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ABSTRACT

This paper presents a methodology to efficiently explore the 

design space of communication adapters. In most digital signal 

processing (DSP) applications, the overall performance of the 

system is significantly affected by communication architectures, 

as a consequence the designers need specifically optimized 

adapters. By explicitly modeling these communications within an 

effective graph-theoretic model and analysis framework, we 

automatically generate an optimized architecture, named Space-

Time AdapteR (STAR). Our design flow inputs a C description of 

Input/Output data scheduling, and user requirements 

(throughput, latency, parallelism…), and formalizes 

communication constraints through a Resource Constraints 

Graph (RCG). Design space exploration is then performed 

through associated tools, to synthesize a STAR component under 

time-to-market constraints. The proposed approach has been 

tested to design an industrial data mixing block example: an 

Ultra-Wideband interleaver. 
 

1. INTRODUCTION 
 

In the multimedia and telecommunications domain, continuously 

emerging customer services require severe performance 

(computing power, timing performances and memory 

bandwidth/capacity) to implement the new communication 

standards. Indeed, communication system applications require 

high throughput -on the order of several hundred Mb/s- 

accompanied by both low latency and severe bit error rate BER 

constraints (e.g. wireless, fiber-optic communication…). Owing 

to their impressive near-Shannon-limit error correcting 

performance, turbo-like codes in their parallel or serially 

concatenated versions [2], originally dedicated to channel 

coding, are being currently reused in a large set of the whole 

digital communication systems (e.g. equalization, demodulation, 

synchronization, MIMO).  

These codes are formed by two or more processing elements PE 

(encoders/decoders) and one communication network that 

interleaves the data blocks exchanged by the PEs. The turbo 

decoding principle is based on an iterative algorithm using 

decoders exchanging information in order to improve the error 

correction performance through the iterations. The iterative 

nature of these algorithms is a severe constraint to satisfy the 

aforementioned requirements with an affordable implementation 

complexity. A widespread solution is to realize the turbo decoder 

in a parallel fashion. One the one hand, this solution increases the 

throughput since the latency of the system becomes the latency of 

constituent sub-blocks [6]. On the other hand, the complexity 

and the cost of the system are increased due to parallel nature of 

the architecture. Moreover, for the sub-blocks to be able to work 

in parallel, it is necessary that each one exchanges data with a 

Random Access Memory block (RAM). 

By the way, depending on the specific permutation law, different 

modules may try to simultaneously access the same RAM. As a 

consequence, none of them is able to retrieve data. This problem 

is known as the “collision” problem [9]. In this case, the access 

to the memory has to be postponed and carefully arbitrated, 

which slows down the decoding process. The solution consists in 

designing an adapted interleaver and/or modifying the decoder 

architecture. In this paper, we propose to use the formal approach 

presented in [3] to tackle the interleaver design problem. 

 

The paper is organized as follows: the second section presents a 

state-of-the-art for interleaving architectures. The third section is 

dedicated to the problem formulation of the interleaver design. In 

the fourth section we briefly present our design flow. Finally, the 

last section presents experimental results and the design exploration 

offered by our design flow on an industrial example. 
 

2. INTERLEAVING ARCHITECTURE 
 

Interleaving is a permutation rule that scrambles data to break up 

neighbourhood-relations. It is a key factor for turbo-codes 

performances which varies from one standard to another. Moreover 

within a given standard, different interleaving rules can be used for 

different modes through varying frame lengths and/or data rates. In 

this context, taking into account the aforementioned constraints and 

the collision problems, hardware implementations of parallel turbo 

decoders require the integration of complex topology supporting the 

intensive interleaved memory accesses. Indeed, in state-of-the-art 

parallel turbo-decoding, interleaving is considered as a limiting 

factor concerning the overall system performance and the 

architectural cost. 

To successfully tackle these problems, different solutions have been 

recently proposed. First, possible solutions to get rid of collisions 

with nonprunable interleavers, consist in designing a specific 

interleaver rule. In [9], the authors propose a deterministic 

methodology to design collision-free interleavers. In [10] and [8] 

the authors define collision-free permutations thanks to a 

combination of a spatial and a temporal permutation. The authors of 

[12] simply integrate the collision-free constraint in the design of 

their interleaver. However, the multi-modes architectures 

(depending on frame length, data-rate…) can not be handled by 

such approaches. Another solution consists in defining a collision-

free interleaver that preserves this property even when pruned. In 

[7], the authors describe a design rule to obtain such interleavers, 

with an incremental algorithm that generates collision-free 

interleavers by adding new elements in successive steps to a small 

permutation. Of course, all these solutions are viable only if the 

designer is free to choose the permutation law to be used in the 

system. As a consequence, the resulting architecture may not be 

standard compliant. 

