N

N

Mixing angles of quarks and leptons as an outcome of
SU(2) horizontal symmetries
Quentin Duret, Bruno Machet

» To cite this version:

Quentin Duret, Bruno Machet. Mixing angles of quarks and leptons as an outcome of SU(2) horizontal
symmetries. 2007. hal-00154108

HAL Id: hal-00154108
https://hal.science/hal-00154108

Preprint submitted on 12 Jun 2007

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00154108
https://hal.archives-ouvertes.fr

June 12th 2007

MIXING ANGLES OF QUARKS AND LEPTONS AS AN OUTCOME
OF SU(2) HORIZONTAL SYMMETRIES

Q. Duret! & B. Machet? 3

Laboratoire de Physique Borique et Haute&nergies®
Unité Mixte de Recherche UMR 7589
Universié Pierre et Marie Curie-Paris 6 / CNRS / UniveksiDenis Diderot-Paris 7

Abstract: We show that all mixing angles are determined, within experital uncertainty, by a product
of SU(2) horizontal symmetries intimately linked to the algebra efk neutral currents. This concerns:
on one hand, the three quark mixing angles; on the other fmndutrino-like pattern in whicHog is
maximal andtan(26;2) = 2. The latter turns out to exactly satisfy the “quark-leptamplementarity
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1 Introduction

Following the study of neutral kaons done fih [1], we have show[g] and [B] that:

x in Quantum Field Theory (QFT), mixing matrices linking flawvdo mass eigenstates for non-degenerate
coupled systems should never be parametrized as unitatgedi) assuming that the effective renormal-
ized quadratic Lagrangian is hermitian at afyand that flavour eigenstates form an orthonormal basis,
different mass eigenstates, which correspond to differahies ofg? (poles of the renormalized propa-
gator) belong to different orthonormal bases

x when itis so, the properties of universality for diagonaltna currents and absence of flavor changing
neutral currents (FCNC) which are systematically impleteénfor the Standard Model (SM), in the
space of flavour eigenstates, do not automatically tramslaymore into equivalent properties in the
space of mass eigenstates. In the case of two generaticarsrobhs, imposing them for mass eigenstates
yields two types of solutions for the mixing angléf each doublet with identical electric charge:
Cabibbo-like solutions’ which reduce to a single unconstrained mixing angle, andt afsdiscrete
solutions, unnoticed in the customary approach, includingarticular the so-called maximal mixing
T/4 £ kn/2;

x for any of these solutions one recovers a unitary mixing ixiaiot, as said above, very small deviations
are expected due to mass splittings, which manifest theesels a tiny departure from the exact two
previous conditions. In particular, in theeighborhoodof a Cabibbo-like solution, these deviations
become of equal strength for a value of the mixing angle exig close to the measured Cabibbo angle

tan(26.) = 1/2. 1)

This success was a encouragement to go further in this idineciVe present below the outcome of
our investigation of neutral current patterns in the casthiafe generations of fermions. In particular,
we show that the requested scheme of unitarity violatiorhefrhixing matrices trivially interprets in
terms of a product 06U (2) horizontal symmetries, implemented at the level of newtrek currents.
Hence, the values of all mixing angles, in the quark as weilhdbke leptonic sector, are controlled by
this symmetry.

The intricate system of trigopnometric equations has bebreddy successive approximations, starting
from configurations in whicld; 3 is vanishing. We will see that this approximation, obviguskpired by
the patterns of mixing angles determined from experimengdsurements, turns out to be a very good
one. Indeed, we precisely show, without exhibiting all tbisons of our equations, that the presently
observed patterns of quarks as well as of neutrinos, dol folfil criterion. While the three angles of the
Cabibbo-Kobayashi-Maskawa (CKM) solution are “Cabiblka’, the neutrino-like solution

tan(2912) = 2 & 912 ~ 31.70,
O3 = /4,
015 = =+5.71073 orby3 = +0.2717 (2)

is of a mixed type, wheré,s is maximal whilef,» andf,3 are Cabibbo-like.

Two significant features in these results must be stressest, the values for the third neutrino mixing
anglef3 given in (2) are predictions which take into account pregkise) experimental constraints.
Only two possibilities survive: an extremely small valug ~ V,;, ~ a few10~3, and a rather “large”
one, at the opposite side of the allowed range. Secondhypmaedure yields in an exact, though quite
simple way, the well-known “quark-lepton complementaritjation” [8] for 1-2 mixing:

012+ 6. = /4, (3

wheref, is the leptonic angle, art. the Cabibbo angle for quarks.

Since at anygivenq?, the set of eigenstates of the renormalized quadratic naima form an orthonormal basis, the
mixing matrix with all its elements evaluated at thfsis unitary and the unitarity of the theory is never jeopaediz

2For two generations, one is led to introduce two mixing amgeparametrize eachx 2 non-unitary mixing matrix.

3Cabibbo-like angles can only be fixed by imposing conditiomsheviolation patternof the unitarity of the mixing matrix
in its vicinity.



