.

Estimate in Ω421 : In Ω421, 〈ξ1〉 . 〈ξ〉 and 〈ξ − ξ1〉 . 〈ξ〉. Then, we
bound I421 exactly in the same way that for I411. After Plancherel and
Hölder, we are lead to the estimate

I421 . ‖h‖L2
xt

∥∥∥F−1
( 〈ξ〉[−s/2−1/4−α(1−λ)+3δ/2]+ f̂

〈σ〉λ/2

)∥∥∥
L4

xt

×
∥∥∥F−1

(〈ξ〉[−s/2−1/4−α(1−λ)+3δ/2]+ ĝ

〈σ〉λ/2

)∥∥∥
L4

xt

.

It suffices to choose λ = 3/4 + ε to apply Lemma 2.4 with s > −3/4 − α/2.

Estimate in Ω422 : We split Ω422 into three sub-domains

Ω4221 = {(τ, τ1, ξ, ξ1) ∈ Ω422 : 3|ξξ1(ξ − ξ1)| ≤
1

2
|σ|},

Ω4222 = {(τ, τ1, ξ, ξ1) ∈ Ω422 : 3|ξξ1(ξ − ξ1)| ≥
1

2
|σ|, |σ2| ≤ 1},

Ω4223 = {(τ, τ1, ξ, ξ1) ∈ Ω422 : 3|ξξ1(ξ − ξ1)| ≥
1

2
|σ|, |σ2| ≥ 1}.

Estimate in Ω4221 : In this region one has that

|σ + 3ξξ1(ξ − ξ1)| ≥
1

2
|σ|

and since σ1 + σ2 − σ = 3ξξ1(ξ − ξ1) it follows that

|σ1| ≤ |σ| ≤ 2|σ1 + σ2| ≤ 4|σ1|
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and |σ1| ∼ |σ| ≥ |ξξ1(ξ − ξ1|. Therefore using (3.4), one obtain

K4221 .
〈ξ1〉

−s

〈σ1〉1/2

( ∫

Ω̃4221

|ξ|2〈ξ〉2s〈ξ − ξ1〉
−2s

〈σ〉1−δ〈σ2〉
dτdξ

)1/2

.
1

〈σ1〉1−δ

(∫

Ω̃4221

〈ξξ1(ξ − ξ1)〉
−2s〈ξ〉2+4s

〈σ2〉1+δ
dτdξ

)1/2

. 〈σ1〉
−s−1+δ

(∫

|ξ|.|σ1|

dξ

〈ξ〉−4s−2

)1/2

. 1

as for K422.

Estimate in Ω4222 : First consider the case α ≤ 1/2. Then,

K4222 .
|ξ|〈ξ〉s

〈σ〉1/2−δ/2

( ∫

Ω̃4222

〈ξ1〉
−2s〈ξ − ξ1〉

−2s

〈σ1〉〈σ2〉
dτ1dξ1

)1/2

.
|ξ|1+s〈ξ〉s

〈σ〉1/2−δ/2

( ∫

Ω̃4222

〈ξξ1(ξ − ξ1)〉
−2s

〈σ1〉1−δ〈σ2〉1−δ
dτ1dξ1

)1/2

. |ξ|1+s〈ξ〉s〈σ〉−s−1/2+δ/2
(∫

Ω′

4222

dξ1
〈σ + 3ξξ1(ξ − ξ1)〉1−2δ

)1/2
.

The change of variables µ = σ + 3ξξ1(ξ − ξ1) gives the inequalities

K4222 . |ξ|3/4+s〈ξ〉s〈σ〉−s−1/2+δ/2
( ∫

|µ|≤2|σ|

dµ

〈µ〉1−2δ
√

|4τ − ξ3 − 4µ|

)1/2

. |ξ|3/4+s〈ξ〉s〈σ〉−s−1/2+3δ/2〈4τ − ξ3〉−1/4,

which is bounded on R
2. If α > 1/2, we have directly

K4222 .
|ξ|〈ξ〉s

〈σ〉1/2−δ/2

( ∫

Ω̃4222

〈ξ1〉
−4s

〈ξ1〉2α〈ξ − ξ1〉2α〈σ2〉1+ε
dτ1dξ1

)1/2

. 〈ξ〉1/2+s+δ/2
(∫

R

dξ1
〈ξ1〉4s+2+4α+2δ

)1/2

. 1

for s > −1/4 − α.

