
HAL Id: hal-00154031
https://hal.science/hal-00154031v1

Submitted on 29 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Varieties of Static Analyzers: A Comparison with
ASTRÉE

Patrick Cousot, Radhia Cousot, Jerôme Feret, Laurent Mauborgne, Antoine
Miné, David Monniaux, Xavier Rival

To cite this version:
Patrick Cousot, Radhia Cousot, Jerôme Feret, Laurent Mauborgne, Antoine Miné, et al.. Vari-
eties of Static Analyzers: A Comparison with ASTRÉE. First Joint IEEE/IFIP Symposium on
Theoretical Aspects of Software Engineering (TASE ’07), Jun 2007, Shanghai, China. pp.3-20,
�10.1109/TASE.2007.55�. �hal-00154031�

https://hal.science/hal-00154031v1
https://hal.archives-ouvertes.fr

Varieties of Static Analyzers: A Comparison with ASTRÉE

Patrick COUSOT1 , Radhia COUSOT2 , Jérôme FERET1 , Antoine MINÉ1 ,
Laurent MAUBORGNE1, David MONNIAUX3, Xavier RIVAL1

Abstract

We discuss the characteristic properties of ASTRÉE, an
automatic static analyzer for proving the absence of run-
time errors in safety-critical real-time synchronous control-
command C programs, and compare it with a variety of
other program analysis tools.

1 Introduction

ASTRÉE [www.astree.ens.fr] is an automatic static an-
alyzer for proving the absence of runtime errors in programs writ-
ten in C [3, 4, 17, 18, 56]. ASTRÉE’s design is formally founded on
the theory of abstract interpretation [14, 15]. ASTRÉE is designed
to be highly capable and extremely competitive on safety-critical
real-time synchronouscontrol-command programs. On this family
of programs, ASTRÉE produces very few false alarms (i.e. signals
of potential runtime errors that are due to the imprecision of the
static analysis but can never happen at runtime in any actual exe-
cution environment). ASTRÉE can be tuned to get no false alarms
thanks to parameters and directives, which inclusion can be autom-
atized. In absence of any alarm, ASTRÉE’s static analysis provides
a proof of absence of runtime errors.
In this paper we discuss the main characteristic properties of

ASTRÉE and compare it to a large variety of program analysis
tools.

2 Dynamic Analyzers

Dynamic analyzerscheck program properties at run-time. Sim-
ple examples are runtime checks inserted by compilers to avoid
out-of-bounds array accesses or user-provided assert state-
ments. More sophisticated examples are provided by runtime ana-
lyzers (like Compuware BoundsChecker,Rational PurifyTM [32] or
PurifyPlusTM, Valgrind [69], Parasoft Insure++) or even integrated
debugging environments with automatic test generators (like a.o.
Cosmic Software’s IDEA) or dynamic program instrumentation
[49].

1École Normale Supérieure, 45 rue d’Ulm, 75230 Paris cedex 05,
France, First.Last@ens.fr

2CNRS, École Polytechnique, DGAR, 91128 Palaiseau Cedex, France,
Radhia.Cousot@polytechnique.fr

3CNRS, École Normale Supérieure

The main defects of dynamic analyzers are that

• they can prove the presence of errors, usually not their absence;

• they cannot check for all interesting program properties like
presence of dead-code or non-termination.

One enormous advantage of runtime tests should be that they are
performed on the program which is executed in exploitation. Un-
fortunately this is not always true since sometimes the tested ver-
sion of the program is not exactly the executed one since runtime
test code may perturb the tested code (like in the source level in-
strumentation of Insure++).
Moreover when an error is discovered at runtime during pro-

gram exploitation, some action must be taken (e.g. reboot of a
faulty driver [80]). In safety critical systems this involves fault tol-
erance mechanisms for error recovery. Although widely accepted
for hardware failures, software failure recovery is much harder and
complex.

3 Static Analyzers

Static analyzers like ASTRÉE analyze the program at compile-
time, inspecting directly the source code, and never executing the
program. This is the code inspection idea [22], but automated.
Since the notion of “static analyzer” has a broad acceptance,

it is sometimes understood as including style checkers looking
for deviations from coding style rules (like Safer C checking for
C fault and failure modes [33] or Cosmic Software’s MISRA
checker, checking for the guidelines prescribed by the Motor In-
dustry Software Reliability Association [64]). Such style checkers
are usually not “semantic-based”, and thus cannot check for cor-
rect runtime behavior. However, style restrictions, as considered
by ASTRÉE (no side effects in expressions, no recursion, no dy-
namic memory allocation, no calls to libraries), can considerably
help the efficiency and precision of the static analysis.
To explore program executions without executing the program,

code inspectors and static analyzers all use an explicit (or implicit)
program semantics that is a formal (or informal) model of the pro-
gram executions in all possible or restricted execution environ-
ments. If the execution environments are restricted, these restric-
tions are hypotheses for the static analyzer which must be vali-
dated by some other means. For example ASTRÉE uses a config-
uration file providing a maximal execution time, intervals of some
input variables, etc. — the analysis results are correct only if these
assumptions are correct.

4 Defining the Formal Semantics of the
Source Code

Despite the impressive bibliography on programming lan-
guages semantics, it is extremely difficult to define rigorously the
semantics of real-life programming languages such as C. Most lan-
guages are defined by informal (as in: non-mathematical) specifi-
cations, even those for which there exists an official standard, such
as C [45] or C++. Not only can these informal specifications be
ambiguous or misunderstood, they may also give significant lee-
way to implementors.

4.1 Undefined Runtime Behaviors

First there are conditions in which the source semantics is un-
defined e.g. after a runtime-error while the actual execution will
do something unknown. For example an erroneous modification
through an out-of-bounds array access or a dangling pointer might
destroy the object code thus leading to erratic runtime behaviors.
Then nothing is known statically in which case a static analysis is
merely impossible.
To solve the semantics undefinedness problem, ASTRÉE con-

siders two cases for the concrete execution of programs.

(a) For errors corresponding to undefined behaviors, ASTRÉE sig-
nals a potential error and goes on with the only concrete execu-
tions for which the runtime error does not occur.

Examples are integer division by zero, float overflow, NaN
or invalid operations without mathematical meaning (so that
e.g. the program might be stopped by an interrupt).

Other examples are invalid array or pointer access which
might corrupt memory, including the executed code, or even
bring about an invalid memory access (such as segmentation
faults/address or bus errors). An example is

0 % cat unpredictable.c
1 #include <stdio.h>
2 int main () {
3 int n, T[0];
4 n = 2147483647;
5 printf("n = %i, T[n] = %i\n", n, T[n]);
6 }

which yields different results on different machines

n = 2147483647, T[n] = 2147483647 Macintosh PPC
n = 2147483647, T[n] = -1208492044 Macintosh Intel
n = 2147483647, T[n] = -135294988 PC Intel 32 bits
Bus error PC Intel 64 bits

For such undefined behavior errors, what will happen after
the error is unforeseeable, so ASTRÉE does not attempt to make
any sensible prediction. The program is merely assumed to stop
after the error. Another example is

0 5 10 15 20 25 30 35 40 45
----|----|----|----|----|----|----|----|----|

0 % cat dividebyzero.c
1 int main()
2 { int I;
3 I = 1 / 0;
4 I = 1 / 0;
5 }

ASTRÉE does not warn on the division by zero at line 4

6 % astree --exec-fn main dividebyzero.c |& egrep "WARN"
7 dividebyzero.c:3.6-11::[call#main@1:]: WARN: integer d
8 ivision by zero ({0} and {1} / {0})
9 %

since after the correctly warned division by zero at line 3, ex-
ecution is supposed to have definitely stopped so that line 4 is
unreachable.

(b) For errors corresponding to unspecifiedbehaviors, ASTRÉE sig-
nals a potential error and goes on with all possible concrete ex-
ecutions, assuming an undefined result when the runtime error
does occur. For such unspecifiedbehavior errors, what will hap-
pen after the error is foreseeable, so ASTRÉE assumes that the
execution will continue in the worst possible conditions.

Examples are integer overflow or invalid shifts << or >>
for which the actual computations are quite different from the
expected mathematical meaning.

An example program for this second case (b) is provided for
integer overflow in Sect. 4.2 (minus-int.c).

In both cases (a) and (b), the analysis will warn the user of the
presence, position and precise nature of the threat and will go on
with an over-approximation of the considered concrete executions.
Observe that the conclusions of ASTRÉE are always valid

at runtime even for executions with unspecified behavior errors
(since all behaviors after the error fall in a case considered by
ASTRÉE). If the execution has undefined behavior errors, then the
conclusions of ASTRÉE are valid on the execution before the first
such undefined behavior error. Afterward, ASTRÉE considers that
the program execution stopped on such a severe error and so its
conclusions on the rest of the execution (if any, the program might
have been stopped by the operating system) might be invalid.
In both circumstances, this means that in case of false alarm,

all following actual errors will definitely be checked.
However for undefined behavior errors, some unpredictable

program behaviors might have been disregarded by ASTRÉE than
can actually happen after this error.
Nevertheless, in absence of alarms, the program behaviors at

execution are perfectly defined by the semantics of C. So the ob-
jective of ASTRÉE is to prove statically that the program behaviors
are alwayswell-defined at execution, in which case there is not any
need for runtime tests.