2 Neutral currents of mass eigenstates an@U (2) symmetries

2.1 The different basis of fermions

Three bases will appear throughout the paper:

* flavour eigenstates, that we nétey, ¢y, ty) and(dy, sy, by) for quarks,(ey, puy, 7¢) @and(vey, vug, vry)
for leptons;
* mass eigenstates that we noig,, ¢,,, t,) and(dy,, Sm., br,) for quarks,(ep, , tm, Tm) aNA(Vep, Vym s Vrm,)

for leptons; they include in particular the charged leptdetected experimentally, since their identifica-
tion proceeds through the measurement of thiirge/mass ratio in a magnetic field;

x the neutrinos that couple to mass eigenstates of chargamhiejm charged weak currents. These are
the usual "electronic”, “muonic” andr” neutrinosv,, v, v, considered in SM textbookEl [5]: they are
indeed identified by the outgoing charged leptons that theglyre through charged weak currents, and
the latter are precisely mass eigenstates (see above) $tagss read (see Appenflix D)

Ve Vef Vem
vy | =K vy | = &K | v | )
Vr Vrf Vrm

where K, and K,, are the mixing matrices respectively of charged leptons @nukutrinos ie. the
matrices that connect their flavour to their mass eigersgtatsote that these neutrinos coincide with
flavour eigenstates when the mixing matnixcharged leptonss taken equal to unity<, = 1, i.e. when
the mass and flavour eigenstates of charged leptons arealigiich is often assumed in the literature.

2.2 Neutral currents and SU (2) symmetry

The principle of the method is best explained in the case ofganerations. This in particular makes the
link with our previous work [3].

Let us consider for example tH@, s) channel®. The corresponding neutral currents in the basis of
mass eigenstates are controlled by the prodiiet’ of the mixing matrixC' betweend and s with its
hermitian conjugate (se¢][2]). Requesting the absence mfdiagonal currents and universality for
diagonal currents (that we call hereafter the “unitar@aticonditions) selects two classes of mixing
angles [R]: a first class that we call “Cabibbo-like” whichuisconstrained at this level, and a second
class made of a series of discrete values, maximal or vaugisiis soon ag§’ departs from unitarity, the
Lagrangian for neutral currents reads, in the basis of mgssgtates

L x Wj’ [a Jm'yde + B Smy Sm + 0 Jm’ygsm + CS‘m’ygdm] ) (5)

The condition that was shown ifi] [3] to fix the value of the “Gdim” angle,i.e. that the universality
of ddy, and s, v} s, currents is violated with the same strength as the absendg,dfs,, and
Sm7y dm, currents, now simply reads= o — 3 = ¢, which states thaf in (8) is invariant by theSU (2)
symmetry which rotateg ands. Eq. (§) indeed trivially rewrites, then,

dm Y dm + SmYY Sm
2

dm Mdm - gm Msm 7
+ (= p) ( L 5 LI 4 s + smvfdmﬂ : (6)

“Channel(i, 7)” corresponds to two fermionsandj with identical electric charge; for example, “chanig] 3)” corre-
sponds tdd, b), (¢, t), (W™, 77 ) Of (Vu,vr).

L o< W} [(a—i—ﬂ)




in which all components of the triplet &fU (2) currents|3 (dim s dim — 8mYy Sm) s dm Vs Smy Sm Y dm)
the corresponding (vector) charges of which make up theasteSU (2) algebra, have the same coef-
ficient (a — 3). The work [B] states accordingly that the “Cabibbo angletastrolled by thisSU(2)
symmetry.

The generalization to three generations is now straigivdicsl. Neutral currents are controlled by the
productK T K of the3 x 3 mixing matrix K with its hermitian conjugate; for example, the (left-hadple
neutral currents for quarks with electric chafgel /3) read

dy dy dm dp,
Sf 75 Sf = Sm 75 KchKd Sm : (7)
by by b b

RequestingSU (2) symmetry in eacH, j) channel is trivially equivalent to the condition that, insth
channel, universality for the diagonal currents is viadatdth the same strength as the absence of non-
diagonal currents. We will show that all presently known imixangles, in the quark as well as in the
leptonic sectors, satisfy this criterion.

2.3 Mixing matrices. Notations

We write each mixing matri¥< as a product of three matrices, which reduce, in the unjitéintit, to
the basic rotations b#-, 623 andf3 (we are not concerned with P violation)

1 0 0 C13 0 S13 C12 512 0
K=10 cp3 523 |X 0 1 0 X | =812 ¢2 0 |- 8
0 —893 Ca23 —3513 0 ¢i3 0 0 1

We parametrize each basic matrix, whicligriori non-unitary, with two angles, respectivelo, §12),
(023, 023) and (613, 013). We deal accordingly with six mixing angles, instead of ¢hirethe unitary case

(wheret;; = 0;;). We will use throughout the paper the notations = sin(0;;), 5;; = sin(6;;), and
likewise, for the cosines;;; = cos(;;), ¢;; = cos(6;;).

To lighten the text, the elements Aff K will be abbreviated byij],i,j = 1...3 instead of KTK)j;;1,
and the corresponding neutral current will be noéd. So, in the quark cas¢12} stands fori,, v} ¢,

or Y} $m, and, in the neutrino case, 0,7} Vum OF EmY} tim.

2.4 The unitarization conditions

They are five: three arise from the absence of non-diagonataieurrents for mass eigenstates, and
two from the universality of diagonal currents. Accordiyygbne degree of freedom is expected to be
unconstrained.

2.4.1 Absence of non-diagonal neutral currents of mass eigstates

The three conditions read:



« for the absence of13} and{31} currents:

[13] = 0 = [31] & c12 [c13513 — E13513(E33 + 553)] — C13812(ca3503 — Ca3da3) = 0; 9)
« for the absence df23} and{32} currents:

23] = 0 = [32] < s12 [c13513 — C13513(333 + $33)| + C13C12(ca3503 — Ca35a3) = 0; (10)
« for the absence of12} and{21} currents:

[12] = 0 = [21] <
$12€12C13 — 8512C12(Ch5 + 333) + 512C128%4 (855 + C33) + 513(512512 — C12612) (23593 — E23523) = 0.

