Q Duret 
email: duret@lpthe.jussieu.fr
  
& B Machet 
email: machet@lpthe.jussieu.fr
  
  
  
  
  
  
  
MIXING ANGLES OF QUARKS AND LEPTONS AS AN OUTCOME OF SU (2) HORIZONTAL SYMMETRIES
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We show that all mixing angles are determined, within experimental uncertainty, by a product of SU (2) horizontal symmetries intimately linked to the algebra of weak neutral currents. This concerns: on one hand, the three quark mixing angles; on the other hand, a neutrino-like pattern in which θ 23 is maximal and tan(2θ 12 ) = 2. The latter turns out to exactly satisfy the "quark-lepton complementarity condition" θ c + θ 12 = π/4. Moreover, among all solutions, two values for the third neutrino mixing angle arise, which satisfy the bound sin 2 (θ 13 ) ≤ 0.1: θ 13 = ±5.7 10 -3 and θ 13 = ±0.2717.

Introduction

Following the study of neutral kaons done in [START_REF] Machet | Binary systems of Neutral Mesons in Quantum Field Theory[END_REF], we have shown in [START_REF] Duret | Mixing angles and non-degenerate coupled systems of particles[END_REF] and [START_REF] Duret | The emergence of the Cabibbo angle in non-degenerate coupled systems of fermions[END_REF] that:

* in Quantum Field Theory (QFT), mixing matrices linking flavour to mass eigenstates for non-degenerate coupled systems should never be parametrized as unitary. Indeed, assuming that the effective renormalized quadratic Lagrangian is hermitian at any q2 and that flavour eigenstates form an orthonormal basis, different mass eigenstates, which correspond to different values of q 2 (poles of the renormalized propagator) belong to different orthonormal bases 1 ; * when it is so, the properties of universality for diagonal neutral currents and absence of flavor changing neutral currents (FCNC) which are systematically implemented, for the Standard Model (SM), in the space of flavour eigenstates, do not automatically translate anymore into equivalent properties in the space of mass eigenstates. In the case of two generations of fermions, imposing them for mass eigenstates yields two types of solutions for the mixing angles 2 of each doublet with identical electric charge: Cabibbo-like solutions 3 which reduce to a single unconstrained mixing angle, and a set of discrete solutions, unnoticed in the customary approach, including in particular the so-called maximal mixing π/4 ± kπ/2; * for any of these solutions one recovers a unitary mixing matrix; but, as said above, very small deviations are expected due to mass splittings, which manifest themselves as a tiny departure from the exact two previous conditions. In particular, in the neighborhood of a Cabibbo-like solution, these deviations become of equal strength for a value of the mixing angle extremely close to the measured Cabibbo angle

tan(2θ c ) = 1/2. (1) 
This success was a encouragement to go further in this direction. We present below the outcome of our investigation of neutral current patterns in the case of three generations of fermions. In particular, we show that the requested scheme of unitarity violation of the mixing matrices trivially interprets in terms of a product of SU (2) horizontal symmetries, implemented at the level of neutral weak currents.

Hence, the values of all mixing angles, in the quark as well as in the leptonic sector, are controlled by this symmetry.

The intricate system of trigonometric equations has been solved by successive approximations, starting from configurations in which θ 13 is vanishing. We will see that this approximation, obviously inspired by the patterns of mixing angles determined from experimental measurements, turns out to be a very good one. Indeed, we precisely show, without exhibiting all the solutions of our equations, that the presently observed patterns of quarks as well as of neutrinos, do fulfill our criterion. While the three angles of the Cabibbo-Kobayashi-Maskawa (CKM) solution are "Cabibbo-like", the neutrino-like solution tan(2θ 12 ) = 2 ⇔ θ 12 ≈ 31.7 o , θ 23 = π/4, θ 13 = ±5.7 10 -3 or θ 13 = ±0.2717

is of a mixed type, where θ 23 is maximal while θ 12 and θ 13 are Cabibbo-like. Two significant features in these results must be stressed. First, the values for the third neutrino mixing angle θ 13 given in (2) are predictions which take into account present (loose) experimental constraints. Only two possibilities survive: an extremely small value θ 13 ∼ V ub ∼ a few 10 -3 , and a rather "large" one, at the opposite side of the allowed range. Secondly, our procedure yields in an exact, though quite simple way, the well-known "quark-lepton complementarity relation" [START_REF] Raidal | Prediction theta c + T heta sol = pi/4 from flavor physics: a new evidence for grand unification?[END_REF] for 1-2 mixing:

θ 12 + θ c = π/4, (3) 
where θ 12 is the leptonic angle, and θ c the Cabibbo angle for quarks. for leptons; they include in particular the charged leptons detected experimentally, since their identification proceeds through the measurement of their charge/mass ratio in a magnetic field; * the neutrinos that couple to mass eigenstates of charged leptons in charged weak currents. These are the usual "electronic", "muonic" and "τ " neutrinos ν e , ν µ , ν τ considered in SM textbooks [5]: they are indeed identified by the outgoing charged leptons that they produce through charged weak currents, and the latter are precisely mass eigenstates (see above). These states read (see Appendix D)

     ν e ν µ ν τ      = K † ℓ      ν ef ν µf ν τ f      = (K † ℓ K ν )      ν em ν µm ν τ m      , (4) 
where K ℓ and K ν are the mixing matrices respectively of charged leptons and of neutrinos (i.e. the matrices that connect their flavour to their mass eigenstates). Note that these neutrinos coincide with flavour eigenstates when the mixing matrix of charged leptons is taken equal to unity K ℓ = 1, i.e. when the mass and flavour eigenstates of charged leptons are aligned, which is often assumed in the literature.

