
HAL Id: hal-00153994
https://hal.science/hal-00153994v1

Submitted on 12 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Methodology for Efficient Space-Time Adapter Design
Space Exploration: A Case Study of an Ultra Wide

Band Interleaver
Cyrille Chavet, Philippe Coussy, Pascal Urard, Eric Martin

To cite this version:
Cyrille Chavet, Philippe Coussy, Pascal Urard, Eric Martin. A Methodology for Efficient Space-Time
Adapter Design Space Exploration: A Case Study of an Ultra Wide Band Interleaver. The IEEE
International Symposium on Circuits and Systems (ISCAS), May 2007, New Orleans, United States.
pp.2946-2949, �10.1109/ISCAS.2007.377867�. �hal-00153994�

https://hal.science/hal-00153994v1
https://hal.archives-ouvertes.fr

A Methodology for Efficient Space-Time Adapter Design Space Exploration:

A Case Study of an Ultra Wide Band Interleaver

CHAVET Cyrille1, COUSSY Philippe2, URARD Pascal1, MARTIN Eric2
1STMicroelectronics, Crolles, FRANCE. {firstname.lastname@st.com}

2LESTER Lab, UBS University, CNRS FRE 2734. {firstname.lastname@univ-ubs.fr}

Abstract— This paper presents a solution to efficiently explore

the design space of communication adapters. In most digital

signal processing (DSP) applications, the overall architecture of

the system is significantly affected by communication

architecture, so the designers need specifically optimized

adapters. By explicitly modeling these communications within an

effective graph-theoretic model and analysis framework, we

automatically generate an optimized architecture, named Space-

Time AdapteR (STAR). Our design flow inputs a C description of

Input/Output data scheduling, and user requirements

(throughput, latency, parallelism…), and formalizes

communication constraints through a Resource Constraints

Graph (RCG). The RCG properties enable an efficient

architecture space exploration in order to synthesize a STAR

component. The proposed approach has been tested to design an

industrial data mixing block example: an Ultra-Wideband

interleaver.

I. INTRODUCTION

The ever growing complexity of applications and the shrinking

time-to-market lead the designers to reuse heterogeneous IP cores in

Systems-On-a-Chip (SoC) which integration generates

communication problems. System integrators can use standard

interfaces such as Virtual Component Interface proposed by VSIA

[12] and Open Core Protocol proposed by the OCP International

Partnership [13]. However, in addition to the protocol aspects, SoC

designers also have to synchronize components and to buffer data in

order to ensure system behavior and to meet timing constraints. In

[10] authors propose to automatically generate simulation wrappers

for MPSoC architectures. Based on communication templates, [7]

presents a generic interface unit architecture for communication

synthesis in a platform-based design approach. In [1] a

multiplexer/demultiplexer and FIFO-based interface architecture is

used. In [6], the authors propose a systematic way of interfacing data-

flow hardware accelerators (IP core) for their integration in a system

on chip. Their interface architecture is based on FIFO (queue) storage

elements and a Direct Memory Access module (DMA). They assume

that the IP are data synchronized (i.e. at each clock cycle a data is

presented and read). However, these previous approaches assumed

that the sequence of produced data is the same as the sequence of

consumed data (no re-ordering). Moreover, FIFO sizes are computed

by a “set and simulate” approach.

Concerning Digital Signal Processing (DSP) applications, an

MPSoC architecture may not be an adapted solution, and optimized

hardware accelerator –composed of a set of computing blocks

communicating through point-to-point links- are still needed in the

SoC context. Obviously, interfacing DSP’s blocks greatly impacts the

quality of the system (throughput, area, power consumption…), that’s

why efficient communication adapter design is still one of the most

important points in complex system design. In fact, using

Input/Output (I/O) wrappers can introduce unnecessary memorizing

elements. Such wrappers may be needed in order to solve data

reordering problems that can arise from the IP core integration. In [8]

the authors aim at determining at compile time whether a FIFO is

sufficient for every producer/consumer pair of a Kahn Process

Network. When the sequence of produced data is different from the

sequence of consumed data, extra storage and control on the

consumer side is proposed [11]. This extra module includes a CAM

(Content Addressable Memory) where data are addressed using a

hash table. This solution enables the implementation of non-

deterministic communications, but it does not allow minimizing of

the adapter overhead since overlapping of input and output data is not

possible. In [2], a formal technique for hardware interface design is

proposed. A generic interface model targeted by the communication

synthesis is used. The low-level timing constraints can include strict

timing specifications or data transfer schedule. The interface

synthesis is carried out by an allocation procedure of data storage

components (FIFO, LIFO and register). However, the size of storage

elements is not computed or even taken into account during the

design process. The proposed methodology is based on NP-complete

maximum clique algorithm. In [9] the authors develop a system-level

IP reuse methodology where designs are described in three layers.