(11)
2.4.2 Universality of diagonal neutral currents of mass eignstates
The two independent conditions read:
x equality of{11} and{22} currents:
[11] -[22] =0«
(cla — s1o) (T3 + §13(s33 + &53)] — (E1y — 512)(ch3 + 553)
+2513(co3523 — C23523) (12512 + 512€12) = 0; (12)
x equality of{22} and{33} currents:
[22] — [33] =0 <
sty + Gla(Chy + 553) — (553 + 33) + (1 + s12) [513(s33 + E33) — 513
+2512813C12(Co3523 — C23523) = 0. (13)

The equality of{ 11} and{33} currents is of course not an independent condition.

2.5 Solutions for@;3 = 0 = 513

In a first step, to ease solving the system of trigonometri@aéqgns, we shall study the configuration in
which one of the two angles parametrizing the 1-3 mixing sta@$>, which is very close to what is ob-
served experimentally in the quark sector, and likely inrthatrino sector. It turns out, as demonstrated
in Appendix[A, that the second mixing angle vanishes simeltaisly. We accordingly work in the ap-
proximation (the sensitivity of the solutions to a smalligtion of 613, 6,3 will be studied afterwards)

013 =0 = 6;3. (14)
Egs. (D), [AP),[(A1)[(32) and {13), reduce in this limit to

5By doing so, we exploit the possibility to fix one degree okftem lefta priori unconstrained by the five equations; see
subsection 2}2.




—512(ca3523 — C23S23) = 0, (15a)

¢12(ca3s23 — C23323) = 0, (15b)

s12€12 — 812612(Chs + §33) = 0, (15c¢)

(cla — s12) — (&0 — 312) (¢33 + 833) = 0, (15d)
sTy + Fa(ca3 + 353) — (533 + E53) = 0. (15e)

It is shown in AppendiX B that ﬂje only solutions d@g andf,3 Cabibbo-like 6]2,23 = 012,03 + k) or
maximal 612723 = 7T/4 + n7r/2, 912723 = 7T/4 + m7T/2)

Accordingly, the two following sections will respectivedyart from:

x 019 andfyz Cabibbo-like (and, in a first step, vanishifig;), which finally leads to a mixing pattern
similar to what is observed for quarks;

x o3 maximal and¥,, Cabibbo like (and, in a first step, vanishifig;), which finally leads to a mixing
pattern similar to the one observed for neutrinos.

3 The quark sector; constraining the three CKM angles

Mass splittings entail that the previous general condstiavhich, when exactly satisfied, correspated
factoto unitary mixing matrices, cannot be exactly fulfilled. Wigeéstigate the vicinity of their solutions,
and show that the same violation pattern that led to an atrdetermination of the Cabibbo angle in
the case of two generations, is also satisfied by the CKM anglthe case of three generations.

3.1 The simplified case#;3 = 0 = ;3
In the neighborhood of the solution with bath, andf,3 Cabibbo-like, we write

o = bOia+e
oz = O3+ (16)

The pattern(fy3 = 0 = §13) can be reasonably considered to be close to the experinsgtuaiion, at
least close enough for trusting not only the relations wivig) the first and second generation, but also
the third one.

Like in [B], we impose that the absence{d2}, {21} neutral currents is violated with the same strength
as the universality of 11} and{22} currents. It reads

’277812012823023 + 6(6%2 - 8%2)‘ = ’ — 277823623(0%2 — 8%2) + 46812612‘. (17)

We choose the+" sign for both sides, such that, for two generations onlg @abibbo angle satisfies
tan(2612) = +1/2. ({L7) yields the rati)/e, that we then plug into the condition equivalent|td (17) for
the (2, 3) channel.

Inci2(c3s — s33)| = |2nsa3ca3(1 + ¢iy) — 2es12¢12). (18)
(%) and [1B) yield
C12 C12
tan(26053) = ~ . 19
e (s12¢12 + ¢l —81p) o _ D Swci2 (19)

1+ 6%2 — 2819¢C12
ds1zc12 — (cfy — s1,) 4 tan(2015) —

N | —



In the r.h.s. of [(119), we have assumed thatis close to its Cabibbo valuen(26,2) ~ 1/2. 623 is seen
to vanish with[tan(26,3) — 1/2]. The predicted value faf»3 is plotted in Fig. 1 as a function @5,
together with the experimental intervals fty; and6;,. There are two[]7] fop;; the first comes from
the measures df,; (in black on Fig. 1)

Vua € 10.9735,0.9740] = 012 € [0.2285,0.2307], (20)
and the second from the measured/pf (in purple on Fig. 1)

Vs € [0.2236,0.2278] = 615 € [0.2255,0.2298]. (21)
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Fig. 1: 0,3 for quarks as a function df,5; simplified casél13 = 0 = 013

The measured value féhs is seen on Fig. 1 to correspondég, ~ 0.221, that iscos(612) ~ 0.9757.
Our prediction forcos(612) is accordingly1.710~2 away from the upper limit of the present upper
bound forV,, = c12¢13 [B] [fll; it corresponds to twice the experimental uncertirt also corresponds
tosin(612) = 0.2192, while Vs = s12c13 is measured to be2247(19) [H] [f]l; there, the discrepancy is
2/100, only slightly above thd.8/100 relative width of the experimental interval.

The approximation which sets; = 0 = 6,5 is accordingly reasonable, though it yields results slght
away from experimental bounds. We show in the next subsettiat relaxing this approximation gives
results in excellent agreement with present experiments.