Neutral currents and SU (2) symmetry

The principle of the method is best explained in the case of two generations. This in particular makes the link with our previous work [START_REF] Duret | The emergence of the Cabibbo angle in non-degenerate coupled systems of fermions[END_REF].

Let us consider for example the (d, s) channel 4 . The corresponding neutral currents in the basis of mass eigenstates are controlled by the product C † C of the mixing matrix C between d and s with its hermitian conjugate (see [START_REF] Duret | Mixing angles and non-degenerate coupled systems of particles[END_REF]). Requesting the absence of non-diagonal currents and universality for diagonal currents (that we call hereafter the "unitarization" conditions) selects two classes of mixing angles [START_REF] Duret | Mixing angles and non-degenerate coupled systems of particles[END_REF]: a first class that we call "Cabibbo-like" which is unconstrained at this level, and a second class made of a series of discrete values, maximal or vanishing. As soon as C departs from unitarity, the Lagrangian for neutral currents reads, in the basis of mass eigenstates

L ∝ W 3 µ α dm γ µ L d m + β sm γ µ L s m + δ dm γ µ L s m + ζ sm γ µ L d m . (5) 
The condition that was shown in [START_REF] Duret | The emergence of the Cabibbo angle in non-degenerate coupled systems of fermions[END_REF] to fix the value of the "Cabibbo" angle, i.e. that the universality of dm γ µ L d m and sm γ µ L s m currents is violated with the same strength as the absence of dm γ µ L s m and sm γ µ L d m currents, now simply reads δ = α -β = ζ, which states that L in ( 5) is invariant by the SU (2) symmetry which rotates d and s. Eq. ( 5) indeed trivially rewrites, then,

L ∝ W 3 µ (α + β) dm γ µ L d m + sm γ µ L s m 2 + (α -β) dm γ µ L d m -sm γ µ L s m 2 + dm γ µ L s m + sm γ µ L d m , (6) 
in which all components of the triplet of SU (2) currents 1 2 dm γ µ L d m -sm γ µ L s m , dm γ µ L s m , sm γ µ L d m , the corresponding (vector) charges of which make up the relevant SU (2) algebra, have the same coefficient (α -β). The work [START_REF] Duret | The emergence of the Cabibbo angle in non-degenerate coupled systems of fermions[END_REF] states accordingly that the "Cabibbo angle" is controlled by this SU (2) symmetry.

The generalization to three generations is now straightforward. Neutral currents are controlled by the product K † K of the 3 × 3 mixing matrix K with its hermitian conjugate; for example, the (left-handed) neutral currents for quarks with electric charge (-1/3) read

     d f s f b f      γ µ L      d f s f b f      =      d m s m b m      γ µ L K † d K d      d m s m b m      . ( 7 
)
Requesting SU (2) symmetry in each (i, j) channel is trivially equivalent to the condition that, in this channel, universality for the diagonal currents is violated with the same strength as the absence of nondiagonal currents. We will show that all presently known mixing angles, in the quark as well as in the leptonic sectors, satisfy this criterion.

Mixing matrices. Notations

We write each mixing matrix K as a product of three matrices, which reduce, in the unitarity limit, to the basic rotations by θ 12 , θ 23 and θ 13 (we are not concerned with CP violation)

K =      1 0 0 0 c 23 s 23 0 -s 23 c23      ×      c 13 0 s 13 0 1 0 -s 13 0 c13      ×      c 12 s 12 0 -s 12 c12 0 0 0 1      . (8) 
We parametrize each basic matrix, which is a priori non-unitary, with two angles, respectively (θ 12 , θ12 ), (θ 23 , θ23 ) and (θ 13 , θ13 ). We deal accordingly with six mixing angles, instead of three in the unitary case (where θij = θ ij ). We will use throughout the paper the notations s ij = sin(θ ij ), sij = sin( θij ), and likewise, for the cosines, c ij = cos(θ ij ), cij = cos( θij ).

To lighten the text, the elements of K † K will be abbreviated by

[ij], i, j = 1 . . . 3 instead of (K † K) [ij] ,
and the corresponding neutral current will be noted {ij}. So, in the quark case, {12} stands for ūm γ µ L c m or dm γ µ L s m , and, in the neutrino case, for νem γ µ L ν µm or ēm γ µ L µ m .

The unitarization conditions

They are five: three arise from the absence of non-diagonal neutral currents for mass eigenstates, and two from the universality of diagonal currents. Accordingly, one degree of freedom is expected to be unconstrained.

Absence of non-diagonal neutral currents of mass eigenstates

The three conditions read: * for the absence of {13} and {31} currents:

[13] = 0 = [31] ⇔ c 12 c 13 s 13 -c13 s13 (c 2 23 + s 2 23 ) -c13 s12 (c 23 s 23 -c23 s23 ) = 0; (9) 
* for the absence of {23} and {32} currents:

[23] = 0 = [32] ⇔ s 12 c 13 s 13 -c13 s13 (c 2 23 + s 2 23 ) + c13 c12 (c 23 s 23 -c23 s23 ) = 0;
(10) * for the absence of {12} and {21} currents:

[12] = 0 = [21] ⇔ s 12 c 12 c 2 13 -s12 c12 (c 2 23 + s2 23 ) + s 12 c 12 s2 13 (s 2 23 + c2 23 ) + s13 (s 12 s12 -c 12 c12 )(c 23 s 23 -c23 s23 ) = 0. (11) 