Data transfer and data storage optimizations are done by reorganizing

loop indexing and loop nesting. Unfortunately, the authors do not

present the technique they use to produce the RTL component

architecture from the algorithm specification. In [4], the authors

develop a set of techniques dedicated to the design of DSP algorithm.

High-level synthesis of the processing unit is carried out under I/O

timing and architectural constraints. The approach leads to an

optimized data-path synthesis but still requires the communication

unit design.

Commercial High Level Synthesis (HLS) tools deal with

communication protocol synthesis, but they have a limited

communication constraint analysis. So when designers use such tools

and want to change communication constraints (throughput, latency,

parallelism…), they often have to restart the designing process from

the beginning. Some of these tools have no efficient formal model

dedicated to communication constraints analysis and to their

consequences on the resulting architecture.

In this paper, we present an automatically generated optimized

Space-Time AdapteR (STAR). Our design flow inputs a C

description of I/O data scheduling, and user requirements

(throughput, latency…), and formalizes communication constraints

through a formal Resource Constraints Graph (RCG). The RCG

properties enable an efficient architecture space exploration in order

to synthesize a STAR component. The paper is organized as follows:

the second section is dedicated to the problem formulation. In the

third section we present our design flow, while the associated formal

models and methodology are detailed in section four. Finally, the last

section presents experimental results.

II. PROBLEM FORMULATION

Let us consider a simple architecture example composed of two

components exchanging a set of data S = {a, b, c, d, e, f}. S is

produced by a block #1 and is consumed by a block #2 through a

single point-to-point link.

The write access sequence into the communication link is Sw =

(a,c,b,e,f,d) i.e. t
w

a<t
w

c<t
w

b<t
w

e<t
w

f<t
w

d , while the read access

sequence from the link is different Sr =(c,a,e,b,d,f) i.e.

t
r

c<t
r

a<t
r

e<t
r

b<t
r

d<t
r

f (see Figure 1). This difference between the two

I/O sequences can either come from the integration of two IP cores

that were not specifically designed to work together, either can be

explicitly described (e.g. in interleavers [5][14]). As those blocks do

not produce and consume data in the same order nor with the same

throughput (nor sometime the same parallelism), they can not be

directly plugged together. The designer needs to introduce a space-

time adapter between them to ensure correct functional results. A

classical solution consists in using a memory to buffer all concerned

data: this is what we call coarse grain approach. But in fact, this over

sized buffer may be reduced thanks to a finer grain communication

constraints analysis [4]. The proposed adapter can be designed either

by using a set of registers or specific memory elements, such as FIFO

(queue) or LIFO (stack). The problem the designer faces consists in

finding the best architecture for this adapter: he has to find the best

storage element binding.

Figure 1: Data lifetime.

For example, the lifetimes of data a and b respect a First-In First-

Out semantic, so they can be assigned to the same hardware FIFO.

This timing relation is also true for the data c and b. However, data a

and c respect a Last-In First-Out semantic, so a single hardware FIFO

cannot be used to store the data a, b and c. A methodology is thus

needed to bind data a, b and c to different storage elements, in order

to generate an optimized architecture.

III. PROPOSED APPROACH

The architecture of a STAR component is composed of a data

path and the associated control state machine FSM (see Figure 2).

The data path can be composed of FIFO, LIFO or register. Spatial

adaptation (a data read on one input port can be send to any/several

output ports) is performed by an interconnection logic dealing with

data dispatching from input port to storage elements, and from

storage elements to output ports.

Figure 2: Typical STAR architecture.

The timing adaptation (data-rates, different input/output data

scheduling) is realized by the storage elements. STAR can have a

GALS (Globally Asynchronous Locally Synchronous) / LIS (Latency

Insensitive System) interface as described in [3].

The design flow is presented in Figure 3 and is currently based on

three tools: StarTor for the STAR design constraint specification,

StarGene for the STAR component synthesis and StarBench for the

STAR functional validation. The methodology generates a register

transfer level (RTL) architecture starting from a functional model and

a set of user requirements (timing and communication-architecture

constraints). The architecture synthesis is performed by using a

library of pre-designed and characterized storage elements (FIFO,

LIFO and Registers).

StarTor inputs a C level algorithmic description which specifies

the interleaving scheme, and a file containing user requirements

(latency, throughput, communication interface, I/O parallelism...).