4.2 Machine Dependencies

Most languages let the choice of data structure representations,
such as those of basic types, depend on the machine (architecture
and operating system). For example in C, signed integers (int or
signed int) have no specified size; the only requirement is that
they should include all values betweenINT MIN (always less than
or equal to -32767) and INT MAX (always greater than or equal to
32767). An integer can be represented either by a sign and an
absolute value, by one’s complement, or two’s complement. [45,
§6.2.6.2]. The last case, representation modulo 2n where n is the
number of bits in the data type, is the case on all current micro-
processor architectures.
This choice should be parameterized in a static analyzer since

the semantics are different. For the sake of simplicity ASTRÉE

makes the choice of complement to 2 so INT MIN = -INT MAX
- 1 (and thus cannot be used for analyzing programs running on
systems using other representations, at least not without some re-
programming). According to the C standard, the result of an over-
flowing arithmetic operation is undefined. [45, § 6.5] However
most modern machines do not signal any error on an integer over-
flow, and perform arithmetic modulo 2n where n is the number of
bits in the data type. Nevertheless, ASTRÉE will signal such over-
flows. The analysis considers that program execution continues in
the case when the result of the operation is machine representable
(through modular arithmetic) and that it stops otherwise (for in-
stance, on a division by zero).
Consider for example the program

0 5 10 15 20 25 30 35 40 45
----|----|----|----|----|----|----|----|----|

0 % cat minus-int.c
1 void main () {
2 int i;
3 if (i < 0) { i = -i; };
4 __ASTREE_assert((i != -1));
5 }

----|----|----|----|----|----|----|----|----|
0 5 10 15 20 25 30 35 40 45

The variable i initially takes any value in the interval
[−INT MAX − 1,INT MAX] (where INT MAX = 2147483647)
and when i < 0, the operation -i leads to a potential over-
flow for the value −INT MAX − 1 outside the [−INT MAX −
1,INT MAX] interval of machine representable integers. This po-
tential error is signaled by ASTRÉE. Following this error, the
analysis goes on as if the result could be any value in the inter-
val [−INT MAX − 1, INT MAX]. This choice includes

• modular arithmetics in two’s complement where the result of
the -i belongs to {−INT MAX− 1} ∪ [1,INT MAX] when the
value of i belongs to [−INT MAX − 1,−1];

• two’s complement arithmetics limited to the interval
[−INT MAX − 1, INT MAX] where the result of the operation
-i belongs to the set [1,INT MAX + 1] ∩ [−INT MAX −
1,INT MAX] = [1,INT MAX] when the value of i belongs to
[−INT MAX − 1,−1].

So ASTRÉE considers that because of the potential overflow in
-i, the value of i after the test is in the representation interval
[−INT MAX − 1,INT MAX], thus the assertion might be wrong.

6 % astree --exec-fn main minus-int.c |& egrep "WARN"
7 minus-int.c:3.19-21::[call#main@1:]: WARN: signed int
8 arithmetic range [1, 2147483648] not included in [-214
9 7483648, 2147483647]
10 minus-int.c:4.19-26::[call#main@1:]: WARN: assert fail
11 ure
12 %

By the way, notice the user check ASTREE assert which, to-
gether with the user hypothesis ASTREE known fact, allows
ASTRÉE to verify simple functional properties.

4.3 Compiler Dependencies

The C standard leaves open numerous possible choices for
compilers such as the simplification and order of evaluation of
arithmetic expressions [45, § 6.5], which, in the presence of side

effects, may lead to quite different results. Since the order of eval-
uation chosen by compilers is usually not documented (except in
the compiler source code, if available), a sound generic static ana-
lyzer would have to consider all possible execution orders allowed
by the C standard. Unfortunately this would be costly and im-
precise. Thus, ASTRÉE chooses the left to right evaluation order,
but also performs a simple analysis that verifies that there is no
ambiguity due to side effects in expressions; it flags all possible
ambiguities. So ASTRÉE is sound if the compiler evaluates ex-
pressions from left to right or there is no alarm on the evaluation
order (in which case the program is portable).

4.4 Linker Dependencies

Linkers may modify the program semantics e.g. by absolute
memory allocation (when symbolically referring to absolute lo-
cations of memory), mixing big/little-endian object linking, etc.
In principle a sound static analyzer would have to take the linker
options into account to define the program semantics. ASTRÉE
makes common sense hypotheses to be checkedby translation val-
idation (Sect. 5).

4.5 Operating System Dependencies

Although embedded programs often do not rely on operating
systems components (like libraries), some program behaviors (e.g.
after a reboot) may depend on the operating system. For exam-
ple, static are implicitly initialized to 0 according to the C stan-
dard [45, § 6.7.8], usually by the operating system or program
loader zeroing the uninitialized data segment. In that case, global
variables may also be initialized to zero, which is not standard.
However, some embedded systems may do otherwise and not zero
these data. ASTRÉE thus offers the option to assume that static
variables are uninitialized (which is sound regardless of what the
embedded system does, since it is an over-approximation of the
standard behavior).

4.6 Clean Semantics

Obviously programming languages with clean semantics can
considerably help the ease of design and the effectiveness of sta-
tic analyzers. Machine-checkable style restrictions [64] or better,
type-safe C subsets (like CCured [68] or Cyclone [31]) should def-
initely be considered for the development of high-quality software.

5 Proving the Equivalence of the Source and
Object Code

The formal semantics used for the static analysis must be
proved to be compatible with actual execution on a computer. This
can be done by compiler verification [53, 52] (proving equivalence
of the source and object code for all programs of a language and
a given machine), translation validation (for a given source pro-
gram and the corresponding object code) [70] or proof translation
(showing that the proof done on the source code remains valid on
the compiled code) [73]. ASTRÉE uses translation validation [74].

These approaches all suffer from the fact that the semantics of the
object code must be defined formally and itself validated. Usually
it is considered to be simple enough not to need validation, but the
question remains opened.

6 Unsoundness

A program analyzer is unsound when it can omit to signal an
error that can appear at runtime in some execution environment.
Unsound analyzers are bug huntersor bug findersaiming at finding
some of the bugs in a well-defined class. Their main defect is
unreliability, being subject to false negatives thus claiming that
they can no longer find any bug while many may be left in the
considered class.
One reason for unsoundness is the analysis cost. Obviously all

dynamic analyzers are unsound since it is impossible to explore all
possible executions of a program on a machine.
Another reason for unsoundness is the analysis complexity. For

example ESC Java does not handle correctly modulo arithmetic
(in absence of efficient provers to do so) [51]. CMC [21] from
Coverity.com ignores code with complex semantics which analy-
sis would be too hard to design.
The main reason for unsoundness is often to avoid reporting

too many unwanted false positives. A low false alarm rate of 1%
in a 1.000.000 LOCs programs would mean examining manually
10.000 potential errors which would be extremely costly to sort
manually. To cope with this false alarm plague, many static an-
alyzers choose to avoid overwhelming messages by deliberately
not reporting all errors, which is unsound. We consider several
approaches, all unsound.

• skipping program parts which are hard to analyze, Sect. 6.1;

• ignoring some types of errors, Sect. 6.2 & 6.3;

• disregarding some runtime executions, Sect. 6.4;

• changing the program semantics, Sect. 6.5.

Such unsound approaches are all excluded in ASTRÉE.

6.1 Unsoundness by deliberate skipping of
instructions

In some cases, the analysis may encounter instructions for
which it knows it is probably very imprecise, or instructions that
it fails to understand. The latter case may occur with dynamic
dispatch of methods in object-oriented languages: if the analysis
for the dynamic type of objects is too imprecise, it may be diffi-
cult to knowwhich functions may actually be called and on which
operands. The former case can occur even in very simple settings,
such as a write through a pointer:

*p = 42;

If the pointer analysis is imprecise, then very little informa-
tion may be known as to where p may point. If the analysis con-
cludes thatpmay point to any among 1000 variables, then the only
sound way to proceed is to assume that any of these may receive
the value 42. This is likely to discard a lot of information previ-
ously known (for instance, if the analysis had established for 900

of these variables that they were in [0, 1], then this information
will be lost), thus leading to great imprecision and possibly many
false alarms down the road. Also, imprecise analysis may result in
slow analysis, since many more program configurations may have
to be explored than in reality.
For these reasons, some unsound analyzers may decide to ig-

nore instructions on which they know they “probably” are very
imprecise. There is a trade-off here between soundness, on the
one hand, and precision and speed of analysis on the other hand.

6.2 Unsoundness by under-exploration of
the potential error space

Alarms, either true or false, can be reduced by considering only
a subset of the potential errors (while being exhaustive on the ex-
plored runtime execution space, or not). This consists in selecting
typical occurrences of bugs in a well-defined class, as opposed to
all bugs in this class.
One such example is static type verification and inference sys-

tems proving that “well-typed programs do not go wrong” [58].
Typically, an expression of type int will be typable despite the
fact that it might divide by zero for some executions.
Another example is UNO concentrating exclusively on unini-

tialized variables, nil-pointer references, and out-of-bounds array
indexing [35].
A last example is bug pattern mining as in Klocwork K7TM

[41], looking for a few key types of programmer errors [79], PRE-
fast (and PREfast for Drivers), a lightweight version of PREfix
[7], looking for common basic coding errors in C (and driver-
specific rules) [67] or PMD (checking for unused fields, empty
try/catch/finally/if/while blocks, unusedmethod parameters, etc in
JavaTM) [12].

6.3 Unsoundness by underreporting the
found runtime execution errors

Although all potential errors of all potential runtime executions
could have been found, it is always possible not to report all found
alarms.
This can be done manually (although this is extremely costly).