Universality of diagonal neutral currents of mass eigenstates

The two independent conditions read: * equality of {11} and {22} currents:

[11] -[22] = 0 ⇔ (c 2 12 -s 2 12 ) c 2 13 + s2 13 (s 2 23 + c2 23 ) -(c 2 12 -s2 12 )(c 2 23 + s2 23 ) +2s 13 (c 23 s 23 -c23 s23 )(c 12 s12 + s 12 c12 ) = 0; (12) 
* equality of {22} and {33} currents:

[22] -[33] = 0 ⇔ s 2 12 + c2 12 (c 2 23 + s2 23 ) -(s 2 23 + c2 23 ) + (1 + s 2 12 ) s2 13 (s 2 23 + c2 23 ) -s 2 13 +2s 12 s13 c12 (c 23 s23 -c 23 s 23 ) = 0. ( 13 
)
The equality of {11} and {33} currents is of course not an independent condition.

Solutions for θ 13 = 0 = θ13

In a first step, to ease solving the system of trigonometric equations, we shall study the configuration in which one of the two angles parametrizing the 1-3 mixing vanishes 5 , which is very close to what is observed experimentally in the quark sector, and likely in the neutrino sector. It turns out, as demonstrated in Appendix A, that the second mixing angle vanishes simultaneously. We accordingly work in the approximation (the sensitivity of the solutions to a small variation of θ 13 , θ13 will be studied afterwards)

θ 13 = 0 = θ13 . (14) 
Eqs. ( 9), ( 10), ( 11), ( 12) and ( 13), reduce in this limit to Accordingly, the two following sections will respectively start from: * θ 12 and θ 23 Cabibbo-like (and, in a first step, vanishing θ 13 ), which finally leads to a mixing pattern similar to what is observed for quarks; * θ 23 maximal and θ 12 Cabibbo like (and, in a first step, vanishing θ 13 ), which finally leads to a mixing pattern similar to the one observed for neutrinos.

-s 12 (c 23 s 23 -c23 s23 ) = 0, (15a) c12 (c 23 s 23 -c23 s23 ) = 0, (15b) 
s 12 c 12 -s12 c12 (c 2 23 + s2 23 ) = 0, (15c) 
(c 2 12 -s 2 12 ) -(c 2 12 -s2 12 )(c 2 23 + s2 23 ) = 0, (15d) 
s 2 12 + c2 12 (c 2 23 + s2 23 ) -(s 2 23 + c2 23 ) = 0. (15e) 

The quark sector; constraining the three CKM angles

Mass splittings entail that the previous general conditions, which, when exactly satisfied, correspond de facto to unitary mixing matrices, cannot be exactly fulfilled. We investigate the vicinity of their solutions, and show that the same violation pattern that led to an accurate determination of the Cabibbo angle in the case of two generations, is also satisfied by the CKM angles in the case of three generations.

3.1

The simplified case θ 13 = 0 = θ13

In the neighborhood of the solution with both θ 12 and θ 23 Cabibbo-like, we write

θ12 = θ 12 + ǫ, θ23 = θ 23 + η. (16) 
The pattern (θ 13 = 0 = θ13 ) can be reasonably considered to be close to the experimental situation, at least close enough for trusting not only the relations involving the first and second generation, but also the third one.

Like in [START_REF] Duret | The emergence of the Cabibbo angle in non-degenerate coupled systems of fermions[END_REF], we impose that the absence of {12}, {21} neutral currents is violated with the same strength as the universality of {11} and {22} currents. It reads

|2ηs 12 c 12 s 23 c 23 + ǫ(c 2 12 -s 2 12 )| = | -2ηs 23 c 23 (c 2 12 -s 2 12 ) + 4ǫs 12 c 12 |. ( 17 
)
We choose the "+" sign for both sides, such that, for two generations only, the Cabibbo angle satisfies tan(2θ 1 as a function of θ 12 , together with the experimental intervals for θ 23 and θ 12 . There are two [START_REF] Particle | Review of Particle Physics[END_REF] for θ 12 ; the first comes from the measures of V ud (in black on Fig. 1)

V ud ∈ [0.9735, 0.9740] ⇒ θ 12 ∈ [0.2285, 0.2307], (20) 
and the second from the measures of V us (in purple on Fig. 1) The measured value for θ 23 is seen on Fig. 1 to correspond to θ 12 ≈ 0.221, that is cos(θ 12 ) ≈ 0.9757. Our prediction for cos(θ 12 ) is accordingly 1.7 10 -3 away from the upper limit of the present upper bound for V ud ≡ c 12 c 13 [START_REF] Hardy | The status of V ud[END_REF] [START_REF] Particle | Review of Particle Physics[END_REF]; it corresponds to twice the experimental uncertainty. It also corresponds to sin(θ 12 ) = 0.2192, while V us ≡ s 12 c 13 is measured to be 0.2247(19) [START_REF] Spadaro | KLOE results on kaon decays and summary status of V us[END_REF] [START_REF] Particle | Review of Particle Physics[END_REF]; there, the discrepancy is 2/100, only slightly above the 1.8/100 relative width of the experimental interval.

V us ∈ [0.
The approximation which sets θ 13 = 0 = θ13 is accordingly reasonable, though it yields results slightly away from experimental bounds. We show in the next subsection that relaxing this approximation gives results in excellent agreement with present experiments.

