
HAL Id: hal-00154025
https://hal.science/hal-00154025v1

Submitted on 19 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Application of a design space exploration tool to
enhance interleaver generation

Cyrille Chavet, Philippe Coussy, Pascal Urard, Eric Martin

To cite this version:
Cyrille Chavet, Philippe Coussy, Pascal Urard, Eric Martin. Application of a design space exploration
tool to enhance interleaver generation. European Signal Processing Conference (EUSIPCO-2007), Sep
2007, Poznan, Poland. pp.XX-YY. �hal-00154025�

https://hal.science/hal-00154025v1
https://hal.archives-ouvertes.fr

Application of a design space exploration tool to enhance interleaver generation

CHAVET Cyrille
1
, COUSSY Philippe

2
, URARD Pascal

1
, MARTIN Eric

2

1
STMicroelectronics, Crolles, FRANCE. {firstname.lastname@st.com}

2
LESTER Lab, UBS University, CNRS FRE 2734. {firstname.lastname@univ-ubs.fr}

ABSTRACT

This paper presents a methodology to efficiently explore the

design space of communication adapters. In most digital signal

processing (DSP) applications, the overall performance of the

system is significantly affected by communication architectures,

as a consequence the designers need specifically optimized

adapters. By explicitly modeling these communications within an

effective graph-theoretic model and analysis framework, we

automatically generate an optimized architecture, named Space-

Time AdapteR (STAR). Our design flow inputs a C description of

Input/Output data scheduling, and user requirements

(throughput, latency, parallelism…), and formalizes

communication constraints through a Resource Constraints

Graph (RCG). Design space exploration is then performed

through associated tools, to synthesize a STAR component under

time-to-market constraints. The proposed approach has been

tested to design an industrial data mixing block example: an

Ultra-Wideband interleaver.

1. INTRODUCTION

In the multimedia and telecommunications domain, continuously

emerging customer services require severe performance

(computing power, timing performances and memory

bandwidth/capacity) to implement the new communication

standards. Indeed, communication system applications require

high throughput -on the order of several hundred Mb/s-

accompanied by both low latency and severe bit error rate BER

constraints (e.g. wireless, fiber-optic communication…). Owing

to their impressive near-Shannon-limit error correcting

performance, turbo-like codes in their parallel or serially

concatenated versions [2], originally dedicated to channel

coding, are being currently reused in a large set of the whole

digital communication systems (e.g. equalization, demodulation,

synchronization, MIMO).

These codes are formed by two or more processing elements PE

(encoders/decoders) and one communication network that

interleaves the data blocks exchanged by the PEs. The turbo

decoding principle is based on an iterative algorithm using

decoders exchanging information in order to improve the error

correction performance through the iterations. The iterative

nature of these algorithms is a severe constraint to satisfy the

aforementioned requirements with an affordable implementation

complexity. A widespread solution is to realize the turbo decoder

in a parallel fashion. One the one hand, this solution increases the

throughput since the latency of the system becomes the latency of

constituent sub-blocks [6]. On the other hand, the complexity

and the cost of the system are increased due to parallel nature of

the architecture. Moreover, for the sub-blocks to be able to work

in parallel, it is necessary that each one exchanges data with a

Random Access Memory block (RAM).

By the way, depending on the specific permutation law, different

modules may try to simultaneously access the same RAM. As a

consequence, none of them is able to retrieve data. This problem

is known as the “collision” problem [9]. In this case, the access

to the memory has to be postponed and carefully arbitrated,

which slows down the decoding process. The solution consists in

designing an adapted interleaver and/or modifying the decoder

architecture. In this paper, we propose to use the formal approach

presented in [3] to tackle the interleaver design problem.

The paper is organized as follows: the second section presents a

state-of-the-art for interleaving architectures. The third section is

dedicated to the problem formulation of the interleaver design. In

the fourth section we briefly present our design flow. Finally, the

last section presents experimental results and the design exploration

offered by our design flow on an industrial example.

2. INTERLEAVING ARCHITECTURE

Interleaving is a permutation rule that scrambles data to break up

neighbourhood-relations. It is a key factor for turbo-codes

performances which varies from one standard to another. Moreover

within a given standard, different interleaving rules can be used for

different modes through varying frame lengths and/or data rates. In

this context, taking into account the aforementioned constraints and

the collision problems, hardware implementations of parallel turbo

decoders require the integration of complex topology supporting the

intensive interleaved memory accesses. Indeed, in state-of-the-art

parallel turbo-decoding, interleaving is considered as a limiting

factor concerning the overall system performance and the

architectural cost.