For example, the publicly available analysis by Reasoning, Inc. on
version 4.1.24 of ApacheTomcat [43] is obtained by a static analy-
sis [6] followed by manual auditing and removal of false positives
before a report is given to their customers.
The end-user may also be offered the possibility of suppress-

ing false positives so they do not show up in subsequent analysis
runs (like with CodeSonar [40] or using assert statements as rec-
ommended for PC-lintTM and FlexeLintTM [39], which is unfortu-
nately not enough to counter the very high false positive rates).
There are also several ways to automate this alarm selection

activity by appropriate filtering. Splint [50] sorts the most proba-
ble messages according to common programming practices while
Airac5 relies on classification methods [78]. ORION like UNO
[35] attempts to reasons symbolically about execution traces while
FindBugsTM uses empirical heuristics (like reporting a null pointer
warning if there is a statement or branch that, if executed/taken, at
least potentially (ignoring e.g. aliasing or exceptions), guarantees
a null pointer exception) [37].

6.4 Unsoundness by under-exploration of
the runtime execution space

One way of avoiding overwhelming (false) alarms is to explore
only a subset of the runtime execution space. This is the case for
dynamic analysis (Sect. 2).
In the case of static analysis (Sect. 3), static type verification

and inference systems proving that “well-typed programs do not
go wrong” [58] may be unable to type well-going programs. This
is the case for example of errors that are impossible because of
guards that are not taken into account with enough precision by
the type system. The problem is that of the coarse approximation
of sets of values by types which is too imprecise to encode the
possible values of the guard.
Another example in the case of static analysis (Sect. 3), is that

of model-checkers which usually explore only part of the state
space. In particular bounded model-checkers explore only finite
prefixes of some of the execution traces. Some bugs like over-
flow by accumulation of small rounding errors over long periods of
computation time (see Sect. 12.3) obviously stay beyond the scope
of such techniques exploring a relatively small subset of the state
space. An example is the Bounded Model Checker CBMC [11]
for ANSI-C programs (with restrictions like float and double
using fixed-point arithmetic). It allows verifying array bounds
(buffer overflows), pointer safety, exceptions and user-specified
assertions. This is done by unwinding the loops in the program
up to a finite depth and passing the resulting equation to a SAT
solver. This unwinding may not stop when the built-in simplifier
is not able to determine a runtime bound for the loop, in which
case a loop bound must be specified by the user. The CBMC user
manual [10] provides such an example for a binary search. This
was also the main example of [13] (handled by hand at the time!)

0 % cat dichotomy.c
1 int main () {
2 int R[100], X; short lwb, upb, m;
3 lwb = 0; upb = 99;
4 while (lwb <= upb) {
5 m = upb + lwb;
6 m = m >> 1;
7 if (X == R[m]) { upb = m; lwb = m+1; }
8 else if (X < R[m]) { upb = m - 1; }
9 else { lwb = m + 1; }
10 }
11 __ASTREE_log_vars((m));
12 }

for which ASTRÉE proves the absence of runtime errors by pro-
viding a correct interval for the middle position

13 % astree --exec-fn main dichotomy.c |& egrep "(WARN)|(
14 m in)"
15 direct = <integers (intv+cong+bitfield+set): m in [0,
16 99] /\ Top >
17 %

6.5 Unsoundness by considering a mathe-
matical semantics

Besides being not automatic since end-users are required to
provide invariants, if not proof templates or even complete proofs,
theorem-prover/proof assistant based static analysis approaches

such as CAVEAT [72] are based on a Hoare logic with mathe-
matical meaning so that e.g. integers are assumed to be in Z, not
machine integers, reals are assumed to be in R, not floats or dou-
ble, etc. It follows that sound static analyzers like ASTRÉE, stick-
ing closely to the machine semantics are able to find runtime er-
rors in programs which correctness has been machine-checked by
program provers (but with a mathematical semantics, not the pro-
gramming language one). An example is the binary search consid-
ered at Sect. 6.4, modified as follows

0 % diff dichotomy.c dichotomy-bug.c
1 2,3c2,3
2 < int R[100], X; short lwb, upb, m;
3 < lwb = 0; upb = 99;
4 ---
5 > int R[30000], X; short lwb, upb, m;
6 > lwb = 0; upb = 29999;

for which, although the algorithm is the same and “correct”,
ASTRÉE signals errors, starting with

7 % astree --exec-fn main dichotomy-bug.c |& egrep "WARN
8 " | head -n2
9 dichotomy-bug.c:5.6-19::[call#main@1:loop@4=2:]: WARN:
10 implicit signed int->signed short conversion range [1
11 4998, 44999] not included in [-32768, 32767]
12 dichotomy-bug.c:7.15-19::[call#main@1:loop@4=2:]: WARN
13 : invalid dereference: dereferencing 4 byte(s) at offs
14 et(s) [0;4294967295] may overflow the variable R of by
15 te-size 120000 or mis-aligned pointer (1Z+0) may not a
16 multiple of 4
17 %

Some program provers like CADUCEUS [25] can handle bounded
integers or floats at the price of heavy manual interactions and a
complex model [5]. In contrast, ASTRÉE can be used in com-
pletely automatic mode.

7 Soundness

In contrast, ASTRÉE is a sound program analyzer since it never
omits to signal an error that can appear in some execution environ-
ment. Another example is PolySpace Verifier [20]. These static
analyzers are therefore bug eradicators since they find all bugs in
a well-defined class (that of runtime errors).

7.1 Exhaustivity

ASTRÉE covers the whole runtime execution space, with a cor-
rect semantics, never omitting potential errors. As discussed in
previous Sect. 6, the main problem is then for the static analysis to
be sufficiently precise to avoid false alarms.

7.2 Floats

One problem with the semantic soundness for which ASTRÉE
has been very carefully designed is the rounding errors in floating-
point computations [60, 63]. Most static analyzers either do not
handle floats or handle them incorrectly because they are based on
mathematical properties of reals not valid for floats. For example
(x + a) − (x − a) = 2a is not valid for floats as shown be the
following example

0 % cat double-float1.c
1 int main () {
2 double x; float a, y, z, r1, r2;
3 a = 1.0; x = 1125899973951488.0; y = (x + a); z = (x
4 - a);
5 r1 = y - z; r2 = 2 * a;
6 printf("(x + a) - (x - a) = %f\n", r1);
7 printf("2a = %f\n", r2);
8 }
9 % gcc double-float1.c >& /dev/null; ./a.out
10 (x + a) - (x - a) = 134217728.000000
11 2a = 2.000000

The situation is explained in Fig. 1. The double x =
1125899973951488.0 is just in the middle of two consecutive
floats so x - 1 and x + 1 are rounded to these floats, the dis-
tance between them is 134217728.0.

���������			
�	������

Reals

Doubles

Floats

����������

134217728

RoundingRounding

2

Figure 1. Rounding to different nearest floats

Changing the least significant digit, yields a completely
different result explained in Fig. 2. The double x =
1125899973951487.0 is no longer in the middle of two consec-
utive floats so x - 1 and x + 1 are both rounded to the same
float, whence the difference of 0.0.

2

���������			
�	����
�

����������
Reals

Doubles

Floats

Rounding

0

Figure 2. Rounding to same float

0 % cat double-float2.c
1 int main () {
2 double x; float a, y, z, r1, r2;
3 a = 1.0; x = 1125899973951487.0; y = (x + a); z = (x
4 - a);
5 r1 = y - z; r2 = 2 * a;
6 printf("(x + a) - (x - a) = %f\n", r1);
7 printf("2a = %f\n", r2);
8 }
9 % gcc double-float2.c >& /dev/null; ./a.out
10 (x + a) - (x - a) = 0.000000
11 2a = 2.000000

ASTRÉE is able to make a correct analysis

0 % cat double-float1-analyze.c

1 int main () {
2 double x; float a, y, z, r1, r2;
3 a = 1.0; x = 1125899973951488.0; y = (x + a); z = (x
4 - a);
5 r1 = y - z; r2 = 2 * a;
6 __ASTREE_log_vars((r1, r2));
7 }
8 % astree --exec-fn main double-float1-analyze.c |& egr
9 ep "r1 in"
10 direct = <float-interval: r2 in {2}, r1 in [-1.34218e+
11 08, 1.34218e+08] >
12 %

Note that the value 1.34218e + 08 is an artifact of the print-
ing system that rounds the actual value 134217728.0 internally
computed by the analyzer. Actually, the interval [−1.34218e +
08, 1.34218e+08] is not reduced to the singleton {134217728.0}
due to possible rounding errors when compiling the constant into
its binary form and the overestimation of the roundings in the com-
putations of y = (x + a), z = (x - a), and r1 = y -
z;4.
Indeed ASTRÉE approximates arbitrary numerical expressions

in the form [a0, b0] +
P

k([ak, bk] × Vk) for program variables
Vk [60, 63]. For example, the floating-point assignment Z = X
- (0.25 * X) is linearized as the following assignment in-
terpreted in real arithmetics Z = ([0.749 · · · , 0.750 · · ·] × X) +
(2.35 · · · 10−38 × [−1, 1]) making rounding errors explicit as
small intervals. This abstraction is an example of good compro-
mise between cost and precision. It allows simplification, even in
the interval domain, since if X ∈ [-1,1], we get |Z| ≤ 0.750 · · ·
instead of |Z| ≤ 1.25 · · ·. It also allows the use of powerful rela-
tional abstract domains (like octagons [61], see Sect. 11.5).
Observe that ASTRÉE always overestimates rounding er-

rors, cumulating all possible origins. So ASTRÉE will detect
catastrophic losses of precision leading to overflows, and their sig-
nificance and source. Static analyzers like FLUCTUAT [55] are
more specifically designed to analyze the relative contributions of
the rounding errors at all stages of a floating point computation.