Going to

(θ 13 = 0, θ13 = 0)
Considering all angles to be Cabibbo-like with, in addition to [START_REF] Kniehl | Simple On-Shell Renormalization Framework for the Cabibbo-Kobayashi-Maskawa Matrix[END_REF] {22} currents, one gets ǫ/η as a function of θ 12 , θ 23 , θ 13 7 . This expression is plugged in the relation (24b) = (-)(24e) 8 , which expresses the same condition for the (2, 3) channel; from this, one extracts ρ/η as a function of θ 12 , θ 23 , θ 13 9 . The expressions that have been obtained for ǫ/η and ρ/η are then inserted into the third relation, (24a) = (24f) , which now corresponds to the (1, 3) channel. This last step yields a relation F 0 (θ 12 , θ 23 , θ 13 ) = 1 between the three angles θ 12 , θ 23 , θ 13 .

It turns out that ∂F 0 (θ 12 ,θ 23 ,θ 13 ) ∂θ 13 = 0, such that, in this case, a condition between θ 12 and θ 23 alone eventually fulfills the three relations under concern θ 23 is plotted on Fig. 2 as a function of θ 12 , together with the experimental intervals for θ 23 and θ 12 (the intervals for θ 12 come respectively from V ud (eq. ( 20)) and V us (eq. ( 21))).

The precision obtained is much better than in Fig. 1 since, in particular, for θ 23 within its experimental range, the discrepancy between the predicted θ 12 and its lower experimental limit coming from V us is smaller than the two experimental intervals, and even smaller than their intersection.

The general solution

The principle for solving the general equations ( 23) is the same as above. One first uses the relation (23c) = (-) (23d) to determine ρ/ǫ in terms of η/ǫ. The result is plugged in the relation (23b) = (-) (23e), which fixes η/ǫ, and thus ρ/ǫ as functions of (θ 12 , θ 23 , θ 13 ). These expressions for η/ǫ and ρ/ǫ are finally plugged in the relation (23a) = (23f) , which provides a condition F (θ 12 , θ 23 , θ 13 ) = 1. When it is

7 ǫ η = s13(c 2 23 -s 2 23 ) + 2s23c23 s12c12 + c 2 12 -s 2 12 4c12s12 -(c 2 12 -s 2 12 ) ; (25) 
ǫ/η has a pole at tan(2θ12) = 1/2, the predicted value of the Cabibbo angle for two generations. 8 There, again, the (-) sign has to be chosen so as to recover approximately (19).

9 ρ η = 2c23s23 s13 -c12 2 (c12s12 + c 2 12 -s 2 12 ) 4s12c12 -(c 2 12 -s 2 12 ) - 1 + c 2 12 c12s12 + 1 s12 c 2 23 -s 2 23 2s23c23 . ( 26 
)
ρ/η has a pole at tan(2θ12) = 1/2 and, for θ13 = 0, it vanishes, as expected, when θ12 and θ23 satisfy the relation (19), which has been deduced for θ13(≡ θ13 + ρ) = 0 = θ13.

fulfilled, the universality of each pair of diagonal neutral currents of mass eigenstates and the absence of the corresponding non-diagonal currents are violated with the same strength, in the three channels (1, 2), (2, 3) and (1, 3).

The results are displayed in Fig. 3; θ 23 is plotted as a function of θ 12 for θ 13 = 0.004 and 0.01. The present experimental interval is [START_REF] Particle | Review of Particle Physics[END_REF] V ub = sin(θ 13 ) ≈ θ 13 ∈ [4 10 -3 , 4.6 10 We conclude that: * The discrepancy between our predictions and experiments is smaller than the experimental uncertainty; * a slightly larger value of θ 13 and/or slightly smaller values of θ 23 and/or θ 12 still increase the agreement between our predictions and experimental measurements; * the determination of θ 12 from V us seems preferred to that from V ud .

Another confirmation of the relevance of our criterion is given in the next section concerning neutrino mixing angles.

A neutrino-like pattern; quark-lepton complementarity

In the "quark case", we dealt with three "Cabibbo-like" angles. The configuration that we investigate here is the one in which θ 23 is, as observed experimentally [START_REF] Particle | Review of Particle Physics[END_REF], (close to) maximal, and θ 12 and θ 13 are Cabibbo-like (see subsection 2.5).

The case θ 13 = 0 = θ13

We explore the vicinity of this solution, slightly departing from the corresponding unitary mixing matrix, by considering that θ12 now slightly differs from θ 12 , and θ23 from its maximal value

θ12 = θ 12 + ǫ, θ 23 = π/4 , θ23 = θ 23 + η. (29) 
The l.h.s.'s of eqs. (9) (10) (11) ( 12) and ( 13) no longer vanish, and become respectively 

-
η(1 + c 2 12 ) -2ǫs 12 c 12 (1 + η), (30d) 
showing by which amount the five conditions under scrutiny are now violated. Some care has to be taken concerning the accurateness of equations (30). Indeed, we imposed a value of θ 13 which is probably not the physical one (even if close to). It is then reasonable to consider that channel (1, 2) is the less sensitive to this approximation and that, accordingly, of the five equations above, (30c) and (30d), marked with an " * ", are the most accurate 10 .

The question: is there a special value of θ 12 = θ12 Cabibbo-like for which small deviations (ǫ, η) from unitarity entail equal strength violations of * the absence of {12}, {21} non-diagonal neutral currents; * the universality of {11} and {22} neutral currents ?

gets then a simple answer

s 12 c 12 = c 2 12 -s 2 12 ⇒ tan(2θ 12 ) = 2. (31) 
We did not take into account the terms proportional to ǫ because we assumed that the mass splittings between the first and second generations (from which the lack of unitarity originates) are much smaller that the ones between the second and the third generation 11 .