3.2 Goingto(f;5 # 0,015 # 0)

Considering all angles to be Cabibbo-like with, in addittor(16)



013 = 013 + p, (22)
the I.h.s.’s of eqs[(9L(1L0p,(11], {12),]13) and the sfigh«{L3) depart respectively from zero by

nci3 [812(653 - 833) + 2813612623823] - P012(C%3 - 5%3); (239)

necis [—012(033 - 8%3) + 2813812023823] - p812(0%3 - 3%3)? (23b)

—e(cly — sTo) + 1 [s13(c33 — 833)(cly — s15) — 2ca3s03c12512(1 + 813)] + 2pc1zsizciasiz; (23€)

decrasiy + 1 [—4s13s12¢12(Ch3 — 833) — 2ca3503(cFo — s72) (1 + s13)] + 2pcizsiz (e — si); (23d)

—2es12¢12 + 1 [2313012312(033 — $53) + 2c23523 ((0%2 — s1y) + ci3(1+ 3%2))] + 2pc13s13(1 + $15);
(23e)

2es12c12 + 1 [—2813012812(033 — 833) + 2c93593 (0%3(1 + 0%2) — (C%Q — 8%2))] + 2p013813(1 + 0%2).
(23f)
We have added (23f), which is not an independent relationthsusum of [23d) and (2Be); it expresses
the violation in the universality of diagon&l 1} and{33} currents.

3.2.1 A guiding calculation

Before doing the calculation in full generality, and to makelearer difference with the neutrino case,
we first do it in the limit where one neglects terms which aradyatic in the small quantitie®,; and

p. By providing simple intermediate formulae, it enables irtipalar to suitably choose the signs which
occur in equating the moduli of two quantities. Ef.(23)dmee

N [s12(c35 — s33) + 2s13c12¢03523] — pei2; (24a)

n [—c12(c33 — s33) + 2s13512¢23593] — psi2; (24b)

—€(cly — s13) + 1 [s13(ch3 — s53)(ca — 5Ta) — 2c23823C12512] ; (24c)
2 2 2 247,

46012812 — 277 [2813812012(023 — 823) + 023823(012 — 812)] N (24d)

—26812612 + 2’!7 [513012812(653 — 833) + 023823(1 + C%Q)] 3 (248)

2es12c12 + 2 [—813612512(653 — 833) + cagsaz(1 + 5%2)] . (24f)

The principle of the method is the same as before. Ffon] (24€)@4d)) ¢ , which expresses that the
absence of non-diagon@l2} current is violated with the same strength as the univeysali{11} and

®The (-) signs ensures thatn(2612) ~ (+)1/2.



{22} currents, one gets/n as a function ob;2, 023, 613 . This expression is plugged in the relation
®41) = (-)[24E}, which expresses the same condition for (2e3) channel; from this, one extractgn

as a function ob,2, 623, 613 °. The expressions that have been obtained fgrandp /7 are then inserted
into the third relation| (244d)| = | @41) | , which now corresponds to thg, 3) channel. This last step
yields a relationFj (612, 023, 013) = 1 between the three anglés;, 03, 613.

It turns out that%’fjgﬂm) = 0, such that, in this case, a condition betwegn and 6,3 alone

eventually fulfills the three relations under concern

22) | _ 33)) | _|_viol([11]
= [21 ])' =[32])‘_ viol([13] =

viol ([11]

B viol ([22]
~ |viol ([12] =

viol ([23] 5’3]) g F0(912,923) =1.

[31])
(27)
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Fig. 2: 6,3 for quarks as a function df,»; neglecting terms quadratic it 3

f»3 is plotted on Fig. 2 as a function 6f,, together with the experimental intervals f3g andf, (the
intervals forf;, come respectively frori,; (eq. (2P)) and/,s (eq. (21))).
The precision obtained is much better than in Fig. 1 sinceaiticular, forf,3 within its experimental

range, the discrepancy between the prediétgdand its lower experimental limit coming frofwi,, is
smaller than the two experimental intervals, and even smtian their intersection.

3.2.2 The general solution

The principle for solving the general equatiohd (23) is #r@e as above. One first uses the relatjon|(23c)
= (-) (23d) to determing/¢ in terms ofn/e. The result is plugged in the relatigh (23b) = () (23e), whic
fixesn/e, and thusp/e as functions of(612, 623, 6013). These expressions far/e and p/e are finally
plugged in the relatioh(R3&)| =| (B3f) |, which provides a conditio (62, 623, 613) = 1. When it is

7

2 2
S$12C12 + Cio — 8712

€ 2 2
- = — 2 ; 25
p s13(C23 — $23) + 2828028 7 @, — %) (25)
e/n has a pole atan(26:2) = 1/2, the predicted value of the Cabibbo angle for two generation
8There, again, the (-) sign has to be chosen so as to recovendapgtely ).
9
2 .2 1 2 1 2. — &2
L VR, {513 — 1o (2 (c12812 +¢clp —s12)  1+4cip | 1 e 823)} . (26)
n dsipc12 — (¢3y — 83,)  ciasiz S12 2S23C23

p/n has a pole atan(2612) = 1/2 and, for,3 = 0, it vanishes, as expected, when andf,s satisfy the relatlorlg) which
has been deduced fér3(= 613 + p) = 0 = 613.



fulfilled, the universality of each pair of diagonal neuttakrents of mass eigenstates and the absence of
the corresponding non-diagonal currents are violated thélsame strength, in the three chanriél2),
(2,3) and(1, 3).

The results are displayed in Fig. 8;5 is plotted as a function ofy, for 63 = 0.004 and0.01. The
present experimental interval {g [7]

Vi = sin(f13) ~ 013 € [41072,4.61073). (28)

0. 05-:
0. 043 \
t het aP. 03-5
] \\
0. o; N )
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Fig. 3: 63 for quarks as a function df,2, general casef,3 = 0 (red), 0.004 (blue) and0.01 (green)

We conclude that:
x The discrepancy between our predictions and experimesisafier than the experimental uncertainty;

x a slightly larger value of;3 and/or slightly smaller values @f3 and/orf;, still increase the agreement
between our predictions and experimental measurements;

x the determination of{, from V,,, seems preferred to that frol,,.