Estimate in Ω4223 : As we will see below, that is in this sub-domain that
the condition s > sα appears. Also, to obtain our estimates, we will need tu
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use a dyadic decomposition of the variables ξ1, ξ−ξ1, ξ and σ1, σ2, σ. Hence,
following the notations introduced in Subsection 2.2, we have to bound

I4223 =
∑

N3≪N1∼N2
N1&1

∑

L3&L1&L2

L3∼N3N2
1

N3〈N3〉
sN−s

1 N−s
2

max(L3, N2α
3 )1/2−2δ max(L1, N2α

1 )1/2 max(L2, N2α
2 )1/2

×

∫

R4

ĥ(τ, ξ)

〈σ〉δ
f̂(τ1, ξ1)ĝ(τ − τ1, ξ − ξ1)χ|ξ|∼N3,|ξ1|∼N1,|ξ−ξ1|∼N2

χ|σ|∼L3,|σ1|∼L1,|σ2|∼L2
dτdτ1dξdξ1.

Using the (+-) coherence case of Lemma 2.5 as well as Lemma 3.1, we get

∫

R4

ĥ(τ, ξ)

〈σ〉δ
f̂(τ1, ξ1)ĝ(τ − τ1, ξ − ξ1)χ|ξ|∼N3,|ξ1|∼N1,|ξ−ξ1|∼N2

χ|σ|∼L3,|σ1|∼L1,|σ2|∼L2
dτdτ1dξdξ1

. L
1/2
2 N−1

1 min
(
N3N

2
1 ,
N1

N3
L1

)1/2
∥∥∥F−1

( ĥ(τ, ξ)
〈σ〉δ

)∥∥∥
L2

xt

‖f‖L2
xt
‖g‖L2

xt

. T νL
1/2
2 N−1

1 min
(
N3N

2
1 ,
N1

N3
L1

)1/2
‖h‖L2

xt
‖f‖L2

xt
‖g‖L2

xt
.

Thus we reduce to show

∑

N3≪N1∼N2
N1&1

∑

L3&L1&L2

L3∼N3N2
1

N3〈N3〉
sN−s

1 N−s
2

max(L3, N
2α
3 )1/2−2δ max(L1, N

2α
1 )1/2 max(L2, N

2α
2 )1/2

×L
1/2
2 N−1

1 min
(
N3N

2
1 ,
N1

N3
L1

)1/2
. 1.

(3.5)

Recalling that Nj = 2nj and Lj = 2ℓj , j = 1, 2, 3, for all λ ∈ [0, 1], the right
hand side of (3.5) is bounded by

.
∑

N3≪N1∼N2
N1&1

∑

L3&L1&L2

L3∼N3N2
1

N3〈N3〉
sN−2s−1

1 (N3N
2
1 )λ/2

(
N1
N3
L1

)(1−λ)/2

Lδ
3(N3N2

1 )1/2−3δL
(1−λ)/2
1 Nαλ

1

.
∑

N3≪N1∼N2
N1&1

( ∑

L1,L2,L3&1

1

(L1L2L3)δ/3

)
Nλ+3δ

3 〈N3〉
sN

−2s−3/2+λ(1/2−α)+6δ
1

.
∑

N1&1
N3≪N1

Nλ+3δ
3 〈N3〉

sN
−2s−3/2+λ(1/2−α)+6δ
1 .
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This last expression is finite if λ+3δ < −s and −2s−3/2+λ(1/2−α)+6δ < 0.
When α ≤ 1/2, it suffices to choose λ = 0 and λ = −s− 4δ otherwise.