7.3 Memory Model

Another problematic feature for the soundness of a static ana-
lyzer is the C memory model, which can be used at very low level,
in particular in automatically generated C code, almost at the as-
sembly level. The memory model of ASTRÉE has been recently
revisited to include pointer arithmetic and union [62], remark-
ably leaving most of the existing design of ASTRÉE untouched.
For example, on the pointer cast

0 5 10 15 20 25 30 35 40 45
----|----|----|----|----|----|----|----|----|

0 % cat memcpy.c
1 /* memcpy.c (polymorphic memcpy) */
2
3 /* byte per byte copy of src into dst */
4 void memcpy(char* dst, const char* src, unsigned size)
5 {
6 int i;
7 for (i=0;i<size;i++) dst[i] = src[i];
8 }
9

4ASTRÉE always choose the worst case among the four possible round-
ing modes round to nearest, round toward +∞, round toward -∞, and
round toward 0.

10 void main()
11 {
12 float x = 10.0, y;
13 int zero = 0;
14 /* copy of x into y (well-typed) */
15 memcpy(&y,&x,sizeof(y));
16 __ASTREE_assert((y==10.0));
17 /* copy of zero into y (not well-typed but allowed i
18 n C) */
19 memcpy(&y,&zero,sizeof(y));
20 __ASTREE_assert((y==0.0));
21 }

----|----|----|----|----|----|----|----|----|
0 5 10 15 20 25 30 35 40 45

ASTRÉE is able to correctly handle the indirect assignments

22 % astree --exec-fn main --unroll 5 memcpy.c |& egrep "
23 WARN"
24 %

ASTRÉE also correctly handles unions, as in

0 5 10 15 20 25 30 35 40 45
----|----|----|----|----|----|----|----|----|

0 % cat union.c
1 /* union.c (union type) */
2
3 union {
4 int type;
5 struct { int type; int data; } A;
6 struct { int type; char data[3]; } B;
7 } u;
8
9 void main()
10 {
11 /* no assert failure */
12 u.type = 12;
13 __ASTREE_assert((u.A.type==12));
14 __ASTREE_assert((u.B.type==12));
15
16 /* assert failure because the modification of u.B.da
17 ta also modifies u.A.data */
18 u.A.data = 0;
19 u.B.data[0] = 12;
20 __ASTREE_assert((u.A.data==0));
21 }

----|----|----|----|----|----|----|----|----|
0 5 10 15 20 25 30 35 40 45

where overlaps and side-effects are correctly taken into account.

22 % astree --exec-fn main --full-memory-model union.c |&
23 egrep "WARN"
24 union.c:19.19-30::[call#main@9:]: WARN: assert failure
25
26 %

8 [In]completeness

A static analyzer is complete when it never produces false
alarms on any program. This terminology is justified by the fact
that such an analyzer,when queriedwhether or not some true prop-
erty holds on the program (for instance: “the program never ends
with an overflow”), will never issue an alarm. Never reporting any
alarm, or only a few definite ones, would be complete (and use-
less). So this completeness requirement should be understood in
the context of soundness. Apart for trivial programs, sound static
analyzers are all incomplete, by undecidability. ASTRÉE for ex-
ample is subject to false positives, that is may report alarms that
can never appear at runtime, in any execution environment. An
example is the following

0 5 10 15 20 25 30 35 40 45
----|----|----|----|----|----|----|----|----|

0 % cat false-alarm.c
1 void main()
2 {
3 int x, y;
4 if ((-4681 < y) && (y < 4681) && (x < 32767) && (-32
5 767 < x) && ((7*y*y - 1) == x*x)) {
6 y = 1 / x;
7 };
8 }

----|----|----|----|----|----|----|----|----|
0 5 10 15 20 25 30 35 40 45

for which ASTRÉE produces a false positive

9 % astree --exec-fn main false-alarm.c |& egrep "WARN"
10 false-alarm.c:5.9-14::[call#main@1:]: WARN: integer di
11 vision by zero ([-32766, 32766] and {1} / Z)
12 %

since it is unable to prove the mathematical fact ∀x, y ∈ Z : 7y2−
1 �= x2.
It is therefore very easy to produce (even automatically) infi-

nitely many programs on which ASTRÉE will produce at least one
false alarm. The real question is therefore how can ASTRÉE be
made precise enough on programs of practical interest, at a rea-
sonable computation cost?

9 Termination

Some static analyzers are subject to non termination, running
forever until exhaustion of resources. This is the case of static
analysis by model-checking a finite model of the program obtained
by predicate abstraction [29] with counterexample guided abstract
refinement (CEGAR) [9, 34]. In predicate abstraction, program
states are finitely partitioned into blocks corresponding to atomic
predicates. A finite program model is derived assuming that con-
crete execution transitions between states are abstracted by par-
tition transitions covering all execution steps of all states in any
block of the partition. Because the abstract state space is finite, it
can be exhaustively explored, if small enough, by amodel-checker.
In case of alarm along an abstract partition path, a concrete path
has to be found to find if it is effectively feasible. Otherwise CE-
GAR will split a block of the partition to make the analysis more
precise. The limit of this process is to explore all possible concrete
executions. In particular the same false alarm may be considered
by counterexamples of increasing length, leading CEGAR not to
terminate (or, rather, terminate by memory or time exhaustion).
Examples of static analyzers subject to that problem are BLAST
[2], MAGIC [8], and SLAM [1].
For example, ASTRÉE produces no false alarm on the follow-

ing program

0 % cat slam.c
1 int main()
2 { int x, y;
3 x = 0; y = 0;
4 while (x < 2147483647)
5 { x = x + 1; y = y + 1; }
6 __ASTREE_assert((x == y));
7 }
8 % astree --exec-fn main slam.c |& egrep "WARN"
9 %

while SLAM [1] being unable to generate the essential interme-
diate predicate y = x - 1 via CEGAR will not properly ter-
minate (since all counterexamples x = i + 1 ∧ y = i, i =
0, 1, 2, 3, . . . will be successively generated).

10 Scaling-Up

As long as one does not worry about termination, it is very easy
to make precise static analyzers (e.g. by enumeration of all pos-
sible executions or by using sophisticated abstractions like Pres-
burger’s arithmetics in Omega [71]), but the real difficulty is to
scale up. This requires a careful choice of the abstractions used
in the static analyzer to get a good trade-off between cost and pre-
cision. ASTRÉE was explicitly designed with objective in mind.
For example ASTRÉE does not use the polyhedral abstraction [19]
(whose cost is, in practice, exponential in the number of vari-
ables). ASTRÉE has shown to scale up on industrial codes of up to
1,000,000 LOCs.

11 Abstraction

Abstraction consists in reasoning on the set of possible runtime
executions of a program, as defined by the concrete semantics, us-
ing a simpler abstract model of this semantics [14]. An abstraction
is sound if it does not omit program behaviors; an abstraction is in-
complete if it adds spurious program behaviors and thus precludes
proving some properties that are true of the original system but no
longer true on the abstraction.

11.1 Manual Abstraction

Some static analyzers require a manual abstraction since they
do not accept executable programs but micro-models of programs
written in specification languages (like PROMELA in SPIN [36]
or Alloy in the Alloy Analyzer [46]). The abstraction should be
sound for the considered properties (for example ignoring a test
in a program is always sound for proving invariance properties
like runtime errors but may be invalid for liveness properties like
termination).
Such specification models (e.g. in SIMULINK R© [42] or

SCADETM [38]) can be useful if the code can be automatically gen-
erated from the specification. But the translation often does not
preserve all properties of this specification (typically real numbers
in the specification become floats in the generated program so sta-
ble computations in the model may be unstable in the program, or
inversely). If some properties were proved correct on the idealized
specification, they may not necessarily hold on the automatically
generated code. It follows that static analyses of both the specifi-
cation and the program are required for soundness.

11.2 Automatic [In]finitary Abstraction

Since manual abstraction is hard and costly, ASTRÉE performs
an automatic abstraction of the program concrete semantics. The
abstract properties of the abstract semantics should be machine-
representable and can be taken either in finite (finitary abstrac-
tion) or in infinite sets (infinitary abstraction). Model-checking

based static analyzers like such as Bandera [44], Bogor [75], Java
PathFinder [77], SPIN [36], VeriSoft [28] can only use finitary ab-
stractions. Infinitary abstractions are provably more powerful than
finitary ones [16], even a potentially infinite sequence of finitary
ones as in CEGAR. However infinitary abstract semanticsmay not
be computable. In this case, some static analyzers, like ESC Java
2 [26], may require some help in the effective computation of the
abstract semantics (e.g. in the form of loop invariants).
In contrast, ASTRÉE computes the abstract semantics iter-

atively using convergence acceleration techniques with widen-
ing/narrowing to enforce termination [13, 14]. This can be pa-
rameterized by the end-user (e.g. by providing likely thresholds
for interval ranges). For example, on the following toy example

0 % cat TwoCountersAutomaton.c
1 typedef enum {F=0,T=1} BOOL;
2 int main () {
3 volatile BOOL B;
4 int x = 0, y= 0;
5 while ((x < 2147483646) && (y > -2147483647)) {
6 __ASTREE_assert((y <= x) && (0 <= x) && (y != x +
7 1));
8 if (B) {
9 if (y == 0) { x = x + 1; y = x; }
10 } else { y = y - 1; }
11 }
12 }
13 % cat TwoCountersAutomaton.config
14 __ASTREE_volatile_input((B [0,1]));
15

(where the configuration file indicates that B can be externally
modified as opposed to a mere use of volatile to prevent com-
piler optimizations), ASTRÉE is able to prove the user assertion
correct

16 % astree --exec-fn main --config-sem TwoCountersAutoma
17 ton.config TwoCountersAutomaton.c |& egrep "WARN"
18 %

whereas the CEGAR approach will consider counterexamples of
increasing length and thus will fail on this toy example.