To successfully tackle these problems, different solutions have been

recently proposed. First, possible solutions to get rid of collisions

with nonprunable interleavers, consist in designing a specific

interleaver rule. In [9], the authors propose a deterministic

methodology to design collision-free interleavers. In [10] and [8]

the authors define collision-free permutations thanks to a

combination of a spatial and a temporal permutation. The authors of

[12] simply integrate the collision-free constraint in the design of

their interleaver. However, the multi-modes architectures

(depending on frame length, data-rate…) can not be handled by

such approaches. Another solution consists in defining a collision-

free interleaver that preserves this property even when pruned. In

[7], the authors describe a design rule to obtain such interleavers,

with an incremental algorithm that generates collision-free

interleavers by adding new elements in successive steps to a small

permutation. Of course, all these solutions are viable only if the

designer is free to choose the permutation law to be used in the

system. As a consequence, the resulting architecture may not be

standard compliant.

In [16] the authors propose, in case of a collision, to store the

conflicting information in the communication network until the

targeted sub-block can process it. Of course, additional network

buffering resources, and consequently time needed to interleave

information, increase with the number of parallel processors. This

is a suboptimal strategy, in terms of latency and thus throughput,

which avoids collisions at the expense of area and memory.

Moreover, the communication is based on a Benes network [5],

which might be suboptimal compared to a dedicated and optimized

architecture.

Unlike these implementations, in [13] the authors propose a

solution based on software and/or reconfigurable parts to achieve

the required flexibility, but achieving lower throughput. In [14],

an advanced heterogeneous communication network

implementation was proposed. Two multistage interconnection

network architectures are presented in order to handle on-chip

communications in multiprocessor parallel turbo decoders. They

are based on a dedicated network and associated routers. The

main feature of these network architectures (Butterfly and Benes

based topologies) is their supposed scalability enabling seamless

trade-off between hardware complexity and available bandwidth

for turbo decoding. The Butterfly network, which lacks of

diversity, is a multistage interconnection network with 2-input 2-

output routers. There is a unique path between each source and

destination. As a consequence, the risk of conflict is increased

and the authors have to add queues to store conflicting

information. The second network architecture proposed is based

on a Benes network. In this case, the latency is constant for all

the couples (source, destination), but this network avoids the

conflicts if and only if all the paths have a different destination.

Unfortunately, we saw that it was not true for turbo-decoding

applications because interleaving (respectively de-interleaving)

ends in potential conflicts. Moreover, as already mentioned the

Benes networks are costly and under-optimized solutions.

Finally, the authors of [15] describe a system that avoids

collisions for every interleaver and any degree of parallelism.

This solution consists in automatically finding a collision-free

data memory mapping respecting the interleaving rule, thanks to

a simulated-annealing algorithm. As a consequence, the user

cannot predict when the algorithm will end. Moreover, the

proposed approach does not target the optimization of the storage

elements.

In this paper, we propose to use the formal approach presented in

[3] to tackle the interleaver design problem. This approach,

which originally target interface synthesis, is shown to be also

suited to the interleaver design space exploration. Our design

flow can take as input timing diagrams (constraints file) or C

descriptions of I/O data scheduling (e.g. an interleaving formula),

with user requirements (throughput, latency…). We formalize

communication constraints through a formal Resource

Constraints Graph (RCG) which properties enable an efficient

architecture exploration. By using our design flow, any user can

generate an optimized architecture in term of latency, network

architecture and memory, from any interleaving standard.

3. PROBLEM FORMULATION

First, from throughput and parallelism constraints, and an

interleaver permutation pattern, we can formalize data

communication as timing diagrams.

Let us consider a simple architecture example composed of two

components exchanging a set of data S = {a, b, c, d, e, f}. S is

produced by a block #1 and is consumed by a block #2 through a

single point-to-point link. The write access sequence into the

communication link is Sw = (a,c,b,e,f,d) i.e. t
w

a<t
w

c<t
w

b<t
w

e<t
w

f<t
w

d

, while the read access sequence from the link is different Sr

=(c,a,e,b,d,f) i.e. t
r

c<t
r

a<t
r

e<t
r

b<t
r

d<t
r

f (see Figure 1).