In [16] the authors propose, in case of a collision, to store the 

conflicting information in the communication network until the 

targeted sub-block can process it. Of course, additional network 

buffering resources, and consequently time needed to interleave 

information, increase with the number of parallel processors.  This 

is a suboptimal strategy, in terms of latency and thus throughput, 

which avoids collisions at the expense of area and memory. 

Moreover, the communication is based on a Benes network [5], 

which might be suboptimal compared to a dedicated and optimized 

architecture. 

Unlike these implementations, in [13] the authors propose a 

solution based on software and/or reconfigurable parts to achieve 



the required flexibility, but achieving lower throughput. In [14], 

an advanced heterogeneous communication network 

implementation was proposed. Two multistage interconnection 

network architectures are presented in order to handle on-chip 

communications in multiprocessor parallel turbo decoders. They 

are based on a dedicated network and associated routers. The 

main feature of these network architectures (Butterfly and Benes 

based topologies) is their supposed scalability enabling seamless 

trade-off between hardware complexity and available bandwidth 

for turbo decoding. The Butterfly network, which lacks of 

diversity, is a multistage interconnection network with 2-input 2-

output routers. There is a unique path between each source and 

destination. As a consequence, the risk of conflict is increased 

and the authors have to add queues to store conflicting 

information. The second network architecture proposed is based 

on a Benes network. In this case, the latency is constant for all 

the couples (source, destination), but this network avoids the 

conflicts if and only if all the paths have a different destination. 

Unfortunately, we saw that it was not true for turbo-decoding 

applications because interleaving (respectively de-interleaving) 

ends in potential conflicts. Moreover, as already mentioned the 

Benes networks are costly and under-optimized solutions. 

Finally, the authors of [15] describe a system that avoids 

collisions for every interleaver and any degree of parallelism. 

This solution consists in automatically finding a collision-free 

data memory mapping respecting the interleaving rule, thanks to 

a simulated-annealing algorithm. As a consequence, the user 

cannot predict when the algorithm will end. Moreover, the 

proposed approach does not target the optimization of the storage 

elements. 

In this paper, we propose to use the formal approach presented in 

[3] to tackle the interleaver design problem. This approach, 

which originally target interface synthesis, is shown to be also 

suited to the interleaver design space exploration. Our design 

flow can take as input timing diagrams (constraints file) or C 

descriptions of I/O data scheduling (e.g. an interleaving formula), 

with user requirements (throughput, latency…). We formalize 

communication constraints through a formal Resource 

Constraints Graph (RCG) which properties enable an efficient 

architecture exploration. By using our design flow, any user can 

generate an optimized architecture in term of latency, network 

architecture and memory, from any interleaving standard. 

 

3. PROBLEM FORMULATION 
 

First, from throughput and parallelism constraints, and an 

interleaver permutation pattern, we can formalize data 

communication as timing diagrams.  

Let us consider a simple architecture example composed of two 

components exchanging a set of data S = {a, b, c, d, e, f}. S is 

produced by a block #1 and is consumed by a block #2 through a 

single point-to-point link. The write access sequence into the 

communication link is Sw = (a,c,b,e,f,d) i.e. t
w

a<t
w

c<t
w

b<t
w

e<t
w

f<t
w

d 

, while the read access sequence from the link is different Sr 

=(c,a,e,b,d,f) i.e. t
r

c<t
r

a<t
r

e<t
r

b<t
r

d<t
r

f  (see Figure 1). 

This difference between the two I/O sequences can either come 

from the integration of two IP cores that were not specifically 

designed to work together, either can be explicitly described (e.g. 

in interleavers [11][7]). Those blocks may not produce and 

consume data in the same order nor with the same throughput 

(nor sometime the same parallelism), so they can not be directly 

plugged together. The designer needs to introduce a space-time 

adapter between them to ensure correct functional results. A 

classical solution consists in using a memory to buffer all concerned 

data: this is what we call coarse grain approach. But in fact, this 

over sized buffer may be reduced thanks to a finer grain 

communication constraints analysis [1]. The proposed adapter can 

be designed either by using a set of registers or specific memory 

elements, such as FIFO (queue) or LIFO (stack). The problem the 

designer faces consists in finding the best architecture for this 

adapter: he has to find the best storage element binding in order to 

integrate data reordering and to minimize total amount of memory.  
 