4 Proof of the main result

In this section, we briefly indicate how the results stated in Section 2.1 and
the bilinear estimate (1.5) yield Theorem 1.3 (see for instance [11] for the
details).

Actually, local existence of a solution is a consequence of the following
modified version of Theorem 1.1.

Proposition 4.1 Given s+c > sα, there exist ν, δ > 0 such that for any

s ≥ s+c and any u, v ∈ X
1/2,s
α with compact support in [−T,+T ],

‖∂x(uv)‖
X

−1/2+δ,s
α

. T ν(‖u‖
X

1/2,s+c
α

‖v‖
X

1/2,s
α

+ ‖u‖
X

1/2,s
α

‖v‖
X

1/2,s+c
α

). (4.1)

Estimate (4.1) is obtained thanks to (1.5) and the triangle inequality

∀s ≥ s+c , 〈ξ〉
s ≤ 〈ξ〉s

+
c 〈ξ1〉

s−s+
c + 〈ξ〉s

+
c 〈ξ − ξ1〉

s−s+
c .

Let u0 ∈ Hs(R) with s obeying (1.7). Define F (u) as

F (u) = Fu0(u) = ψ(t)
[
Wα(t)u0 −

χR+(t)

2

∫ t

0
Wα(t− t′)∂x(ψ2

T (t′)u2(t′))dt′
]
.

We shall prove that for T ≪ 1, F is contraction in a ball of the Banach
space

Z = {u ∈ X1/2,s
α , ‖u‖Z = ‖u‖

X
1/2,s+c
α

+ γ‖u‖
X

1/2,s
α

< +∞},

where γ is defined for all nontrivial ϕ by

γ =
‖ϕ‖

Hs+c

‖ϕ‖Hs
.

Combining (2.1), (2.2) as well as (4.1), it is easy to derive that

‖F (u)‖Z ≤ C(‖u0‖Hs+c
+ γ‖u0‖Hs) + CT ν‖u‖2

Z

and
‖F (u) − F (v)‖Z ≤ CT ν‖u− v‖Z‖u+ v‖Z
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for some C, ν > 0. Thus, taking T = T (‖u0‖Hs+c
) small enough, we deduce

that F is contractive on the ball of radius 4C‖u0‖Hs+c
in Z. This proves the

existence of a solution u to u = F (u) in X
1/2,s
α,T .

Following similar arguments of [11], it is not too difficult to see that if

u1, u2 ∈ X
1/2,s
α,T are solutions of (1.6) and 0 < δ < T/2, then there exists

ν > 0 such that

‖u1 − u2‖X
1/2,s
α,δ

. T ν
(
‖u1‖X

1/2,s
α,T

+ ‖u2‖X
1/2,s
α,T

)
‖u1 − u2‖X

1/2,s
α,δ

,

which leads to u1 ≡ u2 on [0, δ], and then on [0, T ] by iteration. This proves
the uniqueness of the solution.

It is straightforward to check thatWα(·)u0 ∈ C(R+,H
s(R))∩C(R∗

+,H
∞(R)).

Then it follows from Theorem 1.1, Lemma 2.3 and the local existence of the
solution that

u ∈ C([0, T ],Hs(R)) ∩ C((0, T ],H∞(R))

for some T = T (‖u0‖Hs+c
). By induction, we have u ∈ C((0, T ],H∞(R)).

Taking the L2-scalar product of (1.1) with u, we obtain that t 7→ ‖u(t)‖
Hs+c

is nonincreasing on (0, T ]. Since the existence time of the solution depends
only on the norm ‖u0‖Hs+c

, this implies that the solution can be extended
globally in time.