StarTor first extracts I/O data communication order by generating a

trace from the execution of the C functional description. Next, based

on designer’s requirements, it generates a constraints file. This file

contains the number and type of ports, type and amount of data,

relationships between data and ports (i.e. mapping) and finally read

and write access dates for all data. Then, in order to generate a STAR

component, our design tool STARGene is based on a four-step flow:

(1) Resource Compatibility Graph construction, (2) Storage resource

binding, (3) Architecture optimization and (4) VHDL RTL

generation (see Figure 3). During the first step of the STAR

component Generation, a Resource Constraints Graph RCG is

generated from the communication constraints. The analysis of this

formal model allows both data binding to storage elements (queue,

stack or register), and the sizing of each storage element. This first

architecture is next optimized by merging storage elements that have

non-overlapping usage timing frames. Finally, an RTL level design is

generated. The last tool, StarBench, generates a test bench based on

constraints in order to validate the design by comparing simulation

results.

Typically, a STAR could have to deal with different execution

modes (configuration), switching from one to another at run-time. In

this paper, we present a formal methodology to synthesize a STAR

architecture for a given configuration. The generalization of the

methodology generating multi-mode architecture (graph merging,

multi data path synthesis, multi FSM generation…) will be presented

in a future publication.

IV. STAR DESIGN FLOW

A. Resource Compatibility Graph Construction

The first step consists in generating a Resource Compatibility

Graph, from the design constraints file. This RCG specifies through

formal modeling the timing relationship between data that have to be

handled by the STAR architecture. The vertex set V={v0, ..., vn}

represents data, the edge set E={(vi, vj)} represents the compatibility

between the vertices. A tag tij ∈ T is associated with each edge (vi,vj).

This tag represents the compatibility type between the two data (i and

j), T= {Register R, FIFO F, LIFO L}, e.g. Figure 4.

In order to assign compatibility tags to edges, we need to identify

the timing relationship that exists between two data. For this purpose

Figure 3: STAR design flow and associated tools.

we defined a set of rules based on functional properties of each

storage element (FIFO, LIFO, Register).

The lifetime of data a in a STAR is defined by Γ(a) = [τmin(a),

τmax(a)] where τmin(a) and τmax(a) are respectively the date of the

write access of a into the component and the last date of the read

access to a. τfirsta
 is the first read access to a, τRia

 is the i-th read

access to a with first ≤ i ≤ max.

Figure 4: Graph example (from Figure 1 constraints).

Rule 1: Register compatibility

If (τminb
 ≥ τmaxa

) then we create a “Register” tagged edge.

Rule 2: FIFO compatibility

If [(τminb
 > τmina

) and (τfisrtb
 > τmaxa

) and (τminb
 < τmaxa

)] then we create

a “FIFO” tagged edge.

Rule 3: LIFO compatibility

If [[(τminb
 > τmina

) and (τfirsta
 > τmaxb

)] or [(τRia <τminb <τmaxb <τRi+1a
)]]

then we create a “LIFO” tagged edge

Rule 4: Otherwise, No edge - No compatibility

An analysis of I/O timing relations, we generate a RCG. The

graph construction supposes edge creation between data, respecting a

chronological order (τmin). If n is the number of data to be handled,

the graph may contain: n(n-1)/2 edges, O(n²).

B. Storage element binding

The second step consists in binding storage elements to data by

using the timing relations modeled by the RCG.

Resource identification: The second step consists in binding storage

elements to data by using the timing relations modeled by the RCG.

The aim is to identify and to bind as many FIFO or LIFO structures

as possible on the RCG.

In [2], by searching and isolating compatibility cliques in an

undirected graph, the authors identify the different storage structures

(FIFO or LIFO). This approach has four main drawbacks: (1)

identifying a maximum clique in an undirected graph is a NP-

complete problem (resource identification step), (2) when such a

clique is found, analysis have to be performed to define the clique

type (FIFO or LIFO) and to check if the I/O constraints are respected

(resource identification step), (3) the proposed flow does not allow

sizing of identified storage elements (resource sizing step) and (4)

the authors do not propose any exploration algorithm (resource

binding step).

Let a, b, c be three chronologically ordered FIFO compatible data

(τmina
 < τminb < τminc

),

Theorem 1

If a is FIFO compatible with b and b is FIFO compatible with c,

then a is transitively FIFO (or Register) compatible with c.

Theorem 2

If a is LIFO compatible with b and b is LIFO compatible with c,

then a is transitively LIFO compatible with c.

Resource sizing: The size of a LIFO structure equals the maximum

number of data stored by a LIFO compatible data path. So, we have

to identify the longest LIFO compatibility path PL and then the

number of vertices in PL equals the maximum number of data that

can be stored in this LIFO (see Figure 5).