This difference between the two I/O sequences can either come

from the integration of two IP cores that were not specifically

designed to work together, either can be explicitly described (e.g.

in interleavers [11][7]). Those blocks may not produce and

consume data in the same order nor with the same throughput

(nor sometime the same parallelism), so they can not be directly

plugged together. The designer needs to introduce a space-time

adapter between them to ensure correct functional results. A

classical solution consists in using a memory to buffer all concerned

data: this is what we call coarse grain approach. But in fact, this

over sized buffer may be reduced thanks to a finer grain

communication constraints analysis [1]. The proposed adapter can

be designed either by using a set of registers or specific memory

elements, such as FIFO (queue) or LIFO (stack). The problem the

designer faces consists in finding the best architecture for this

adapter: he has to find the best storage element binding in order to

integrate data reordering and to minimize total amount of memory.

For example, the lifetimes of data a and b respect a First-In First-

Out semantic, so they can be assigned to the same hardware FIFO.

This timing relation is also true for the data c and b. However, data

a and c respect a Last-In First-Out semantic, so a single hardware

FIFO cannot be used to store the data a, b and c The question for

the designer is: how can we bind data a, b and c to different storage

elements, in order to generate the best final architecture? This

highlights the fact that the local problem of a, b and c binding will

influence the resulting global architecture. A methodology is thus

needed to bind data a, b and c to different storage elements, in order

to generate an optimized architecture.

In a nutshell, a designer needs (1) a tool to generate timing diagram

from interleaving permutation scheme and architectural

requirements (e.g. parallelism), (2) a tool to generate the

corresponding architecture and (3) a tool to validate this

architecture.

4. STAR DESIGN FLOW

The architecture of a STAR component is composed of a datapath

and the associated control state machine FSM (see Figure 2). The

data path can be composed of FIFO, LIFO or register. Spatial

adaptation (a data read on one input port can be send to any/several

output ports) is performed by an interconnection logic dealing with

data dispatching from input port to storage elements, and from

storage elements to output ports. We can see on Figure 2 that there

is one STAR architecture for each input port.

The timing adaptation (data-rates, different input/output data

scheduling) is realized by the storage elements. STAR can have a

GALS (Globally Asynchronous Locally Synchronous) / LIS

(Latency Insensitive System) using the mechanisms described in

[1].

The design flow is presented in Figure 4 and is based on three tools:

StarTor for the STAR design constraint specification, StarGene for

the STAR component synthesis and StarBench for the STAR

functional validation. The methodology generates a register transfer

level (RTL) VHDL architecture, and associated DC Synopsys

scripts, starting from a functional model and a set of user

requirements (timing and communication-architecture constraints).

Figure 1: Data timing diagram.

The architecture synthesis is performed by using a library of pre-

designed and characterized storage elements (FIFO, LIFO and

Registers).

StarTor inputs a C level algorithmic description which specifies

the interleaving scheme, and a file containing user requirements

(latency, throughput, communication interface, I/O

parallelism...). StarTor first extracts I/O data communication

order by generating a trace from the execution of the C functional

description. Next, based on designer’s requirements, it generates

a constraints file. This file contains the number and type of ports,

type and amount of data, relationships between data and ports

(i.e. mapping) and finally read and write access dates for all data.

The design can generate a set of architectural constraints to

compare one to each other.

Then, in order to generate a STAR component, our design tool

STARGene is based on a four-step flow: (1) Resource

Compatibility Graph construction, (2) Storage resource binding,

(3) Architecture optimization and (4) VHDL RTL generation.

During the first step of the STAR component Generation, a

Resource Constraints Graph RCG (see Figure 3) is generated

from the communication constraints. The analysis of this formal

model allows both data binding to storage elements (queue, stack

or register), and the sizing of each storage element. This first

architecture is next optimized by merging storage elements that

have non-overlapping usage timing frames. Finally, an RTL level

design is generated.

The last tool, StarBench, generates a test bench based on

constraints in order to validate the design by comparing

simulation results.

The design space exploration is driven by the designer which can

plot a set of exploration parameters. The main ones are:

• Enabling FIFO/LIFO/REG: the user may switch off FIFO

and/or LIFO and/or Register binding on the RCG.