In the case of two generations, only ǫ appears, and one immediately recovers from (30c) and (30d) the condition fixing tan(2θ c ) = 1/2 for the Cabibbo angle.

Accordingly, the same type of requirement that led to a value of the Cabibbo angle for two generations very close to the observed value leads, for three generations, to a value of the first mixing angle satisfying the quark-lepton complementarity relation (3) [START_REF] Raidal | Prediction theta c + T heta sol = pi/4 from flavor physics: a new evidence for grand unification?[END_REF].

The values of θ 12 and θ 23 determined through this procedure are very close to the observed neutrino mixing angles [START_REF] Particle | Review of Particle Physics[END_REF].

Though we only considered the two equations that are a priori the least sensitive to our choice of a vanishing third mixing angle (which is not yet confirmed experimentally), it is instructive to investigate the sensitivity of our solution to a small non-vanishing value of θ 13 . This is done in Appendix C in which, for this purpose, we made the simplification θ13 ≈ θ 13 . It turns out that the terms proportional to s 13 in the two equations [12] = 0 = [21] and [START_REF] Gonzalez-Garcia | Phenomenology with massive neutrinos[END_REF] = [22] are also proportional to (c 2 23 -s 2 23 ), such that our solution with θ 23 maximal is very stable with respect to a variation of θ 13 around zero. This may of course not be the case for the other three equations, which are expected to be more sensitive to the value of θ 13 . 10 The limitation of this approximation also appears in the fact that (30b), of second order in η, is not compatible with (30e), which is of first order. 11 Since the three angles play a priori symmetric roles, the simultaneous vanishing of θ and θ, which we demonstrated for θ13 and θ13 (see Appendix A), should also occur for the other angles. Two competing effects accordingly contribute to the magnitude of the parameters ǫ, η . . . : on one hand, they should be proportional to (some power of) the corresponding θ, and, on the other hand, one reasonably expects them to increase with the mass splitting between the fermions mixed by this θ. So, in the quark sector, that the violation of unitarity should be maximal for θ13 is not guaranteed since the corresponding mixing angle is also very small (as expected from hierarchical mixing matrices [START_REF] Machet | Hierarchies of quark masses and the mixing matrix in the standard theory[END_REF]). A detailed investigation of this phenomenon is postponed to a further work. In the neutrino sector, however, since θ23 is maximal (large), the assumption that the mass splitting between the second and third generation is larger than between the first and second is enough to guarantee ǫ ≪ η.

Prediction for θ 13

We now consider, like we did for quarks, the general case θ 13 = 0 = θ13 (ρ = 0), θ12 = θ 12 (ǫ = 0), θ23 = θ 23 (η = 0), while assigning to θ 12 and θ 23 their values predicted in subsection 4.1.

We investigate the eight different relations between θ 12 , θ 23 and θ 13 which originate from the 2×2×2 possible sign combinations in the conditions (27) (the r.h.s. is now replaced by a condition F (θ 12 , θ 23 , θ 13 ) = 1 involving the three mixing angles), where each modulus can be alternatively replaced by "+" or "-". Among the solutions found for θ 13 , only two (up to a sign) satisfy the very loose experimental bound sin 2 (θ 13 ) ≤ 0.1.

(32)

They correspond respectively to the sign combinations (+/-/-), (+/+/+), (-/+/+) and (-/-/-) θ 13 = ±0.2717 , sin 2 (θ 13 ) = 0.072,

θ 13 = ±5.7 10 -3 , sin 2 (θ 13 ) = 3.3 10 -5 . ( 33 
)
The most recent experimental bounds can be found in [START_REF] Gonzalez-Garcia | Phenomenology with massive neutrinos[END_REF]. They read

sin 2 (θ 13 ) ≤ 0.05, (34) 
which only leaves the smallest solution in (33) 12 .

Future experiments will confirm, or infirm, for neutrinos, the properties that we have shown to be satisfied with an impressive accuracy by quark mixing angles.

Comments and open issues

How close are mixing matrices to unitarity? Mixing angles and mass spectrum

An important characteristic of the conditions that fix the mixing angles is that they do not depend on the strength of the violation of the two properties under scrutiny, namely, the absence of non-diagonal neutral currents and the universality of the diagonal ones in the space of mass eigenstates. Since only their ratio is concerned, each violation can be infinitesimally small. This is, on one side, fortunate since we have not yet been able to calculate the magnitude of the violation of the unitarity of the mixing matrices from, for example, mass ratios. The issue, for fundamental particles, turns indeed to be much more difficult conceptually than it was for composite particles like neutral kaons [START_REF] Machet | Binary systems of Neutral Mesons in Quantum Field Theory[END_REF].

But, on the other side, this blurs the relation between the mixing pattern and the fermionic mass spectrum 13 . This was already blatant with the emergence of maximal mixing as a special set of solutions of the unitarization equations in [START_REF] Duret | Mixing angles and non-degenerate coupled systems of particles[END_REF], which did not depend of any special type of mass hierarchy. The question now arises of finding, if any, properties of the mass spectrum, which are, through the products K † K of mixing matrices, compatible with an SU (2) symmetric pattern of weak neutral currents.