 

For example, the lifetimes of data a and b respect a First-In First-

Out semantic, so they can be assigned to the same hardware FIFO. 

This timing relation is also true for the data c and b. However, data 

a and c respect a Last-In First-Out semantic, so a single hardware 

FIFO cannot be used to store the data a, b and c The question for 

the designer is: how can we bind data a, b and c to different storage 

elements, in order to generate the best final architecture? This 

highlights the fact that the local problem of a, b and c binding will 

influence the resulting global architecture. A methodology is thus 

needed to bind data a, b and c to different storage elements, in order 

to generate an optimized architecture. 
 

In a nutshell, a designer needs (1) a tool to generate timing diagram 

from interleaving permutation scheme and architectural 

requirements (e.g. parallelism), (2) a tool to generate the 

corresponding architecture and (3) a tool to validate this 

architecture. 
 

4. STAR DESIGN FLOW 
 

The architecture of a STAR component is composed of a datapath 

and the associated control state machine FSM (see Figure 2). The 

data path can be composed of FIFO, LIFO or register. Spatial 

adaptation (a data read on one input port can be send to any/several 

output ports) is performed by an interconnection logic dealing with 

data dispatching from input port to storage elements, and from 

storage elements to output ports. We can see on Figure 2 that there 

is one STAR architecture for each input port.  

The timing adaptation (data-rates, different input/output data 

scheduling) is realized by the storage elements. STAR can have a 

GALS (Globally Asynchronous Locally Synchronous) / LIS 

(Latency Insensitive System) using the mechanisms described in 

[1]. 
 

The design flow is presented in Figure 4 and is based on three tools: 

StarTor for the STAR design constraint specification, StarGene for 

the STAR component synthesis and StarBench for the STAR 

functional validation. The methodology generates a register transfer 

level (RTL) VHDL architecture, and associated DC Synopsys 

scripts, starting from a functional model and a set of user 

requirements (timing and communication-architecture constraints). 

 
Figure 1: Data timing diagram. 



The architecture synthesis is performed by using a library of pre-

designed and characterized storage elements (FIFO, LIFO and 

Registers). 
 

 

 

StarTor inputs a C level algorithmic description which specifies 

the interleaving scheme, and a file containing user requirements 

(latency, throughput, communication interface, I/O 

parallelism...). StarTor first extracts I/O data communication 

order by generating a trace from the execution of the C functional 

description. Next, based on designer’s requirements, it generates 

a constraints file. This file contains the number and type of ports, 

type and amount of data, relationships between data and ports 

(i.e. mapping) and finally read and write access dates for all data. 

The design can generate a set of architectural constraints to 

compare one to each other.  
 

 

Then, in order to generate a STAR component, our design tool 

STARGene is based on a four-step flow: (1) Resource 

Compatibility Graph construction, (2) Storage resource binding, 

(3) Architecture optimization and (4) VHDL RTL generation. 

During the first step of the STAR component Generation, a 

Resource Constraints Graph RCG (see Figure 3) is generated 

from the communication constraints. The analysis of this formal 

model allows both data binding to storage elements (queue, stack 

or register), and the sizing of each storage element. This first 

architecture is next optimized by merging storage elements that 

have non-overlapping usage timing frames. Finally, an RTL level 

design is generated.  
 

The last tool, StarBench, generates a test bench based on 

constraints in order to validate the design by comparing 

simulation results. 
 

 

The design space exploration is driven by the designer which can 

plot a set of exploration parameters. The main ones are: 

• Enabling FIFO/LIFO/REG: the user may switch off FIFO 

and/or LIFO and/or Register binding on the RCG. 

• FIFO/LIFO minimal/maximal size: in order to avoid parasitic 

structures like too small or too big FIFO/LIFO structures 

(structure size). Using this parameter, the user is able to limit 

the size of the generated FIFO/LIFO structure to meet its own 

technological constraints (e.g. maximum size of 1024 

elements). 

• FIFO/LIFO average use factor: the user can define a minimal 

usage for the FIFO/LIFO structures to be binded. This metric 

aims to count the total amount of data travelling in each 

memory element during an iteration of the interleaving 

algorithm, compared to its size (e.g. 274 elements in a 64-

places FIFO).  