• FIFO/LIFO minimal/maximal size: in order to avoid parasitic

structures like too small or too big FIFO/LIFO structures

(structure size). Using this parameter, the user is able to limit

the size of the generated FIFO/LIFO structure to meet its own

technological constraints (e.g. maximum size of 1024

elements).

• FIFO/LIFO average use factor: the user can define a minimal

usage for the FIFO/LIFO structures to be binded. This metric

aims to count the total amount of data travelling in each

memory element during an iteration of the interleaving

algorithm, compared to its size (e.g. 274 elements in a 64-

places FIFO).

• FIFO/LIFO filling factor: the user can define a minimal

number of data in a FIFO/LIFO. The generated FIFO/LIFO

sizes are power of 2, so if the maximum number of data in a

given FIFO at the same time is 52, we generate a 64-places

FIFO. This factor aims to limit the gap between the depth of

the generated FIFO and the maximum data that will be stored

in it at a given time.

• Multiplexer complexity factor: a STAR may have to deal with

high parallelism architectures. Thus, a given structure (FIFO,

LIFO or register) may have to store data from multiple inputs

or send data to multiple output ports. In order to avoid the

generation of a complex communication network, the

exploration algorithms is also driven by a dedicated metric

which aims at reducing this complexity.

• Weighting each parameter: Each of the previous

parameters can be balanced by the user by means of

dedicated coefficients. During the RCG exploration, the

binding algorithm explores the graph, and binds

structures thanks to these metrics.

Figure 2: Typical STAR architecture.

Figure 3: Graph example (from Figure 1 constraints).

Figure 4: STAR design flow.

Algorithmic level

function
User requirements

Constraints

VHDL RTL

Results

Diff

Reference

RCG Construction

Binding

Optimization

Generation

1

2

3

4

STARGene

StarTor

StarBench

OK ?

Algorithmic level

function
User requirements

Constraints

VHDL RTL

Results

Diff

Reference

RCG Construction

Binding

Optimization

Generation

1

2

3

4

STARGene

StarTor

StarBench

OK ?

In field of turbo-like architecture, communication traffic profile,

which depends on the interleaving rule, may have to support

multi-modes and multi-standard features. In this context,

hardware implementations of parallel turbo decoders require the

integration of complex topology and routing resources

supporting the intensive interleaved memory accesses. The STAR

design flow integrates design exploration for multi-modes

architecture, switching from one to another at run-time. By the

way, in this paper we present a formal methodology to synthesize

a STAR architecture for a given configuration. Due to space

limitation, the generalization of the methodology generating

multi-mode architecture (graph merging, multi data path

synthesis, multi FSM generation…) will be fully presented in a

future publication.

4. ULTRA-WIDE BAND INTERLEAVER FOR

STMICROELECTRONICS

In this section, we present the exploration of a STAR architecture

on an industrial example. The application, an Ultra Wide Band

interleaver [11], was provided by STMicroelectronics. This

interleaver has to be able to switch between different modes

(300, 600 or 1200 data length), respecting latency constraints. By

nature, interleavers may offer few storage elements to be saved.

However, these data-mixing schemes are well-suited for our

proposed design flow and we can explore how metrics (I/O

parallelism, enable/disable FIFO/LIFO, average usage factor…)

may influence the final architecture. All the areas information has

been masked in order to protect internal company technologies.

First, we present the interleaving law. Then we highlight the

parallelism effect on the STAR architecture and we compare it to

classical solutions. Finally, we show how the memory-related and

the network-related metrics impact the resulting architecture.

4.1 Parallelism exploration

Thanks to the StarTor tool, we efficiently explore how the

parallelism influences the resulting architecture. Figure 5 shows

the results for an architectural exploration with different I/O

parallelism. The two reference architectures are based on either

RAM block or on a sea of registers. The X-axis represent the

parallelism (e.g. 4 means 4 data input and 4 data output). The Y-

axis represents the number of memory points needed for the

RAM based architecture, the sea of register and the STAR based

architecture.

The number of memory points for the RAM based architecture is

defined by the number needed RAM blocks (i.e. same as the

input parallelism) multiplied by the number of memory points in

each one (i.e. for 1000 8-bit words, a 1024 byte RAM block is

needed). The STAR architecture needs less memory points than

the RAM based architecture thanks to it FIFO/LIFO/register

elements and the results are close to a register-only architecture.