Another confirmation of the relevance of our criterion isagivin the next section concerning neutrino
mixing angles.

4 A neutrino-like pattern; quark-lepton complementarity

In the “quark case”, we dealt with three “Cabibbo-like” aegyl The configuration that we investigate
here is the one in whichys is, as observed experimentally [7], (close to) maximal, @pdandd;; are
Cabibbo-like (see subsectipn]2.5).

41 The CaS@13 - 0 - 513

We explore the vicinity of this solution, slightly depagifrom the corresponding unitary mixing matrix,
by considering tha#;> now slightly differs fromd,5, andfs3 from its maximal value

o = O12+e,
Oo3 =m/4 , O3 =03+1. (29)

The l.h.s.'s of eqgs.[[9] (10) (11) (12) ar{d](13) no longer sanand become respectively



1
—5772(812 + €cy2), (302)

o7 (cra — es1a), (300)

* —ns12c19 + €(sTy — o) (1 + 1), (30c)
* —1)(cly — s15) + desiacia(1 4 1), (30d)
n(l+ 0%2) — 2es12c12(1 + 1), (30e)

showing by which amount the five conditions under scrutiryraw violated. Some care has to be taken
concerning the accurateness of equatipnk (30). Indeednpesied a value df;5 which is probably not
the physical one (even if close to). It is then reasonabletsider that chann¢l, 2) is the less sensitive
to this approximation and that, accordingly, of the five digues above,[(30c) an@l (30d), marked with an
“x”, are the most accurat€ .

The question: is there a special valuefpf = 6,5 Cabibbo-like for which small deviationg, n) from
unitarity entail equal strength violations of

« the absence df12}, {21} non-diagonal neutral currents;

* the universality of 11} and{22} neutral currents ?

gets then a simple answer
$19C19 = (3o — S19 = tan(2012) = 2. (31)

We did not take into account the terms proportionak feecause we assumed that the mass splittings
between the first and second generations (from which thedfaokitarity originates) are much smaller
that the ones between the second and the third generfation

In the case of two generations, ordyappears, and one immediately recovers frdm](30c) (B@d) t
condition fixingtan(26.) = 1/2 for the Cabibbo angle.

Accordingly, the same type of requirement that led to a vafule Cabibbo angle for two generations
very close to the observed value leads, for three genesatio value of the first mixing angle satisfying
the quark-lepton complementarity relatidh (8) [6].

The values of,, andfy3 determined through this procedure are very close to therebdeneutrino
mixing angles [[7].

Though we only considered the two equations thataapiori the least sensitive to our choice of a
vanishing third mixing angle (which is not yet confirmed estipeentally), it is instructive to investigate
the sensitivity of our solution to a small non-vanishingueabf 6;3. This is done in AppendiX]C in
which, for this purpose, we made the simplificatiig ~ 6;3. It turns out that the terms proportional to
s13 in the two equation§l2] = 0 = [21] and| [11] | =| [22] | are also proportional t¢3, — s3,), such that
our solution withf,3 maximal is very stable with respect to a variationdgf around zero. This may of
course not be the case for the other three equations, wheakxaected to be more sensitive to the value
of 013.

The limitation of this approximation also appears in the fhat ), of second order iy is not compatible withe),
which is of first order.

Hsjince the three angles playpriori symmetric roles, the simultaneous vanishing/@ndd, which we demonstrated for
615 andfys (see AppendiﬂA), should also occur for the other angles. ampeting effects accordingly contribute to the
magnitude of the parameters; .. .: on one hand, they should be proportional to (some pofy¢he corresponding, and, on
the other hand, one reasonably expects them to increaséwithass splitting between the fermions mixed by ¢hiSo, in the
quark sector, that the violation of unitarity should be mai for 63 is not guaranteed since the corresponding mixing angle is
also very small (as expected from hierarchical mixing matri]). A detailed investigation of this phenomenon istponed
to a further work. In the neutrino sector, however, sifgeis maximal (large), the assumption that the mass splittatgrben
the second and third generation is larger than between #tafid second is enough to guarante€ .
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4.2 Prediction for 05

We now consider, like we did for quarks, the general @age# 0 # 013(p # 0), 012 # b12(€ # 0),
B3 # 023(n # 0), while assigning td);» andfss their values predicted in subsectipn]4.1.

We investigate the eight different relations betwéen 6-3 andd,3 which originate from th@ x2x2 pos-
sible sign combinations in the conditiorfs](27) (the r.rs:idw replaced by a conditidfi(012, 623, 613) =
1 involving the three mixing angles), where each modulus @alternatively replaced by or “ —".

Among the solutions found fat 3, only two (up to a sign) satisfy the very loose experimentalril
sin?(13) < 0.1. (32)
They correspond respectively to the sign combinatiens—/—), (+/+/+), (—/+/+) and(—/—/-)
613 = £0.2717 | sin?(f13) = 0.072,
613 = £5.7107% | sin®(A13) = 3.3107°. (33)
The most recent experimental bounds can be found Jn [11]y Tewead
sin?(#13) < 0.05, (34)

which only leaves the smallest solution jn](33)

Future experiments will confirm, or infirm, for neutrinosetbroperties that we have shown to be satisfied
with an impressive accuracy by quark mixing angles.