11.3 Multi-Abstraction

Some static analyzers use a single encoding of abstract pro-
gram properties like BDDs in model-checkers, symbolic con-
straints in BANE [27] and BANSHEE [48], or the canonical ab-
straction of TVLA [54]. The advantage of this uniform encoding
choice is the ease of design. The inconvenience is the potentially
high algorithmic cost when encoding information with inappropri-
ate encodings.
In contrast, ASTRÉE uses many numerical/symbolic abstract

domains, some of which are illustrated below. Each abstract do-
main has an efficient encoding for the specific information it aims
at representing together with primitives to propagate this informa-
tion along the program flow.

11.4 Non-relational Abstractions

Non-relational abstractions such as interval analysis [13, 14]
cannot express invariant relations between values of the program
variables whence are inexpensive (but most often too imprecise).

ASTRÉE also includes congruence information [30, 59] (to cope
with pointer alignment), bit-pattern analysis (to cope with memory
masks), finite integer sets (to cope with enumeration types), etc.

11.5 Relational Abstractions

Relational abstractions, expressing relations between objects
manipulated by the program, are indispensable for precision.
In the following program, the decrementation of Y does not

overflow because it is bounded by the test on X.

0 5 10 15 20 25 30 35 40 45
----|----|----|----|----|----|----|----|----|

0 % cat octagon.c
1 void main() {
2 int X = 10, Y= 100;
3 while (X >= 0)
4 { X--; Y--; };
5 __ASTREE_assert((X <= Y));
6 }

----|----|----|----|----|----|----|----|----|
0 5 10 15 20 25 30 35 40 45

This cannot be proved by ASTRÉE using non-relational abstract
domains only.

7 % astree --no-octagon --exec-fn main octagon.c |& egre
8 p "WARN"
9 octagon.c:4.11-14::[call#main@1:loop@3>=4:]: WARN: sig
10 ned int arithmetic range [-2147483649, 2147483646] not
11 included in [-2147483648, 2147483647]
12 octagon.c:5.19-25::[call#main@1:]: WARN: assert failur
13 e
14 %

However, the octagon abstract domain [61] is used by default by
ASTRÉE to discover relations of the form X±Y 6 c where X and Y
are program variables (or components of structured variables) and
c is a numerical constant automatically discovered by the static
analysis.

15 % astree --exec-fn main octagon.c |& egrep "WARN"
16 %

The imprecision of non-relational analyses is sometimes well-
localized and can be enhanced by simple relational analyses. For
example, the subtraction of intervals is x ∈ [a, b] and y ∈ [c, d]
implies x − y ∈ [a − d, b − c] so if x ∈ [0, 100] then x − x ∈
[−100, 100] when applying the general formula without knowing
that y = x.

0 % cat x-x.c
1 void main () { int X, Y;
2 __ASTREE_known_fact(((0 <= X) && (X <= 100)));
3 Y = (X - X);
4 __ASTREE_log_vars((Y));
5 }
6 % astree --exec-fn main --no-relational x-x.c |& egrep
7 "Y in"
8 direct = <integers (intv+cong+bitfield+set): Y in [-10
9 0, 100] /\ Top >
10 %

However, the symbolic abstract domain [63] locally propagates the
symbolic value of variables and performs simplifications (main-
taining the maximal possible rounding error for float computa-
tions, as overestimated by intervals, for soundness).

11 % astree --exec-fn main x-x.c |& egrep "Y in"
12 direct = <integers (intv+cong+bitfield+set): Y in {0}
13 /\ {0} >
14 %

11.6 Abstraction Composition

ASTRÉE has abstract domain constructors allowing for the def-
inition of complex abstract domains as a function of simpler ones,
like simple forms of reduced cardinal power [15, Sect. 10.2]. For
example, decision trees can be used by ASTRÉE for case analy-
sis on abstract values of variables taken in finite domains (e.g.
Booleans), with abstract properties chosen in basic domains at the
leaves (see Fig. 3).

�

�

�

��

�

�

�
� �

�

�

�

�

�

�

�

Figure 3. Decision tree (of height 2)

For the following program where control is encoded in
Booleans,

0 5 10 15 20 25 30 35 40 45
----|----|----|----|----|----|----|----|----|

0 % cat decision.c
1 typedef enum {F=0,T=1} BOOL; BOOL B;
2 int main () {
3 unsigned int X, Y;
4 while (1) {
5 B = (X == 0);
6 if (!B) { Y = 1 / X; }
7 }
8 }
9

----|----|----|----|----|----|----|----|----|
0 5 10 15 20 25 30 35 40 45

a non-relational analysis fails

10 % astree --no-relational --exec-fn main decision.c |&
11 egrep "WARN"
12 decision.c:6.22-27::[call#main@2:loop@4=1:]: WARN: int
13 eger division by zero ([0, 4294967295] and {1} / Z)
14 decision.c:6.22-27::[call#main@2:loop@4=2:]: WARN: int
15 eger division by zero ([0, 4294967295] and {1} / Z)
16 decision.c:6.22-27::[call#main@2:loop@4=3:]: WARN: int
17 eger division by zero ([0, 4294967295] and {1} / Z)
18 decision.c:6.22-27::[call#main@2:loop@4>=4:]: WARN: in
19 teger division by zero ([0, 4294967295] and {1} / Z)
20 %

(the error is reported 4 times because ASTRÉE distinguishes, by
default, the first three iterations of the loop and the behavior start-
ing at the 4-th iteration) while the use of decision trees succeeds

21 % astree --exec-fn main decision.c |& egrep "WARN"
22 %

12 Application Domain Awareness

Beyond the basic abstractions described above which may be
found, at least in part, in general-purpose static analyzers (such
as Airac5 [78], CodeSonar [40], or PolySpace Verifier [20]), some

static analyzers are specialized to specific programming style (like
C Global Surveyor [76]).
Beyond its specialization for synchronous programs (as e.g.

generated by SCADETM [38]), ASTRÉE is application domain
aware. Proving the absence of overflows on programs of the kind
that ASTRÉE targets, which implement complex numerical filter-
ing, entails proving many numerical properties, including the sta-
bility of certain numeric schemes. Without considering these prop-
erties, it is impossible to prove the desired properties, and analy-
sis produces false alarms that would be very difficult to eliminate,
even by hand.

12.1 Digital Filters

Digital filters typically appear in control/command programs
to smooth signals, or extract some spectral components. ASTRÉE
can analyze the runtime behavior of digital filters with great preci-
sion as shown on the following second order filter example (where
the current output P is a function of the two previous outputs
S[0,1], the current input X ∈ [−10, 10] and the two previous
inputs E[0,1])

0 % cat filter.c
1 typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
2 BOOLEAN INIT;
3 float P, X;
4 volatile float RANDOM_INPUT;
5 __ASTREE_volatile_input((RANDOM_INPUT [-10.0,10.0]));
6
7
8 void filter2 () {
9 static float E[2], S[2];
10 if (INIT) {
11 S[0] = X; P = X; E[0] = X;
12 } else {
13 P = (((((0.4677826 * X) - (E[0] * 0.7700725)) +
14 (E[1] * 0.4344376)) + (S[0] * 1.5419)) - (S[1] * 0.674
15 0477));
16 }
17 E[1] = E[0]; E[0] = X;
18 S[1] = S[0]; S[0] = P;
19 }
20
21 void main () {
22 X = RANDOM_INPUT;
23 INIT = TRUE;
24 while (TRUE) {
25 X = RANDOM_INPUT;
26 filter2 ();
27 INIT = FALSE;
28 }
29 }

----|----|----|----|----|----|----|----|----|
0 5 10 15 20 25 30 35 40 45

30 % astree --exec-fn main --dump-invariants filter.c |&
31 tail -25 | egrep "Bound on the"
32 Bound on the input : 10.
33 Bound on the output : 13.3881164652
34 %

On Fig. 4, one can observe that a typical behavior of a filter with
random input is not linear whence cannot be captured using oc-
tagons [61] or convex polyhedra [19], so ASTRÉE must resort to
specialized ellipsoidal abstract domains [23] to provide realistic
and non-trivial bounds on the filter output. More complex com-
putations may be necessary in order to provide tight bounds on
complex filtering schemes. [23, 66]

Figure 4. Typical behavior of a 2nd order filter

12.2 Time

The synchronous programs analyzed by ASTRÉE typically
have the form of a loop synchronized by a clock. By taking the
clock rate and the maximal execution time into account, as given
by a configuration file, ASTRÉE can bound the variable R below,
counting how long a volatile input I has been enabled, so as to set
up a condition T if the condition was continuously enabled during
n clock ticks (this can be used e.g. to check that a button has been
pushed down long enough before reacting)

0 % cat clock.c
1 int R, T, n = 10;
2 void main()
3 { volatile int I;
4 R = 0;
5 while (1) {
6 if (I) { R = R+1; }
7 else { R = 0; }
8 T = (R>=n);
9 __ASTREE_wait_for_clock(());
10 }}
11 % cat clock.config
12 /* clock.config */
13 __ASTREE_volatile_input((I [0,1]));
14 __ASTREE_max_clock((3600000));
15 % astree --exec-fn main --config-sem clock.config --du
16 mp-invariants clock.c |& egrep "(WARN)|(R in)"
17 T in [0, 1] /\ Top, R in [0, 3600001] /\ Top, n in
18 {10} /\ {10} >
19 %

In absence of time bounds, I could be permanently enabled
whence leading to an overflow of R. Thus, any sound analysis ig-
noring time bounds should conclude that R can overflow. Because
of programs such as the above one, ASTRÉE can relate variables
incremented by a bounded value to the clock, and can thus bound
these variables, given the maximal execution time.