Which mixing angles are measured

The results that have been exposed are valid for fermions of both electric charges. They concern the mixing angles which parametrize * for quarks, the mixing matrix K u of u-type quarks as well as K d of d-type quarks; * for leptons, the mixing matrix K ν of neutrinos as well as that of charged leptons K ℓ , and we have shown that our approach allows to obtain on purely theoretical grounds the values of the mixing angles which are experimentally determined.

However, a problem arises : the measured values of the mixing angles are commonly attached, not to a single mixing matrix, e.g. K u or K d , but to the product K = K † u K d which occurs in charged currents when both quark types are mass eigenstates. Thus, in the standard approach, they are a priori related to an entanglement of the mixing angles of quarks (or leptons) of different charges. This problem gets easily solved by the following argumentation. Considering, for example, semi-leptonic decays of pseudoscalar mesons in the approach where one of the constituent quarks is "spectator", we show that only one of the two mixing matrices is involved and measured. Indeed, while the two-fold nature (flavor and mass) of the neutral kaons has always been acknowledged, this step has never been taken yet for other mesons. This is what we do now, in a rather naive, but efficient way, that consists of distinguishing a [q i,f q j,f ] "flavor" meson from the mass eigenstate [q i,m q j,m ] (q i,j being the constituent quarks). Consider for example, the decay K 0 → π -e + ν e . The K 0 that decay semi-leptonically being produced by strong interactions cannot be but a flavor meson [s f d f ], while its decay product π -, which is identified by its mass and charge, is a mass eigenstate [ū m d m ]. At the quark level, the weak transition occurs accordingly between a flavour eigenstate (s f ) to a mass eigenstate (ū m ), which only involves one mixing matrix, K u , and not the product K † u K d . As for the spectator quark, the transition from its flavor state d f to its mass state d m involves the cosine of the corresponding mixing angle, which is always close to 1. It thus appears that the mixing angles that are measured in such processes are the ones of K u or K d (up to a cosine factor very close to 1), which fits with our symmetric prediction.

The same problem is expected in the leptonic sector. Its solution depends on the nature of the neutrino eigenstates that are produced and detected. Let us consider for example the case of solar neutrinos. If the flux predicted in solar models concerns flavour neutrinos, and if the detection process also counts flavour neutrinos, the sole mixing matrix which controls their evolution and oscillations is K ν , because it is the only matrix involved in the projection of flavour states onto mass states. This is the most likely situation. Indeed, the production mechanism inside the sun occurs through nuclear beta decay, in which the protons and neutrons, being bound by strong forces, are presumably, together with their constituent quarks, flavour eigenstates. The detection (for example the transition from chlorine to argon) also occurs through nuclear (inverse) beta decay, which accordingly also counts the number of ν ef reaching the detector. The situation would be different if the comparison was made between the fluxes of the eigenstates ν e , ν µ , ν τ defined in subsection 2.1 (see also appendix D); since their projections on the mass eigenstates involve the product K † ℓ K ν , their oscillations are now controlled by an entanglement of the mixing angles of neutrinos and charged leptons.

A multiscale problem

Recovery of the present results by perturbative techniques (Feynman diagrams) stays an open issue. All the subtlety of the problem lies in the inadequacy of using a single constant mass matrix; because nondegenerate coupled systems are multiscale systems, as many mass matrix should be introduced as there are poles in the (matricial) propagator [START_REF] Novikov | Binary systems in QM and in QFT: CPT[END_REF] 14 .

The existence of different scales makes the use of an "on-shell" renormalized Lagrangian [START_REF] Kniehl | Simple On-Shell Renormalization Framework for the Cabibbo-Kobayashi-Maskawa Matrix[END_REF] hazardous, because each possible renormalization scale optimizes the calculation of parameters at this scale, while, for other scales, one has to rely on renormalization group equations.

Unfortunately, these equations have only been approximately solved with the simplifying assumption that the renormalized mass matrices are hermitian 15 and that the renormalized mixing matrices are unitary [START_REF] Kniehl | Simple On-Shell Renormalization Framework for the Cabibbo-Kobayashi-Maskawa Matrix[END_REF]. Performing the same job dropping these hypotheses looks rather formidable and beyond the scope of the present work. It also unfortunately turns out that, as far as the Yukawa couplings are concerned, the expressions that have been obtained at two loops for their β functions (which start the evolution only up from the top quark mass) [START_REF] Balzereit | The Renormalization Group Evolution of the CKM Matrix[END_REF] have poles in (m i -m j ), which makes them inadequate for the study of subsystems with masses below the top quark mass.

Using a q 2 -dependent renormalized mass matrix

Departure from the inappropriate Wigner-Weisskopf approximation can also be done by working with an effective renormalized q 2 -dependent mass matrix M (q 2 ). It however leads to similar conclusions as the present approach.

Its eigenvalues are now q 2 -dependent, and are determined by the equation det[M (q 2 ) -λ(q 2 )] = 0 16 . Let them be λ 1 (q 2 ) . . . λ n (q 2 ). The physical masses satisfy the n self-consistent equations q 2 = λ 1...n (q 2 ), such that m

2 1 = λ 1 (m 2 1 ) . . . m 2 n = λ n (m 2 n ). At each m 2 i , M (m 2 
i ) has n eigenvectors, but only one corresponds to the physical mass eigenstate; the others are "spurious" states [START_REF] Machet | Binary systems of Neutral Mesons in Quantum Field Theory[END_REF]. Even if the renormalized mass matrix is hermitian at any given q 2 , the physical mass eigenstates corresponding to different q 2 belong to as many different orthonormal sets of eigenstates and thus, in general, do not form an orthonormal set. The discussion proceeds like in the core of the paper.