5 Comments and open issues

5.1 How close are mixing matrices to unitarity? Mixing angles and mass spectrum

An important characteristic of the conditions that fix theximg angles is that they do not depend on
the strength of the violation of the two properties undeutiy, namely, the absence of non-diagonal
neutral currents and the universality of the diagonal ongfe space of mass eigenstates. Since only
their ratio is concerned, each violation can be infinitediyramall.

This is, on one side, fortunate since we have not yet beert@bldculate the magnitude of the violation
of the unitarity of the mixing matrices from, for example, ssaratios. The issue, for fundamental
particles, turns indeed to be much more difficult conceptudlan it was for composite particles like
neutral kaons[]1].

But, on the other side, this blurs the relation between thénmipattern and the fermionic mass spectrum
13, This was already blatant with the emergence of maximalmgixis a special set of solutions of the
unitarization equations if][2], which did not depend of apgaal type of mass hierarchy. The question
now arises of finding, if any, properties of the mass spegtmihich are, through the producks’ K of
mixing matrices, compatible with a#iU (2) symmetric pattern of weak neutral currents.

120ur predictions substantially differs from the ones@ [AM2hich mainly focuses on special textures for the produthef
quark and neutrino mixing matric13].

13A rigorous investigation of this connection was donelﬂ [10§ however rests on the assumption (incorrect in QFT)
that a system of coupled fermions can be described by a ueigpgEtant mass matrix, which is diagonalized by a bi-unitary
transformation. Then the so-defined “fermion masses” até¢haoeigenvalues of the mass matrix, which makes all the more
tricky the connection with the poles of the full propagatoJFT.
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5.2 Which mixing angles are measured

The results that have been exposed are valid for fermion®thf électric charges. They concern the
mixing angles which parametrize

x for quarks, the mixing matrix<, of u-type quarks as well a&’; of d-type quarks;
x for leptons, the mixing matrix<, of neutrinos as well as that of charged leptdfis

and we have shown that our approach allows to obtain on ptimelyretical grounds the values of the
mixing angles which are experimentally determined.

However, a problem arises : the measured values of the maxigies are commonly attached, not to a
single mixing matrix, e.gJk, or K, but to the produck = KJLKd which occurs in charged currents
when both quark types are mass eigenstates. Thus, in thrdastaspproach, they aeepriori related to

an entanglement of the mixing angles of quarks (or leptofdifferent charges. This problem gets easily
solved by the following argumentation. Considering, foammple, semi-leptonic decays of pseudoscalar
mesons in the approach where one of the constituent quatkgdstator”, we show that only one of the
two mixing matrices is involved and measured. Indeed, whiéetwo-fold nature (flavor and mass) of the
neutral kaons has always been acknowledged, this step hasheen taken yet for other mesons. This
is what we do now, in a rather naive, but efficient way, thaistsis of distinguishing &j; rg; ¢] “flavor”
meson from the mass eigenstége,,q; ] (¢;; being the constituent quarks). Consider for example,
the decayk? — 7~ eTv.. The K that decay semi-leptonically being produced by strongéutions
cannot be but a flavor mesadg,d;], while its decay product—, which is identified by its mass and
charge, is a mass eigenstétg,d,,]. At the quark level, the weak transition occurs accordirggyween

a flavour eigenstates ) to a mass eigenstate, ), which only involvesonemixing matrix, K, and not
the productk’, K. As for the spectator quark, the transition from its flavatet ¢ to its mass statd,,
involves the cosine of the corresponding mixing angle, Whscalways close ta. It thus appears that
the mixing angles that are measured in such processes apadbeofK, or K; (up to a cosine factor
very close tal), which fits with our symmetric prediction.

The same problem is expected in the leptonic sector. Itsisnldepends on the nature of the neutrino
eigenstates that are produced and detected. Let us cofmidsiample the case of solar neutrinos. If the
flux predicted in solar models concerns flavour neutrinod,iftihe detection process also counts flavour
neutrinos, the sole mixing matrix which controls their edmn and oscillations ig(,,, because it is the
only matrix involved in the projection of flavour states ontass states. This is the most likely situation.
Indeed, the production mechanism inside the sun occuraghrouclear beta decay, in which the protons
and neutrons, being bound by strong forces, are presumiaggther with their constituent quarks,
flavour eigenstates. The detection (for example the tianditom chlorine to argon) also occurs through
nuclear (inverse) beta decay, which accordingly also eotinet number of, ; reaching the detector. The
situation would be different if the comparison was made ketwthe fluxes of the eigenstatesv,,, v~
defined in subsectiop 2.1 (see also appefdiix D); since thajiegtions on the mass eigenstates involve
the productKgK,,, their oscillations are now controlled by an entanglemdnthe mixing angles of
neutrinos and charged leptons.

5.3 A multiscale problem

Recovery of the present results by perturbative techni¢feegnman diagrams) stays an open issue. All
the subtlety of the problem lies in the inadequacy of usingngle constant mass matrix; because non-
degenerate coupled systems are multiscale systems, asmaasymatrix should be introduced as there
are poles in the (matricial) propagatr][15]

¥In QFT, as opposed to a Quantum Mechanical treatment (inhwéisingle constant mass matrix is introduced — this is
the Wigner-Weisskopf approximation—), a constant massixnzdn only be introduced in a linear approximation to theeiise
propagator in the vicinity of each of its poleﬂ; [1]. When saVeoupled states are concerned, the (matricial) propagat/ing
several poles, as many (constant) mass matrices shouldrbduped ]; only one of the eigenstates of each of thessma
matrices corresponds to a physical (mass) eigenstate.
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The existence of different scales makes the use of an “olii-stxeormalized Lagrangiar{[16] hazardous,
because each possible renormalization scale optimizesatbelation of parameters at this scale, while,
for other scales, one has to rely on renormalization growaians.