12.3 Time-dependent Deviations

We have just seen that some very simple software modules,
such as one counting the number of clock ticks during which some
button is pressed, will overflow unless some bound on the execu-
tion time is assumed. Recognizing the recurrence X(t + 1) =
[A,A′]X(t)+ [B,B′]∪ [C,C′], ASTRÉE can discover arithmetic-
geometric predicates [24] of the form |X(t)| 6 a(a′i + b′)t + b
where X(t) is the value of the program variable X at clock time t

and the numerical constants a, b (the bounds for the current com-
putation), a′, b′ (bounds for computations at the t previous clock
ticks), and i (initial bound) are automatically discovered by the
static analysis. Indeed this abstract domain was used in the exam-
ple of Sect. 12.2 (replacing an older less powerful “clock domain”
[3]). For example, the accumulation of rounding errors in the fol-
lowing program

0 % cat bary.c
1 typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
2 float INIT,C1,I;
3 float RANDOM_INPUT;
4 __ASTREE_volatile_input((RANDOM_INPUT [-1.,1.]));
5
6 void bary () {
7 static float X,Y,Z;
8 if (C1>0.) { Z = Y; Y = X;}
9 if (INIT>0.) { X=I; Y=I; Z=I; }
10 else
11 {X = 0.50000001 * X + 0.30000001*Y + 0.20000001*Z;
12 };
13 __ASTREE_log_vars((X,Y,Z));
14

15 }
16
17 void main () {
18 INIT=1.; C1=RANDOM_INPUT; I=RANDOM_INPUT;
19
20 while (1) {
21 bary();
22 INIT=RANDOM_INPUT; C1=RANDOM_INPUT; I=RANDOM_INPUT;
23

24 __ASTREE_wait_for_clock(());
25 }
26 }

computing a barycentric mean, can be bounded for various execu-
tion times

27 % cat bary10.config
28 __ASTREE_max_clock((3600000));%
29 % astree --exec-fn main --config-sem bary10.config bar
30 y.c |& tail -n100 | egrep "(Z in)|(Time)"
31 <float-interval: Z in [-1.71113, 1.71113], Y in [-1.
32 71113, 1.71113],
33 Time spent in Astrée: 1.156628 s (0 h 0 mn 1 s)
34 % cat bary100.config
35 __ASTREE_max_clock((36000000));%
36 % astree --exec-fn main --config-sem bary100.config ba
37 ry.c |& tail -n100 | egrep "(Z in)|(Time)"
38 <float-interval: Z in [-215.193, 215.193], Y in [-21
39 5.193, 215.193],
40 Time spent in Astrée: 1.150548 s (0 h 0 mn 1 s)
41 % cat bary1000.config
42 __ASTREE_max_clock((360000000));%
43 % astree --exec-fn main --config-sem bary1000.config b
44 ary.c |& tail -n100 | egrep "(Z in)|(Time)"
45 <float-interval: Z in [-2.1295e+23, 2.1295e+23],
46 Time spent in Astrée: 2.619297 s (0 h 0 mn 2 s)
47 %

Observe that the static analysis time is significatively longer when
the program is assumed to run for 10 or 1000 hours (which would
not be the case with testing, simulation or model-checking). This
kind of divergence analysis can be used to exhibit potential insta-
bility problems.

13 Precision/Cost Trade-off Adaptability

Hiding alarms from users in order not to frighten them is tan-
tamount to burying one’s head in the sand. ASTRÉE eschews such

unsound policies while producing very few false alarms, thanks to
the enhancedprecision of its analysis. Nevertheless, ASTRÉE may
leave a few false alarms, which can be eliminated by parametriza-
tion and analysis directives.

13.1 Abstraction Parametrization

ASTRÉE has a number of parameters to chose between alterna-
tive semantics (e.g. whether or not static variables should be con-
sidered initialized to 0, how to apply integer promotion following
[45, 6.3.1.1/2], etc).
Many options concern the choice of the abstract domains to be

used (such as no relational domains or which types of filters should
be considered).
Some options concern the iteration strategy (when to unroll

loops and to what extent, when to perform widenings, with which
thresholds, etc) and the implementation of the analysis (sequential
or parallel [65]).
A number of options control ASTRÉE warnings (e.g. whether

to warn on overflow in initializers, on implicit conversions, etc),
output (such as which invariants should be exported to the viewer),
and verbosity (like tracing the analyzer computations).
Most options of ASTRÉE allows for the adaptation of the pre-

cision/cost trade-off to the user needs, in particular for relational
abstractions which can be very memory and computation-time de-
manding. For example
• Octagons algorithms are in O(n3) where n is the number of
variables [61]. This cost is controlled by ASTRÉE by limit-
ing the set of variables to which the abstract domain is applied
(variable packing [4]).

• Decision trees can grow exponentially in the number of vari-
ables. This cost is controlled by variable packing and by pro-
viding the maximal height of decision trees (default 3).

• Similarly, the maximum depth of symbolic constant trees prop-
agated by ASTRÉE is an adjustable parameter (default 20).

• Arrays are handled either as a collection of individual elements
or by smashing all elements. The end-user can choosewhich ar-
rays should be smashed (by giving a global threshold parameter
or using abstraction directives for individual arrays).

• The end-user can choose which type of commands or which
functions should be partitioned.

• etc.
Sometimes ASTRÉE is too precise and reducing its precision by
parameter adjustment (e.g. eliminating some widening thresholds)
can speed-up the analysis while introducing no false alarm.

13.2 Automatic Abstraction Directives

Some expensive analyses (like partitioning for case analysis)
need not be done everywhere in the program. In that case, ASTRÉE
will guide the analysis by automatically inserting directives in the
program thanks to pattern-matched predefined program schemata.
For example trace partitioning [57] consists in partitioning ex-

ecutions in blocks where executions along each control-flow path
are analyzed separately, all cases being joined together after some
time. A typical example is the computation of the value of a tabu-
lated function

����� ��

���

���

��

��

���

Figure 5. Tabulated function

0 % cat trace-partitioning.c
1 void main() {
2 float t[5] = {-10.0, -10.0, 0.0, 10.0, 10.0};
3 float c[4] = {0.0, 2.0, 2.0, 0.0};
4 float d[4] = {-20.0, -20.0, 0.0, 20.0};
5 float x, r;
6 __ASTREE_known_fact(((-30.0 <= x) && (x <= 30.0)));
7 int i = 0;
8 while ((i < 3) && (x >= t[i+1])) {
9 i = i + 1;
10 }
11 r = (x - t[i]) * c[i] + d[i];
12 __ASTREE_log_vars((r));
13 }

as shown in Fig. 5. A simple analysis joins all cases for i and
considers all possible combinations of any slope c[0,3] with
any abscissed[0,3], whence is rather imprecise

14 % astree --exec-fn main --no-partition trace-partition
15 ing.c |& egrep "r in "
16 direct = <float-interval: r in [-100, 100] >
17 %

Delaying abstract unions in tests and loops by trace partitioning is
more precise5.

18 % astree --exec-fn main trace-partitioning.c |& egrep
19 "r in "
20 direct = <float-interval: r in [-20, 20] >
21 %

13.3 Manual Abstraction Directives

It may happen that the generation of parametric directives in
the code which is programmed in ASTRÉE for a specific applica-
tion domain may not be effective on other styles of programming.
This is the case on the following example (from [15, Sect. 10.2])

0 5 10 15 20 25 30 35 40 45
----|----|----|----|----|----|----|----|----|

0 % cat repeat1.c
1 typedef enum {FALSE=0,TRUE=1} BOOL;
2 int main () {
3 int x = 100; BOOL b = TRUE;
4 while (b) {
5 x = x - 1;
6 b = (x > 0);
7 }
8 }

5for non-distributive abstract domains and is much less expensive than
disjunctive completion [15].

for which ASTRÉE signals a false alarm.

9 % astree --exec-fn main repeat1.c |& egrep "WARN"
10 repeat1.c:5.8-13::[call#main@2:loop@4>=4:]: WARN: sign
11 ed int arithmetic range [-2147483649, 2147483646] not
12 included in [-2147483648, 2147483647]
13 %

Obviously, the false alarm is raised because of a missing relation
between b and x. The manual directive for the decision trees ab-
stract domain will allow ASTRÉE to discover this relation.

0 % cat repeat2.c
1 typedef enum {FALSE=0,TRUE=1} BOOL;
2 int main () {
3 int x = 100; BOOL b = TRUE;
4 __ASTREE_boolean_pack((b,x));
5 while (b) {
6 x = x - 1;
7 b = (x > 0);
8 }
9 }

Now, the program is shown to be runtime error free.

10 % astree --exec-fn main repeat2.c |& egrep "WARN"
11 %

If necessary, ASTRÉE could be easily modified to include a parti-
tioning strategy for such cases.