• FIFO/LIFO filling factor: the user can define a minimal 

number of data in a FIFO/LIFO. The generated FIFO/LIFO 

sizes are power of 2, so if the maximum number of data in a 

given FIFO at the same time is 52, we generate a 64-places 

FIFO. This factor aims to limit the gap between the depth of 

the generated FIFO and the maximum data that will be stored 

in it at a given time. 

• Multiplexer complexity factor: a STAR may have to deal with 

high parallelism architectures. Thus, a given structure (FIFO, 

LIFO or register) may have to store data from multiple inputs 

or send data to multiple output ports. In order to avoid the 

generation of a complex communication network, the 

exploration algorithms is also driven by a dedicated metric 

which aims at reducing this complexity. 

• Weighting each parameter: Each of the previous 

parameters can be balanced by the user by means of 

dedicated coefficients. During the RCG exploration, the 

binding algorithm explores the graph, and binds 

structures thanks to these metrics.  

 

 
Figure 2: Typical STAR architecture. 

 

Figure 3: Graph example (from Figure 1 constraints). 

  

Figure 4: STAR design flow. 
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In field of turbo-like architecture, communication traffic profile, 

which depends on the interleaving rule, may have to support 

multi-modes and multi-standard features. In this context, 

hardware implementations of parallel turbo decoders require the 

integration of complex topology and routing resources 

supporting the intensive interleaved memory accesses. The STAR 

design flow integrates design exploration for multi-modes 

architecture, switching from one to another at run-time. By the 

way, in this paper we present a formal methodology to synthesize 

a STAR architecture for a given configuration. Due to space 

limitation, the generalization of the methodology generating 

multi-mode architecture (graph merging, multi data path 

synthesis, multi FSM generation…) will be fully presented in a 

future publication. 
 

4.   ULTRA-WIDE BAND INTERLEAVER FOR 

STMICROELECTRONICS 
 

In this section, we present the exploration of a STAR architecture 

on an industrial example. The application, an Ultra Wide Band 

interleaver [11], was provided by STMicroelectronics. This 

interleaver has to be able to switch between different modes 

(300, 600 or 1200 data length), respecting latency constraints. By 

nature, interleavers may offer few storage elements to be saved. 

However, these data-mixing schemes are well-suited for our 

proposed design flow and we can explore how metrics (I/O 

parallelism, enable/disable FIFO/LIFO, average usage factor…) 

may influence the final architecture. All the areas information has 

been masked in order to protect internal company technologies. 

First, we present the interleaving law. Then we highlight the 

parallelism effect on the STAR architecture and we compare it to 

classical solutions. Finally, we show how the memory-related and 

the network-related metrics impact the resulting architecture. 
 

4.1 Parallelism exploration 
 

Thanks to the StarTor tool, we efficiently explore how the 

parallelism influences the resulting architecture. Figure 5 shows 

the results for an architectural exploration with different I/O 

parallelism. The two reference architectures are based on either 

RAM block or on a sea of registers. The X-axis represent the 

parallelism (e.g. 4 means 4 data input and 4 data output). The Y-

axis represents the number of memory points needed for the 

RAM based architecture, the sea of register and the STAR based 

architecture.  

The number of memory points for the RAM based architecture is 

defined by the number needed RAM blocks (i.e. same as the 

input parallelism) multiplied by the number of memory points in 

each one (i.e. for 1000 8-bit words, a 1024 byte RAM block is 

needed). The STAR architecture needs less memory points than 

the RAM based architecture thanks to it FIFO/LIFO/register 

elements and the results are close to a register-only architecture. 
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Figure 5: Exploration for different I/O parallelism 

 

Figure 6 compare the overall complexity of the obtained 

architecture in term of control and communication network. For this 

purpose, we compared the number of structure to be controlled. 

This number is given by the number of memorizing elements plus 

the number of switches or multiplexer of the communication 

network. 

In case of a RAM-based architecture, the communication network is 

based on a cross-bar in which, if there are N ports to be connected 

to N RAM, the network needs N*N 2x2-switches to be piloted. 

Figure 6 shows that for low parallelism the RAM-based architecture 

can be better than the STAR. 
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Figure 6: Architecture complexity in term of # of structures to control 

 

However, the STAR architecture is far less complex for higher 

parallelisms which are widely used in current design.  