Unfortunately, these equations have only been approxiynsidved with the simplifying assumption that
the renormalized mass matrices are hermitiaand that the renormalized mixing matrices are unitary
[LG]. Performing the same job dropping these hypothesdsloather formidable and beyond the scope
of the present work. It also unfortunately turns out thatfaasas the Yukawa couplings are concerned,
the expressions that have been obtained at two loops farghenctions (which start the evolution only
up from the top quark masd) |17] have polegim; — m;), which makes them inadequate for the study
of subsystems with masses below the top quark mass.

5.4 Using ag?-dependent renormalized mass matrix

Departure from the inappropriate Wigner-Weisskopf appnation can also be done by working with
an effective renormalizeg?-dependent mass matriX (¢2). It however leads to similar conclusions as
the present approach.

Its eigenvalues are now?-dependent, and are determined by the equatigfiM/ (¢%) — A(¢?)] = 0

16 Let them be);(¢?)... \.(¢?). The physical masses satisfy theself-consistent equationg =
M..n(g?), such thatm? = A\ (m?)...m2 = \,(m2). At eachm?, M(m?) hasn eigenvectors, but
only one corresponds to the physical mass eigenstate; lieesoare “spurious” statef [1]. Even if the
renormalized mass matrix is hermitian at any giyénthe physical mass eigenstates corresponding to
different¢? belong to as many different orthonormal sets of eigenstatdghus, in general, do not form
an orthonormal set. The discussion proceeds like in theafdie paper.

Determining the exact form of the renormalized mass mamwixiat accordingly be a suitable way to
recover our predictions via perturbative techniques (s done in[[1] for the quantitative prediction of
the ratioeg /e;). As already mentioned, the difficulty is that hermiticitygsamptions should be dropped,
which open the possibility of departing from the unitarifytioe mixing matrix. This is currently under
investigation.

6 Conclusion and perspective

This work does not, obviously, belong to what is nowadaysrrefl to as "Beyond the Standard Model”,
since it does not incorporate any “new physics” such as sypeanetry, “grand unified theories (GUT)”
or extra-dimensions. However it does not strictly lie withine SM either, even if it is very close to. Of
course, it shares with the latter its general framework leraiatical background and physical content),
and also borrows from it the two physical conditions of undadity for diagonal neutral currents and
absence of FCNC's, which play a crucial role in the procesg, & the basis of the most general argu-
ments of QFT, we make a decisive use of the essential noarityibf the mixing matrices, whereas only
unitary matrices are present in the SM. This property maydmsidered, in the SM, as an "accidental”
characteristic of objects which are intrinsically nontany.

The mixing angles experimentally observed get constraingle vicinity of this “standard” situation,

a slight departure from which being due to mass splittingend¢ our approach can be considered to
explore the "Neighborhood of the Standard Model”, whiclikslly to exhibit low-energy manifestations
of physics "Beyond the Standard Model”.

150ne can go to hermitian mass matrices by rotating right-edridrmionsas far as they are not couplgtiowever, at two
loops, the charged weak currents also involve right-harfeiedions, which cannot be anymore freely rotated.

8This is the simple case of a normal mass matrix, which can &godialized by a single;t-dependent) unitary matrix.
When it is non-normal, the standard procedure uses a kayriiagonalization (see footndte] 13).
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While common approaches limit themselves to guessing syrieador the mass matrices (see for ex-
ample [18] and references therein), we showed that speattdrps are instead likely to reveal them-
selves in the violation of some (wrongly) intuitive propest'’. In each given(i, j) channel of mass
eigenstates, the characteristic pattern that emergeatisatha priori different violations follow from a
precise horizontal continuous symmetry, which is the mstiive SU (2) group attached to this pair
of fermions. One simply falls back on an, up to now unravetadnifestation of “old Current Algebra”
[A]. It is remarkable that the same symmetry underlies blo¢hquark and leptonic sectors, which was
never suspected before; they only differ through @tte order solution to the unitarization equations,
the two-foldness of which was recently uncovered]n [2]. \&eehin particular learned that symmetries
relevant for flavour physics should not be looked for, or iempénted, at the level of the mass matrices
and Yukawa couplings, but at the level of the weak currents.

We have also argued that, unlike what is generally assurhednixing angles that are measured are (up
to a cosine) the ones of a single mixing matrix, and not oftlmelunctKin orKgK,,. Our scheme then
appears entirely coherent, and agrees with experimertial da

To conclude, the present work demonstrates that flavor phsitisfies very simple criteria which had
been, up to now, unnoticed. Strong arguments have beempedsa both the quark and leptonic sectors,
which will be further tested when the third mixing angle oftitrehos is accurately determined.

AcknowledgmentsDiscussions with A. Djouadi, J. Orloff and M.l. Vysotskye aratefully acknowl-
edged.