14 Extensibility and Adaptability

When ASTRÉE has no abstract domain to express a program
invariant which is indispensable for proving a program correct,
there is no other way than designing a new abstract domain to
cope with the inexpressiveness problem (we have seen examples,
like octagons in Sect. 11.5 or filters in Sect. 12.1).
ASTRÉE has a modular design since an analyzer instance is

built by selection of OCAMLmodules from a rich collection, each
implementing an abstract domain, some of which being publicly
available [47]. It follows that ASTRÉE is extensible in that it is
easy to include new abstractions in the analyzer to cope with im-
precision.
To be useful, the new abstract domains must interact with the

existing ones and reciprocally, to enhance the global precision of
the analysis. In particular, the conjunction of the pieces of infor-
mation encoded in each abstract domain is realized by an approx-
imate reduced cardinal product [15, Sect. 10.1] discussed in [18].
For example when the memory model of ASTRÉE was ex-

tended to cope with union and pointer arithmetics [62], an arith-
metic congruence analysis [30, 59] was added to cope with pointer
alignments. Being able to interact with the existing basic interval
domain, it can yield a precise analysis of the following program

0 % cat congruence.c
1 void main () { int I = 0;
2 while (I < 13) { I = I + 2; }
3 __ASTREE_log_vars((I));
4 }
5 % astree --exec-fn main congruence.c |& grep "I in"
6 direct = <integers (intv+cong+bitfield+set): I in {14}
7 /\ Top >
8 %

while a mere interval analysis would yield I ∈ [13, 14] (or even
I > 13 for imprecise ones).

15 Conclusion

Sophisticated static program analysis techniques, looking for
deep program runtime properties, have not found their way into
widespread use in low-quality software production environments
in which easily designed, unsound, and imprecise static analyzers,
looking for superficial error patterns, can be very successful (pro-
vided they do not discourage their users by performing a careful
selection of the most likely alarms thus minimizing apparent false
positives).

In such low-quality software production environments false
negatives are no problem since there always remain enough bugs
in the program, or enough new ones are introduced when trying to
correct old ones, so that the analyzer will always find some bug to
report on, with a reasonable probability of finding an actual bug
in a handful of false positives ([79] cites common rates of 50 false
alarms for an actual error). Finding bugs in large programs in this
empirical way may keep programmers busy for a very long time
so any help, even of low quality is welcomed. However, software
not developed rigorously, have very little chance to become high-
quality software, whichever dynamic/static analyzer is used to find
bugs.

In high-quality software production environments, which are
extremely rare, unsound and imprecise static analyzers will not be
satisfactory because they provide even less guarantees than test-
ing, e.g. with respect to control and data coverage. In mission and
safety critical software, the problem is not to find some of the re-
maining bugs but to definitely prove the absence of any bug, at
least in a given category of unacceptable ones (like software errors
abruptly stopping the computer).

For checking the absence of runtime errors, ASTRÉE has the
unprecedented qualities of being

• sound (no false negatives),

• precise (no false or very few positives) thanks to knowledge of
the domain of synchronous control/command for which it was
designed, and its capacity of adaptation either by the designers
or, to a lesser extend, by knowledgeable end-users

• terminating (and efficient: 1/2 hours per 100,000 LOCs),

• scaling-up (to 1.000.000 LOCs).

Whence ASTRÉE is not only a reliable debugging aid, it is a rig-
orous formal verifier which can be included in a stringent certi-
fication process. Hopefully ASTRÉE can contribute to the pro-
duction of high-quality software in a cost-effective, timely, and
reproducible manner.

References

[1] T. Ball and S. Rajamani. The SLAM project: debugging
system software via static analysis. In 29th ACM Symp. on
Principles of Prog. Lang., POPL ’02, pp. 1–3, 2002.

[2] D. Beyer, T. Henzinger, R. Jhala, and R. Majumdar. Check-
ing memory safety with BLAST. In 8th Int. Conf. on Funda-
mental Approaches to Soft. Eng., FASE ’05, LNCS 3442, pp.
2–18. Springer, 2005.

[3] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne,
A. Miné, D. Monniaux, and X. Rival. Design and Im-
plementation of a Special-Purpose Static Program Analyzer
for Safety-Critical Real-Time Embedded Software. In The
Essence of Computation: Complexity, Analysis, Transforma-
tion. Essays Dedicated to Neil D. Jones, LNCS 2566, pp.
85–108. Springer, 2002.

[4] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne,
A. Miné, D. Monniaux, and X. Rival. A Static Analyzer
for Large Safety-Critical Software. In ACM Conf. on Prog.
Lang. Design and Impl., PLDI ’03, pp. 196–207, 2003.

[5] S. Boldo and J.-C. Filliâtre. Formal Verification of Floating-
Point Programs. In 18th IEEE Int. Symp. on Computer Arith-
metic, ARITH ’18, 2007.

[6] B. Brew and M. Johnson. Value Lattice Static Analysis, A
New Approach to Static Analysis. Dr. Dobbs J., 2001.

[7] W. Bush, J. Pincus, and D. Sielaff. A Static Analyzer for
Finding Dynamic Programming Errors. Soft. Pract. and
Exp., 30(7):775–802, 2000.

[8] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular
Verification of Software Components in C. IEEE Trans. on
Soft. Eng., 30(6):388–402, 2004.

[9] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement for symbolic
model checking. J. Acm, 50(5):752–794, 2003.

[10] E. Clarke and D. Kroening. ANSI-C Bounded Model
Checker User Manual. Technical report, School of Computer
Science, Carnegie Mellon University, 2006.

[11] E. Clarke, D. Kroening, and F. Lerda. A tool for checking
ANSI-C programs. In Tools and Algorithms for the Con-
struction and Analysis of Systems, TACAS ’04, LNCS 2988,
pp. 168–176. Springer, 2004.

[12] T. Copeland. PMD Applied. Centennial Books, 2005.
[13] P. Cousot and R. Cousot. Static determination of dynamic

properties of programs. In 2nd Int. Symp. on Programming,
pp. 106–130, Paris, France, 1976. Dunod.

[14] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In Conf. Rec. 4th ACM Symp.
on Principles of Prog. Lang., POPL ’77, pp. 238–252, 1977.

[15] P. Cousot and R. Cousot. Systematic design of program anal-
ysis frameworks. In Conf. Rec. 6th ACM Symp. on Principles
of Prog. Lang., POPL ’79, pp. 269–282, 1979.

[16] P. Cousot and R. Cousot. Comparing the Galois Connection
and Widening/Narrowing Approaches to Abstract Interpre-
tation. In 4th Int. Symp. Prog. Lang. Implementation and
Logic Programming, PLILP ’92, LNCS 631, pp. 269–295.
Springer, 1992.

[17] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. The ASTRÉE analyser. In 14th
European Symp. on Prog. Lang. and Systems, ESOP ’05,
LNCS 3444, pp. 21–30. Springer, 2005.

[18] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. Combination of Abstractions
in the ASTRÉE Static Analyzer. In 11th Asian Comp. Sci.

Conf., ASIAN 06, LNCS. Springer, 2006.
[19] P. Cousot and N. Halbwachs. Automatic discovery of linear

restraints among variables of a program. In Conf. Rec. 5th
ACM Symp. on Principles of Prog. Lang., POPL ’78, pp. 84–
97, 1978.

[20] A. Deutsch. Static Verification Of Dynamic Properties.
PolySpace Technologies, www.polyspace.com.

[21] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as Deviant Behavior: A General Approach to Inferring
Errors in Systems Code. In 18th ACM Symp. on Operating
Systems Principles, 2001.

[22] M. Fagan. Design and code inspections to reduce errors
in program development. IBM Systems J., 15(3):258–287,
1976.

[23] J. Feret. Static Analysis of Digital Filters. In 13th European
Symp. on Prog. Lang. and Systems, ESOP ’2004, Barcelona,
Spain, LNCS 2986, pp. 33–48. Springer, 2004.

[24] J. Feret. The Arithmetic-Geometric Progression Abstract
Domain. In 6th International Conference on Verification,
Model Checking and Abstract Interpretation, VMCAI ’2005,
Paris, France, LNCS 3385, pp. 42–58. Springer, 2005.

[25] J.-C. Filliâtre and C. Marché. Multi-Prover Verification of C
Programs. In 6th Int. Conf. on Formal Engineering Methods,
ICFEM ’04, LNCS 3308, pp. 15–29. Springer, 2004.

[26] C. Flanagan, K. M. Leino, M. Lillibridge, G. Nelson, J. Saxe,
and R. Stata. Extended static checking for Java. In ACM
Conf. on Prog. Lang. Design and Impl., PLDI ’02, pp. 234–
245, 2002.

[27] J. Foster, M. Fähndrich, and A. Aiken. Polymorphic versus
Monomorphic Flow-insensitive Points-to Analysis for C. In
7th Int. Sym. on Static Analysis, SAS ’00, LNCS 1824, pp.
175–198. Springer, 2000.

[28] P. Godefroid. Software Model Checking: The VeriSoft Ap-
proach. Formal Methods in System Design, 26(2):77–101,
2005.

[29] S. Graf and H. Saı̈di. Verifying Invariants Using Theorem
Proving. In 8th Int. Conf. on Computer Aided Verification,
CAV ’97, LNCS 1102, pp. 196–207. Springer, 1996.

[30] P. Granger. Static Analysis of Arithmetical Congruences. Int.
J. Comput. Math., 30:165–190, 1989.

[31] D. Grossman, M. Hicks, T. Jim, and G. Morrisett. Cyclone:
a Type-safe Dialect of C. C/C++ Users J., 23(1), 2005.

[32] S. Gupta and G. Sreenivasamurthy. Navigating “C”
in a “leaky” boat? Try Purify. www-128.ibm.com/

developerworks/rational/library/06/0822_

satish-Giridhar/, 2006.
[33] L. Hatton. Safer C: Developing for High-Integrity and

Safety-Critical Systems. McGraw-Hill, 1995.
[34] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy

abstraction. In Proc. 29th ACM Symp. on Principles of Prog.
Lang., POPL ’02, pp. 58–70. ACM Press, 2002.