Moreover, the Register-based architecture is always more complex 

than the STAR architecture in terms of structure to be controlled. 
 

 

Table 1: Design space exploration by means of plotted metrics 

Structure 

binding 
# structures # 

Data 

IN 

par. 

OUT 

par. 

Mux 

Factor 
# min. 

Usage 

factor 
FIFO LIFO Mux FIFO LIFO Register Total 

# memory 

points 
Throughput 

600 6 5 Yes 4 90% Yes Yes 48 45 5 22 174 514 272,7 

600 6 5 Yes 7 90% Yes Yes 34 34 1 90 159 525 272,7 

600 6 5 Yes 15 90% Yes Yes 12 12 0 391 415 581 272,7 

600 6 5 Yes 30 90% Yes Yes 0 0 0 600 600 600 272,7 

600 6 5 Yes 7 50% Yes Yes 28 27 2 73 130 533 272,7 

600 6 5 Yes 7 70% Yes Yes 29 28 2 70 129 532 272,7 

600 6 5 Yes 7 80% Yes Yes 33 32 1 78 144 534 272,7 

600 6 5 Yes 7 100% Yes Yes 39 38 1 84 162 522 272,7 



4.2 Design space exploration through plotted metrics  
 

4.2.1 Memory related metrics 
 

In table 1, we show the resulting architectures for a given I/O 

parallelism while exploring two metrics: structure minimal size 

and structure usage factor. In this table, the first column 

indicates the frame length (600 data in this example), while the 

columns “IN and OUT par.” indicate the used parallelism. The 

columns “Mux factor”, “# min”, “Usage factor” refer to the 

corresponding parameters (e.g. # min = 7, means that the minimal 

size for a FIFO or a LIFO structure to be bind is 7) and the 

column “Structure binding ” indicates if the binding of FIFO or 

LIFO are allowed during the exploration. The other column 

indicate the results: the number of FIFO, LIFO, Register and 

multiplexer, the number memory points needed and the 

throughput of the resulting architecture (in Mb./s.). 

This experiment shows that these parameters greatly impact the 

architecture: e.g. the total number of structures to be controlled 

varies from 129 to 600 in this example. Plotting the metrics in 

order to achieve the best architecture is currently done by hand. 

In order to enhance this metrics exploration, we are working on 

an automatic metric exploration tool based on Integer Linear 

Programming. 

Figure 7 represents the number of structures to be controlled 

(memory and network) in the generated architecture, when the  

user enable or disable the exploration of FIFO or LIFO structures 

for different input parallelism (1, 5 or 8 in this example).  

Thus, when disabling FIFO (LIFO charts), the number of 

structures to be controlled is greater than when disabling the 

exploration of LIFO structures: this interleaving law used in this 

experiment is better suited for FIFO structure binding. The 

designer may give to FIFO related metrics a greater importance 

than the LIFO related ones.  

 

Moreover, Figure 7, also shows that enabling the FIFO and LIFO 

structures, is the best choice for most parallelism, for this 

interleaving law. 

Finally, depending on designer targets, he may chose different 

metric settings, in order to reduce the number of memory points 

or the controller complexity. 
 

4.2.2 STMicroelectronics interleaver design 
 

Currently, we generate the different modes separately, while 

the reference design (from STMicroelectronics) integrates the 

three modes in a single 2400 memory points design. But when 

we concatenate our three designs (one for each mode) in a single 

architecture, the total area is about 14% smaller than the 

reference design. Future works will enable the generation of 

optimized multi-modes architectures to further reduce the area. 
 

5.   CONCLUSION 
 

In this paper, we present a design space exploration methodology 

for Space-Time AdapteR STAR components. This approach relies 

on the formal modeling of communication constraints based on a 

Resource Compatibility Graph RCG describing timing relations 

between data. This methodology has been applied to interleaver 

design space exploration. Experimental results in the telecom 

domain have demonstrated the interest of this methodology. Formal 

modeling allows RTL architectures to be synthesized from a single 

C functional specification and under various I/O timing and 

parallelism constraints. We also show that with our methodology, 

the design space exploration is performed through metrics 

exploration. This allows enhancements based on refinements.  

Future works will focus on the formal transformation of the RCG 

in order to generate multi-configuration and pipelined architectures. 

Moreover, we also investigate automatic plotting of the metrics by 

means of Integer Linear Programming methodologies 
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Figure 7: Enabling LIFO / FIFO binding 