0

200

400

600

800

1000

1200

1 2 4 8 16 32 64

Ram

Reg

STAR

Parallelism

#
 o

f
m

em
o

ry
 p

o
in

ts

Figure 5: Exploration for different I/O parallelism

Figure 6 compare the overall complexity of the obtained

architecture in term of control and communication network. For this

purpose, we compared the number of structure to be controlled.

This number is given by the number of memorizing elements plus

the number of switches or multiplexer of the communication

network.

In case of a RAM-based architecture, the communication network is

based on a cross-bar in which, if there are N ports to be connected

to N RAM, the network needs N*N 2x2-switches to be piloted.

Figure 6 shows that for low parallelism the RAM-based architecture

can be better than the STAR.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 4 8 16 32 64

Ram

Reg

STAR

Parallelism

#
 o

f
st

ru
c
tu

re
 t

o
 b

e
co

n
tr

o
ll

e
d

Figure 6: Architecture complexity in term of # of structures to control

However, the STAR architecture is far less complex for higher

parallelisms which are widely used in current design.

Moreover, the Register-based architecture is always more complex

than the STAR architecture in terms of structure to be controlled.

Table 1: Design space exploration by means of plotted metrics

Structure

binding
structures #

Data

IN

par.

OUT

par.

Mux

Factor
min.

Usage

factor
FIFO LIFO Mux FIFO LIFO Register Total

memory

points
Throughput

600 6 5 Yes 4 90% Yes Yes 48 45 5 22 174 514 272,7

600 6 5 Yes 7 90% Yes Yes 34 34 1 90 159 525 272,7

600 6 5 Yes 15 90% Yes Yes 12 12 0 391 415 581 272,7

600 6 5 Yes 30 90% Yes Yes 0 0 0 600 600 600 272,7

600 6 5 Yes 7 50% Yes Yes 28 27 2 73 130 533 272,7

600 6 5 Yes 7 70% Yes Yes 29 28 2 70 129 532 272,7

600 6 5 Yes 7 80% Yes Yes 33 32 1 78 144 534 272,7

600 6 5 Yes 7 100% Yes Yes 39 38 1 84 162 522 272,7

4.2 Design space exploration through plotted metrics

4.2.1 Memory related metrics

In table 1, we show the resulting architectures for a given I/O

parallelism while exploring two metrics: structure minimal size

and structure usage factor. In this table, the first column

indicates the frame length (600 data in this example), while the

columns “IN and OUT par.” indicate the used parallelism. The

columns “Mux factor”, “# min”, “Usage factor” refer to the

corresponding parameters (e.g. # min = 7, means that the minimal

size for a FIFO or a LIFO structure to be bind is 7) and the

column “Structure binding ” indicates if the binding of FIFO or

LIFO are allowed during the exploration. The other column

indicate the results: the number of FIFO, LIFO, Register and

multiplexer, the number memory points needed and the

throughput of the resulting architecture (in Mb./s.).

This experiment shows that these parameters greatly impact the

architecture: e.g. the total number of structures to be controlled

varies from 129 to 600 in this example. Plotting the metrics in

order to achieve the best architecture is currently done by hand.

In order to enhance this metrics exploration, we are working on

an automatic metric exploration tool based on Integer Linear

Programming.

Figure 7 represents the number of structures to be controlled

(memory and network) in the generated architecture, when the

user enable or disable the exploration of FIFO or LIFO structures

for different input parallelism (1, 5 or 8 in this example).

Thus, when disabling FIFO (LIFO charts), the number of

structures to be controlled is greater than when disabling the

exploration of LIFO structures: this interleaving law used in this

experiment is better suited for FIFO structure binding. The

designer may give to FIFO related metrics a greater importance

than the LIFO related ones.

Moreover, Figure 7, also shows that enabling the FIFO and LIFO

structures, is the best choice for most parallelism, for this

interleaving law.

Finally, depending on designer targets, he may chose different

metric settings, in order to reduce the number of memory points

or the controller complexity.

4.2.2 STMicroelectronics interleaver design

Currently, we generate the different modes separately, while

the reference design (from STMicroelectronics) integrates the

three modes in a single 2400 memory points design. But when

we concatenate our three designs (one for each mode) in a single

architecture, the total area is about 14% smaller than the

reference design. Future works will enable the generation of

optimized multi-modes architectures to further reduce the area.