Determining the exact form of the renormalized mass matrix could accordingly be a suitable way to recover our predictions via perturbative techniques (like was done in [START_REF] Machet | Binary systems of Neutral Mesons in Quantum Field Theory[END_REF] for the quantitative prediction of the ratio ǫ S /ǫ L ). As already mentioned, the difficulty is that hermiticity assumptions should be dropped, which open the possibility of departing from the unitarity of the mixing matrix. This is currently under investigation.

Conclusion and perspective

This work does not, obviously, belong to what is nowadays referred to as "Beyond the Standard Model", since it does not incorporate any "new physics" such as supersymmetry, "grand unified theories (GUT)" or extra-dimensions. However it does not strictly lie within the SM either, even if it is very close to. Of course, it shares with the latter its general framework (mathematical background and physical content), and also borrows from it the two physical conditions of universality for diagonal neutral currents and absence of FCNC's, which play a crucial role in the process. But, on the basis of the most general arguments of QFT, we make a decisive use of the essential non-unitarity of the mixing matrices, whereas only unitary matrices are present in the SM. This property may be considered, in the SM, as an "accidental" characteristic of objects which are intrinsically non-unitary.

The mixing angles experimentally observed get constrained in the vicinity of this "standard" situation, a slight departure from which being due to mass splittings. Hence our approach can be considered to explore the "Neighborhood of the Standard Model", which is likely to exhibit low-energy manifestations of physics "Beyond the Standard Model".

While common approaches limit themselves to guessing symmetries for the mass matrices (see for example [START_REF] Ma | Lepton family symmetry and the neutrino mixing matrix[END_REF] and references therein), we showed that special patterns are instead likely to reveal themselves in the violation of some (wrongly) intuitive properties 17 . In each given (i, j) channel of mass eigenstates, the characteristic pattern that emerges is that two a priori different violations follow from a precise horizontal continuous symmetry, which is the most intuitive SU (2) group attached to this pair of fermions. One simply falls back on an, up to now unraveled, manifestation of "old Current Algebra" [START_REF] Gell-Mann | The Eightfold Way[END_REF]. It is remarkable that the same symmetry underlies both the quark and leptonic sectors, which was never suspected before; they only differ through the 0th order solution to the unitarization equations, the two-foldness of which was recently uncovered in [START_REF] Duret | Mixing angles and non-degenerate coupled systems of particles[END_REF]. We have in particular learned that symmetries relevant for flavour physics should not be looked for, or implemented, at the level of the mass matrices and Yukawa couplings, but at the level of the weak currents.

We have also argued that, unlike what is generally assumed, the mixing angles that are measured are (up to a cosine) the ones of a single mixing matrix, and not of the product K † u K d or K † ℓ K ν . Our scheme then appears entirely coherent, and agrees with experimental data.

To conclude, the present work demonstrates that flavor physics satisfies very simple criteria which had been, up to now, unnoticed. Strong arguments have been presented in both the quark and leptonic sectors, which will be further tested when the third mixing angle of neutrinos is accurately determined. 

D Charged weak currents

Charged weak currents can be written in six different forms that are all strictly equivalent, but nonetheless refer to different physical pictures. As an example, for two generations of leptons :

  ν ef ν µf   W + µ γ µ L   e - f µ - f   =   ν em ν µm   W + µ γ µ L K † ν K ℓ   e - m µ - m   =   ν ef ν µf   W + µ γ µ L   K ℓ   e - m µ - m     =   K ν   ν em ν µm     W + µ γ µ L   e - f µ - f   =   ν em ν µm   W + µ γ µ L   K † ν   e - f µ - f     =   K † ℓ   ν ef ν µf     W + µ γ µ L   e - m µ - m   . (37) 
In the case where one of the SU (2) partners, for example the charged lepton, is undoubtedly a mass eigenstate20 , the last expression of (37) shows that it is coupled to the so-called electronic and muonic neutrinos

ν e = (K † ℓ K ν ) 11 ν em + (K † ℓ K ν ) 12 ν µm = K † ℓ,11 ν ef + K † ℓ,12 ν µf , ν µ = (K † ℓ K ν ) 21 ν em + (K † ℓ K ν ) 22 ν µm = K † ℓ,21 ν ef + K † ℓ,22 ν µf . (38) 
The latter are neither flavour eigenstates, nor mass eigenstates, but a third kind of neutrinos, precisely defined as the ones which couple to electron and muon mass eigenstates in the weak charged currents 

  It is shown in Appendix B that the only solutions are θ 12 and θ 23 Cabibbo-like ( θ12,23 = θ 12,23 + kπ) or maximal (θ 12,23 = π/4 + nπ/2, θ12,23 = π/4 + mπ/2).
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 1 Fig. 1: θ 23 for quarks as a function of θ 12 ; simplified case θ 13 = 0 = θ13

1 =Fig. 2 :

 12 Fig. 2: θ 23 for quarks as a function of θ 12 ; neglecting terms quadratic in θ 13

Fig. 3 :