YFor a (constant unigue) mass matrix, unitarity of the mixingtrix has commonly been linked with the unitarity of the
theory. See also footnojé¢ 1.
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Appendix

A 03=0=0.,3=0
Using the notations of sectidh 2, we start with the followsygtem of equations:

[11] + [22]

5 = [33] < si4 + 535 + Cog = 1; (35a)

[11] = [22] © 73 cos(2012) = (B3 + 553) cos(2012); (35b)

[12] = 0 = [21] & ¢i5sin(2012) = (c33 + 533) sin(2612); (35¢)
[13] = 0 = [31] © 510 <sin(2923) - sin(2§23)) = c1o5i0(2013); (35d)
23] = 0 = [32] & &1z <sin(2923) - sin(2923)) = s125in(2013). (35€)

From equation[(3%a), we havg, + 52, # 0, which entailsc?; # 0'8. Let us study the consequence on
the two equationd (3bb) and (B5c¢).
o the two sides of[(35b) vanish fabs(2612) = 0 = cos(2012), i.€. 612 = Z[Z] = O12.
(B5¢) then gives?; = c3; + 535, which, associated with (3ba), yields the following saatt®: 6,5 =
O[TI’] and923 = iagg[ﬂ'].
o the two sides of[(3%c) vanish fein(2012) = 0 = sin(2612) = 0, i.€. 612 = 0[] = b1
[B5R) gives then?, = 3, + 535, hence, like previously 3 = 0[x] andfyz = +63(7].
« in the other cases we can calculate the ratio](35p) ] (35dshndivestan (202) = tan(2612), hence
012 = O12[m] Or 012 = 5 + O12[7]:

% 01 = T + O1o[n] implies for (35p)(@8c)?; = —c3; — 325, which, together with[(3a)ct, =
s3, + C33), gives a contradiction2 = 0:

% 010 = 019(# 0)[x] implies, like previously,cf; = ¢35 + 533, which gives, when combined with
@):913 = 0[71'] andfys = :|:923[7T].
Hence, it appears that whatever the case, the solution gseet63 = 0[x].
Let us now look atd) andESe). Sin@g = 0, the two r.h.s.~’s vanish, and we obtain the twin
equations§12(sin(2923) — sin(2923)) =0 and&m (s~in(2923) — sin(29232) =0, WhiCh, together, |mpIy
sin(2923) = sin(2923). It follows that, eithelfys = 693 [7‘1’] orfs3 = % — B3 [7‘1’],

% O3 = O3 [7] matches tpe result of the previous discussion in the “+" cabereas, in the “-” case,
the matching leads 3 = 623 = 0, which is to be absorbed as a particular case in the “+” cordifpn;

* 03 = 5 — f93[7] matches the result of the previous discussion in the “+” guméition, in which
case it leads td23 = 63 = Z[Z], i.e. maximal mixing between the fermions of the second and third
generations.

¥|ndeed, let us suppose that vanishes. Thenos(20;2) andsin(26,2) must vanish simultaneously, which is impossible.
19 iy = by + 833 Sy + o3 =1
=
Szt 833+ 33 =1 si3=0
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B (012, 023) solutions of egs. [() (WO LNT12IT13) f13 = 0 = O3

Excluding 8, = 0, [[54) and [(18b) requirein(2623) = sin(2033) = fo3 = boz + km OF 3 =
/2 — 093 + k.

o for fa3 = 03 + km Cabibbo-like,

([@5¢) requiresin(2615) = sin(2012) = O12 = 012 + nw oOr b1 = /2 — Oy + n;

([@50) requires:os(2012) = cos(2019) = 19 = +015 + pr;

([@58) requires?, + &y — 1 =0 = 015 = 46015 + 7.

The solutions of these three equations@re= 612 + kr Cabibbo-like o2 = 7/4 + qn /2 maximal.
o for fy3 = /2 — O3 + k,

[@5¢) requiressiacia = 2c33512612;

([59) requires?, — sty = 2¢35(c?, — 5%,);

([I5&) requires?, + 23,62, — 253, = 0.

The first two conditions yieldan(2012) = tan(2012) = 235 = 612 = 612 + km/2 + nm, which

entails2c3; = 1 = fy3 = +7/4 + pr/2 maximal; o3 is then maximal, too, and the third condition is
automatically satisfied.

612 = 612 4+ nn is Cabibbo-like, while, fof, = 615 + (2k 4+ 1)7/2, the second condition becomes
(c2, — s2,) = 0, which means that;» must be maximal.

C Sensitivity of the neutrino solution to a small variation d 6,3

If one allows for a smalby3 ~ 6,3, 1) and [T2) become

—2ns12C12523C23 + €(sTy — €1y) + Ns13(cB5 — $33)(Cly — 513),
—2ns93¢23(cly — 815) + desiac1a — 2ns13(chy — $33) (2512012 + €(cly — 515)). (36)

For 693, f23 maximal, the dependence 6p; drops out.

D Charged weak currents

Charged weak currents can be written in six different formas are all strictly equivalent, but nonetheless
refer to different physical pictures. As an example, for yemerations of leptons :

Vef e, Vem e
whel ] = WA KK | "
Vpf Hy Vym, K
Vef e Vem, e,
= T W K| " || = | K Wil
Vuf i Hom, Vum /| My
Vemn e, Vef e
= Wi | K f: = | K] whel ™. (37)
Vium Mf Vuy | Hom,

In the case where one of thg/(2) partners, for example the charged lepton, is undoubtedlyassm
eigenstate? , the last expression of (37) shows that it is coupled to theasied electronic and muonic
neutrinos

Ve = (K;KV)HVem + (KJKV)HV;M = Kg,n’/ef + Kg,lzyufv

2This is the case inside the SLE1 [5] where, because of theelihaivailable energy, only massive electrons can be produced
and also in the detection process of neutrinos on earth,hadliways proceeds via charged currents and the detection of
produced physical (mass eigenstates) charged leptons.
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Vy = (KgKv)ﬂVem + (KgKu)ﬂVum = Kg,m’/ef + ngz”uf- (38)

The latter are neither flavour eigenstates, nor mass egjesstout a third kind of neutrinos, precisely
defined as the ones which couple to electron and muon mass#itgs in the weak charged currents

Ve em
Wil - (39)

Yy Moy,
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