[35] G. Holzmann. UNO: Static Source Code Checking for User-
Defined Properties. In 6th World Conf. on Integrated Design
and Process Technology, IDPT ’02, 2002.

[36] G. Holzmann. The SPIN MODEL CHECKER, Primer and

Reference Manual. Addison-Wesley, Sept. 2003.
[37] D. Hovemeyer, J. Spacco, and W. Pugh. Evaluating and tun-

ing a static analysis to find null pointer bugs. In ACM Work-
shop on Program Analysis For Software Tools and Engineer-
ing, PASTE ’05, pp. 13–19, 2005.

[38] Esterel Technologies. SCADE SuiteTM, The Standard for the
Development of Safety-Critical Embedded Software in the
Avionics Industry. www.esterel-technologies.com/

products/scade-suite/.
[39] Gimpel Software R©. PC-lintTM/ FlexeLintTM Value Tracking.

www.gimpel.com.
[40] GrammaTech R©. CodeSonar: A code-analysis tool that iden-

tifies complex bugs at compile time. www.grammatech.

com/products/codesurfer/.
[41] Klocwork R©. Klocwork K7TM. www.klocwork.com.
[42] The MathWorks. Simulink R© — Simulation and Model-

Based Design. www.mathworks.com/products/

simulink/.
[43] Reasoning, Inc. Reasoning inspection service defect

data, Tomcat, version 4.1.24. www.reasoning.com/pdf/

Tomcat_Defect_Report.pdf, 2003.
[44] R. Iosif, M. Dwyer, and J. Hatcliff. Translating Java for

Multiple Model Checkers: The Bandera Back-End. Formal
Methods in System Design, 26(2):137–180, 2005.

[45] ISO/IEC. International standard – Programming languages
– C, 1999. Standard 9899:1999.

[46] D. Jackson. Software Abstractions: Logic, Language, and
Analysis. MIT Press. Cambridge, MA., 2006.

[47] B. Jeannet and A. Miné. The Apron Numerical Abstract
Domain Library. apron.cri.ensmp.fr/library/.

[48] J. Kodumal and A. Aiken. Banshee: A Scalable Constraint-
Based Analysis Toolkit. In 7th Int. Sym. on Static Analysis,
SAS ’07, LNCS 3672, pp. 218–234. Springer, 2005.

[49] N. Kumar and R. Peri. Transparent Debugging of Dynam-
ically Instrumented Programs. ACM SIGARCH Computer
Architecture News, 33(5):57–62, 2005.

[50] D. Larochelle and D. Evans. Statically Detecting Likely
Buffer Overflow Vulnerabilities. In 2001 USENIX Security
Symposium, Washington, D.C., 2001.

[51] K. Leino and G. Nelson. An Extended Static Checker for
Modula-3. In 7th Int. Conf. on Compiler Construction,
CC ’98, LNCS 1383, pp. 302–305. Springer, 1998.

[52] X. Leroy. Coinductive Big-Step Operational Semantics.
In 15th European Symp. on Prog. Lang. and Systems,
ESOP ’2006, LNCS 3924, pp. 54–68. Springer, 2006.

[53] X. Leroy. Formal certification of a compiler back-end or:
programming a compiler with a proof assistant. In Conf. Rec.
33rd ACM Symp. on Principles of Prog. Lang., POPL’06, pp.
42–54, 2006.

[54] T. Lev-Ami, R. Manevich, and M. Sagiv. TVLA: A System
for Generating Abstract Interpreters. In P. Jacquart, editor,
Building the Information Society, chapter 4, pp. 367–376.
Kluwer Academic Publishers, Dordrecht, The Netherlands,
2004.

[55] M. Martel. An Overview of Semantics for the Validation of
Numerical Programs. In 6th Int. Conf. on Verification, Model
Checking, and Abstract Interpretation, VMCAI ’05, LNCS
3385, pp. 59–77, 2005.

[56] L. Mauborgne. ASTRÉE: verification of absence of run-time
error. In P. Jacquart, editor, Building the Information Society,
chapter 4, pp. 385–392. Kluwer Acad. Pub. Dordrecht, The
Netherlands, 2004.

[57] L. Mauborgne and X. Rival. Trace Partitioning in Abstract
Interpretation Based Static Analyzer. In 14th European
Symp. on Prog. Lang. and Systems, ESOP ’05, LNCS 3444,
pp. 5–20. Springer, 2005.

[58] R. Milner. A theory of type polymorphism in programming.
J. of Comp. and Sys. Sciences, 17:348–375, 1978.

[59] A. Miné. A Few Graph-Based Relational Numerical Ab-
stract Domains. In 9th Int. Symp. on Static Analysis, SAS ’02,
LNCS 2477, pp. 117–132. Springer, 2002.

[60] A. Miné. Relational Abstract Domains for the Detection of
Floating-Point Run-Time Errors. In 13th European Symp. on
Prog. Lang. and Systems, ESOP ’04, LNCS 2986, pp. 3–17.
Springer, 2004.

[61] A. Miné. The Octagon Abstract Domain. Higher-Order and
Symbolic Computation, 19:31–100, 2006.

[62] A. Miné. Field-Sensitive Value Analysis of Embedded C
Programs with Union Types and Pointer Arithmetics. In
ACM Conf. on Languages, Compilers, and Tools for Embed-
ded Systems, LCTES ’2006, pp. 54–63, 2006.

[63] A. Miné. Symbolic Methods to Enhance the Precision of Nu-
merical Abstract Domains. In 7th Int. Conf. on Verification,
Model Checking and Abstract Interpretation VMCAI ’06,
LNCS 3855, pp. 348–363. Springer, 2006.

[64] MISRA (The Motor Industry Software Reliability Associa-
tion). Guidelines for the use of the C language in vehicle
based systems Software. www.misra.org.uk, 1998.

[65] D. Monniaux. The Parallel Implementation of the ASTRÉE

Static Analyzer. In 3rd Asian Symp. on Prog. Lang. and Sys-
tems, APLAS ’05, LNCS 3780, pp. 86–96. Springer, 2005.

[66] D. Monniaux. Compositional Analysis of Floating-Point
Linear Numerical Filters. In 17th Int. Conf. on Com-
puter Aided Verification, CAV ’05, LNCS 3576, pp. 199–212.
Springer, 2005.

[67] N. Nagappan and T. Ball. Static analysis tools as early in-
dicators of pre-release defect density. In Proc. 27th ACM
SIGSOFT Int. Conf. on Software engineering, pp. 580–586.
ACM Press, 2005.

[68] G. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer.
CCured: Type-Safe Retrofitting of Legacy Software. ACM
Trans. Program. Lang. Syst., 27(3):477–526, 2005.

[69] N. Nethercote and J. Seward. Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation. In ACM
Conf. on Prog. Lang. Design and Impl., PLDI ’07, 2007.

[70] A. Pnueli, O. Shtrichman, and M. Siegel. The Code Vali-
dation Tool CVT: Automatic Verification of a Compilation
Process. Int. J. on Soft. Tools for Tech. Trans., 2(2):192–201,
1998.

[71] W. Pugh and D. Wonnacott. Static Analysis of Upper and
Lower Bounds on Dependences and Parallelism. ACM Trans.
Program. Lang. Syst., 16(4):1248–1278, 1994.

[72] F. Randimbivololona, J. Souyris, P. Baudin, A. Pacalet,
J. Raguideau, and D. Schoen. Applying Formal Proof Tech-
niques to Avionics Software: A Pragmatic Approach. In
World Congress on Formal Methods in the Development of
Computing Systems, LNCS 1709, pp. 1798–1815. Springer,
1999.

[73] X. Rival. Abstract Interpretation Based Certification of As-
sembly Code. In 4th Int. Conf. on Verification, Model Check-
ing and Abstract Interpretation, VMCAIS ’03, LNCS 2575,
pp. 41–55. Springer, 2003.

[74] X. Rival. Symbolic Transfer Functions-based Approaches
to Certified Compilation. In Conf. Rec. 31st ACM Symp. on
Principles of Prog. Lang., POPL ’01, pp. 1–13, 2004.

[75] Robby, M. Dwyer, and J. Hatcliff. Domain-specific Model
Checking Using The Bogor Framework. In 21st IEEE/ACM
Int. Conf. on Automated Software Engineering, ASE ’06,
Tokyo, Japan, 2006.

[76] A. Venet and G. Brat. Precise and Efficient Static Array
Bound Checking for Large Embedded C Programs. In Int.
Conf. on Prog. Lang. Design and Impl., PLDI ’04, pp. 231–
242. ACM Press, 2004.

[77] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda.
Model Checking Programs. Automated Soft. Eng. J., 10(2),
2003.

[78] K. Yi, H. Choi, J. Kim, and Y. Kim. An Empirical Study
on Classification Methods for Alarms from a Bug-Finding
Static C Analyzer. Inf. Proc. Let., 102(2-3):118–123, 2007.

[79] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. Hudepohl,
and M. Vouk. On the value of static analysis for fault detec-
tion in software. IEEE Trans. on Soft. Eng., 32(4):240–253,
2006.

[80] F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. Ennals,
M. Harren, G. Necula, and E. Brewer. SafeDrive: Safe and
Recoverable Extensions Using Language-Based Techniques.
In Operating System Design and Implementation, OSDI ’06.
USENIX Assoc., 2006.