 3 Fig. 3: θ 23 for quarks as a function of θ 12 , general case. θ 13 = 0 (red), 0.004 (blue) and 0.01 (green)

B

  (θ 12 , θ 23 ) solutions of eqs. (9) (10) (11) (12) (13) for θ 13 = 0 = θ13 Excluding θ12 = 0, (15a) and (15b) require sin(2θ 23 ) = sin(2 θ23 ) ⇒ θ23 = θ 23 + kπ or θ23 = π/2 -θ 23 + kπ. • for θ23 = θ 23 + kπ Cabibbo-like, (15c) requires sin(2θ 12 ) = sin(2 θ12 ) ⇒ θ12 = θ 12 + nπ or θ12 = π/2 -θ 12 + nπ; (15d) requires cos(2θ 12 ) = cos(2 θ12 ) ⇒ θ12 = ±θ 12 + pπ; (15e) requires s 2

symmetries 2.1 The different basis of fermions

  Three bases will appear throughout the paper: * flavour eigenstates, that we note (u f , c f , t f ) and (d f , s f , b f ) for quarks, (e f , µ f , τ f ) and (ν ef , ν µf , ν τ f ) for leptons; * mass eigenstates that we note (u m , c m , t m ) and (d m , s m , b m ) for quarks, (e m , µ m , τ m ) and (ν em , ν µm , ν τ m )

2 Neutral currents of mass eigenstates and SU

[START_REF] Duret | Mixing angles and non-degenerate coupled systems of particles[END_REF] 

  In the r.h.s. of (19), we have assumed that θ 12 is close to its Cabibbo value tan(2θ 12 ) ≈ 1/2. θ 23 is seen to vanish with [tan(2θ 23 ) -1/2]. The predicted value for θ 23 is plotted in Fig.

	12 ) = +1/2. (17) yields the ratio η/ǫ, that we then plug into the condition equivalent to (17) for
	the (2, 3) channel.									
		|ηc 12 (c 2 23 -s 2 23 )| = |2ηs 23 c 23 (1 + c 2 12 ) -2ǫs 12 c 12 |.			(18)
	(17) and (18) yield									
	tan(2θ 23 ) =	1 + c 2 12 -2s 12 c 12	c 12 (s 12 c 12 + c 2 12 -s 2 12 ) 4s 12 c 12 -(c 2 12 -s 2 12 )	≈	2 -	4 5	c 12 tan(2θ 12 ) -s 12 c 12	2 1	.	(19)

Since at any given q

, the set of eigenstates of the renormalized quadratic Lagrangian form an orthonormal basis, the mixing matrix with all its elements evaluated at this q 2 is unitary and the unitarity of the theory is never jeopardized.[START_REF] Duret | Mixing angles and non-degenerate coupled systems of particles[END_REF] For two generations, one is led to introduce two mixing angles to parametrize each 2 × 2 non-unitary mixing matrix.

Cabibbo-like angles can only be fixed by imposing conditions on the violation pattern of the unitarity of the mixing matrix in its vicinity.

"Channel (i, j)" corresponds to two fermions i and j with identical electric charge; for example, "channel (2, 3)" corresponds to (d, b), (c, t), (µ -, τ -) or (νµ, ντ ).

By doing so, we exploit the possibility to fix one degree of freedom left a priori unconstrained by the five equations; see subsection 2.2.

The (-) signs ensures that tan(2θ12) ≈ (+)1/2.

Our predictions substantially differs from the ones in[12], which mainly focuses on special textures for the product of the quark and neutrino mixing matrices[START_REF] Xing | Nontrivial correlation between the CKM and MNS matrices[END_REF].

A rigorous investigation of this connection was done in[START_REF] Machet | Hierarchies of quark masses and the mixing matrix in the standard theory[END_REF]. It however rests on the assumption (incorrect in QFT) that a system of coupled fermions can be described by a unique constant mass matrix, which is diagonalized by a bi-unitary transformation. Then the so-defined "fermion masses" are not the eigenvalues of the mass matrix, which makes all the more tricky the connection with the poles of the full propagator in QFT.

In QFT, as opposed to a Quantum Mechanical treatment (in which a single constant mass matrix is introduced -this is the Wigner-Weisskopf approximation-), a constant mass matrix can only be introduced in a linear approximation to the inverse propagator in the vicinity of each of its poles[START_REF] Machet | Binary systems of Neutral Mesons in Quantum Field Theory[END_REF]. When several coupled states are concerned, the (matricial) propagator having several poles, as many (constant) mass matrices should be introduced[START_REF] Novikov | Binary systems in QM and in QFT: CPT[END_REF]; only one of the eigenstates of each of these mass matrices corresponds to a physical (mass) eigenstate.

One can go to hermitian mass matrices by rotating right-handed fermions as far as they are not coupled; however, at two loops, the charged weak currents also involve right-handed fermions, which cannot be anymore freely rotated.

This is the simple case of a normal mass matrix, which can be diagonalized by a single (q 2 -dependent) unitary matrix. When it is non-normal, the standard procedure uses a bi-unitary diagonalization (see footnote 13).

For a (constant unique) mass matrix, unitarity of the mixing matrix has commonly been linked with the unitarity of the theory. See also footnote 1.

= 0

This is the case inside the sun[5] where, because of the limited available energy, only massive electrons can be produced, and also in the detection process of neutrinos on earth, which always proceeds via charged currents and the detection of produced physical (mass eigenstates) charged leptons.
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Appendix

A θ13 = 0 ⇒ θ 13 = 0

Using the notations of section 2, we start with the following system of equations: 

From equation (35a), we have c 2 23 + s2 23 = 0, which entails c 2 13 = 0 18 . Let us study the consequence on the two equations (35b) and (35c).

• the two sides of (35b) vanish for cos(2θ 12 ) = 0 = cos(2 θ12 ), i.e.