5. CONCLUSION

In this paper, we present a design space exploration methodology

for Space-Time AdapteR STAR components. This approach relies

on the formal modeling of communication constraints based on a

Resource Compatibility Graph RCG describing timing relations

between data. This methodology has been applied to interleaver

design space exploration. Experimental results in the telecom

domain have demonstrated the interest of this methodology. Formal

modeling allows RTL architectures to be synthesized from a single

C functional specification and under various I/O timing and

parallelism constraints. We also show that with our methodology,

the design space exploration is performed through metrics

exploration. This allows enhancements based on refinements.

Future works will focus on the formal transformation of the RCG

in order to generate multi-configuration and pipelined architectures.

Moreover, we also investigate automatic plotting of the metrics by

means of Integer Linear Programming methodologies

REFERENCES

[1] P. Coussy, “A Formal Method for Hardware IP Design and Integration

under I/O and Timing Constraints”, PhD Forum of the IEEE International

Conference on Design Automation and Test in Europe (DATE), February,

2004.

[2] P.Coussy, E.Casseau, P.Bomel, A.Baganne and E.Martin, “A formal

method for hardware IP design and integration under I/O and timing

constraints”, ACM Transactions on Embedded Computing Systems (TECS),

v.5 n.1, p.29-53, February 2006.

[3] C. Chavet, P. Coussy, P. Urard and E. Martin, “A Design Methodology

for Space-Time Adapter”, IEEE/ACM Great Lakes Symposium on VLSI,

March 2007.

[4] S. Benedetto, D. Divsalar, G.Montorsi, and F. Pollara, “Serial

concatenation of interleaved codes: Performance analysis, design, and

iterative decoding,” IEEE Trans. Inf. Theory, vol. 44, no. 3, pp. 909–926,

May 1998.

[5] V.E. Benes, “Mathematical Theory of connecting network and

telephone trafic”, New York, N.Y.: Academic, 1965.

[6] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near-Shannon limit

error-correcting coding and decoding: Turbo codes,” in Proc. IEEE Int.

Conf. Commun., vol. 2, Geneva, Switzerland, 1993, pp. 1064–1070.

[7] L.Dinoi and S.Benedetto, “Variable-size interleaver design for parallel

turbo decoder architecture”, IEEE Trans. On communications, Vol. 53, No

11, Nov. 2005.

[8] R. Dobkin, M. Peleg, and R. Ginosar, “Parallel VLSI architectures and

parallel interleaving design for low-latencyMAP turbo decoders”, Tech.Rep.

CCIT-TR436.

[9] A.Giulietti, L. Van Der Perre and M. Strum, “Parallel turbo coding

interleavers: avoiding collisions in accesses to storage elements”,

Electronics Leters, vol. 38, no. 5, pp.232–234, Feb. 2002.

[10] D. Gnaedig, E. Boutillon, M. Jezequel, V. C. Gaudet, and P. G. Gulak,

“On multiple slice turbo codes,” in Proc. 3rd Int. Symp. Turbo Codes,

Related Topics, Brest, 2003, pp. 343–346.

[11] IEEE 802.15.3a, WPAN High Rate Alternative

[12] J. Kwak and K. Lee, “Design of dividable interleaver for parallel

decoding in turbo codes,” Electron. Lett., vol. 38, no. 22, pp. 1362–1364,

Oct. 2002.

[13] A. La Rosa, C. Passerone, F. Gregoretti and L. Lavagno,

“Implementation of a UMTS turbo-decoder on dynamically reconfigurable

platform”, proceedings of DATE 2004, Paris.

[14] O.Muller, A.Baghdadi, M.Jezequel, “ASIP-based multiprocessor SoC

design for simple and double binary turbo decoding”, DATE, 2006.

[15] A. Tarable, S. Benedetto, and G. Montorsi, “Mapping interleaving laws

to parallel turbo and LDPC decoder architectures”, IEEE Trans. Inf. Theory,

vol. 50, no.9, pp.2002-2009, Sep. 2004.

[16] M. J. Thul, F. Gilbert, and N.Wehn, “Optimized concurrent interleaving

architecture for high-throughput turbo-decoding,” in Proc. 9th Int. Conf.

Electron., Circuits, Syst., vol. 3, pp. 1099–1102, 2002.

0

50

100

150

200

250

300

350

400

450

1 5 6

LIFO

FIFO

FIFO

LIFO
Parallelism

#
 o

f
e
le

m
en

ts

Figure 7: Enabling LIFO / FIFO binding