5 Proof of Theorem 1.2

Let s ≥ sα. To prove Theorem 1.2, it suffices to show that the multiplier

M = sup
f,g,h∈S(R2)

‖f‖
L2

xt
,‖g‖

L2
xt

,‖h‖
L2

xt

.1

∣∣∣
∫

R4

K(τ, τ1, ξ, ξ1)ĥ(τ, ξ)f̂(τ1, ξ1)ĝ(τ−τ1, ξ−ξ1)dτdτ1dξdξ1

∣∣∣

is infinite. Setting

A = {f ∈ S(R2) : f̂ ≥ 0, ‖f‖L2
xt

. 1},
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and performing as previously a dyadic decomposition of the variables ξ1,
ξ − ξ1, ξ and σ1, σ2, σ, it follows that

M & sup
f,g,h∈A

∑

N1,N2,N3

∑

L1,L2,L3

N3〈N3〉
s〈N1〉

−s〈N2〉
−s

〈max(L3, N2α
3 )〉1/2−δ〈max(L1, N2α

1 )〉1/2〈max(L2, N2α
2 )〉1/2

×

∫

R4

ĥ(τ, ξ)f̂(τ1, ξ1)ĝ(τ − τ1, ξ − ξ1)χ|ξ|∼N3,|ξ1|∼N1,|ξ−ξ1|∼N2
χ|σ|∼L3,|σ1|∼L1,|σ2|∼L2

& sup
N1,N2,N3

sup
L1,L2,L3

N3〈N3〉
s〈N1〉

−s〈N2〉
−s

〈max(L3, N
2α
3 )〉1/2−δ〈max(L1, N

2α
1 )〉1/2〈max(L2, N

2α
2 )〉1/2

× sup
f,g,h∈A

∫

R4

ĥ(τ, ξ)f̂(τ1, ξ1)ĝ(τ − τ1, ξ − ξ1)χ|ξ|∼N3,|ξ1|∼N1,|ξ−ξ1|∼N2
χ|σ|∼L3,|σ1|∼L1,|σ2|∼L2

.

Now we localize the previous supremum to the critical region

{
N3 ≪ N1 ∼ N2

N3N
2
1 ∼ L3 & L1 & L2 & 1

which corresponds to a sub-domain of Ω4223. In this case, the optimality of
(2.8) gives

sup
f,g,h∈A

∫

R4

ĥ(τ, ξ)f̂(τ1, ξ1)ĝ(τ − τ1, ξ − ξ1)χ|ξ|∼N3,|ξ1|∼N1,|ξ−ξ1|∼N2
χ|σ|∼L3,|σ1|∼L1,|σ2|∼L2

& L
1/2
2 N−1

1 min
(
N3N

2
1 ,
N1

N3
L1

)1/2
.

Therefore we have the bound

M & sup
1.N3≪N1∼N2

sup
1.L2.L1.L3

L3∼N3N2
1

N1+s
3 N−2s

1 L
1/2
2 N−1

1 min
(
N3N

2
1 ,

N1
N3
L1

)1/2

max(N3N2
1 , N

2α
3 )1/2−δ max(L1, N2α

1 )1/2 max(L2, N2α
2 )1/2

.

First consider the case 0 ≤ α ≤ 1/2. Then,

M & sup
N1≫1
N3∼1

sup
L1∼L2∼N2

3N1

N−2s−1
1 L

1/2
2

(
N1
N3
L1

)1/2

N1−2δ
1 L

1/2
1 L

1/2
2

& sup
N1≫1

N
−2s−3/2+2δ
1

= +∞

20



for s ≤ −3/4. Now if 1/2 < α ≤ 1, we estimate

M & sup
N1≫1

N3∼N
α−1/2
1

sup
L1∼L2∼N2α

1

N1+s
3 N−2s−1

1 L
1/2
2 N

3/4+α/2
1

(N3N2
1 )1/2−δL

1/2
2 Nα

1

& sup
N1≫1

N
−2s−5/4−α/2+(α−1/2)(s+1/2)+(α+3/2)δ
1

= +∞

for −2s− 5/4 − α/2 + (α− 1/2)(s + 1/2) ≥ 0, i.e. s ≤
−3

5 − 2α
.
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