However, data from a FIFO compatible path are not always FIFO

compatible with each other (e.g. Figure 6.a). So the size of a FIFO

structure is not always equal to the number of data in the path: the

size of the FIFO is the maximum number of data (of the considered

path) stored at the same time in the structure. In fact, the aim is to

count the maximum number of overlapped data (respecting I/O

constraints) in the selected path P.

Theorem 3

Let P be the longest FIFO compatibility path (edges tagged with F),

Let i be a vertex of the graph, remaining in P,

Let Si = number of incoming FIFO tagged edges, whose origin vertex

is in P,

Then, Size = 1 + max ({ Si | for all vertices i in P}).

(a) FIFO gantt (b) Associated graph

Figure 6: FIFO compatibility cliques.

Resource binding: Our greedy algorithm is based on user plotted

metrics (minimal amount of data to use a FIFO or a LIFO, average

use factor, FIFO/LIFO usage priority factor…) to bind as many FIFO

or LIFO structures as possible on the RCG. A two-steps flow is used:

(1) identification of the best structure, (2) merging all the concerned

data in a hierarchical node. Each node represents a storage element,

as shown on Figure 7.a (e.g. data a, b and f are merged in a 3-stages

FIFO). We say hierarchical node because merging a set of data in a

given node, supposes adding information that will be useful during

the optimization step: the lifetime of this structure (i.e. the time

interval during which this structure will be used. e.g. Figure 7.b).

Let P = {v0, ..., vn} be a compatible data path,

• If P is a FIFO compatible path, the structure lifetime will be

[τminv0
, τmaxvn

],

• If P is a LIFO compatible path, the structure lifetime will be

[τminv0
, τmaxv0

].

 The selection of the nodes to be merged in a hierarchical one

influences the resulting architecture, since these nodes will not be

used to build another structure. When no more FIFO or LIFO

structures can be identified on the graph, the next step is architecture

optimization.

C. Architecture Optimization.

(a) LIFO Gantt (b) Associated graph

Figure 5: LIFO compatibility cliques.

(a) Resulting hierarchical graph (b) Resulting constraints

Figure 7: A possible binding for Figure 4 graph.

The goal of this task is to maximize storage resource usage, in

order to optimize the resulting architecture by minimizing the number

of storage elements and the number of structures to be controlled. To

tackle this problem, we builded a new hierarchical RCG by using the

merged nodes, and their lifetimes, produced during the binding step.

In order to avoid any conflict, the exploration algorithm of the

optimization step will only search for Register compatibility path,

between same type vertices. When two structures of the same type

are Register compatible, they can be merged. Let P = {v0 ... vn} be a

Register compatible data path,

• The lifetime of the resulting hierarchical merged structure will be

[τminv0
, τmaxvn

] U … U [τminvn
, τmaxvn

].

The algorithm is very similar to the one used during binding step.

When there is no more merging solution, the resulting graph is used

to generate the RTL VHDL architecture. Figure 8 is a possible

solution for the constraint set presented in Figure 1. Here, the

resulting architecture consist in a 3-stages FIFO that handles 3 data,

and a 2-stages FIFO that handles 3 data: one memory place has been

saved.

V. EXPERIMENTS

In this section we show the results of using our design flow to

generate an Ultra Wide Band interleaver [14] example. This

component has to be able to switch between different modes (300,

600 or 1200 data length), respecting latency constraints. By nature,

interleavers are nearly worst case test-benches for our design flow,

since they offer few storage elements to be saved. In a simplistic

way, the more the data are interleaved; the better the functional

results are for telecommunication applications. However, these data-

mixing schemes are well-known and very pedagogical mathematical

examples and we can explore how metrics (I/O parallelism,

enable/disable FIFO/LIFO, average usage factor…) can influence the

final architecture.

In Table 1, the number in column saved is the number of register

saved, and the number in Ctrl column is the number structure to be

managed. Additionnal constraints used during synthesis are F/L

minimum length (e.g. 7 or 15) and filling (%). In the reference

architecture there is no memory saving (1200 registers in the worst

case, 2400 when pipelined) but the three modes are integrated in a

single architecture. Using our flow, we can save registers and

decrease latency in any case. The reference design from

STMicroelectronics has been generated using a commercial HLS

tool.

Moreover the number of structure to be controlled is smaller

when we use our model. Drawback of this result is that the reduction

of storage elements can increase the complexity of data multiplexing

(depending on the interleaving rule). However our approach also

enables to enhance the throughput by optimizing the latency to input

and next output data. So, depending on the selected mode the

throughput of our architecture can vary from 412 to 438 Mb/s

(related to Table 1 designs) compared to 375Mb/s as a theoretic

throughput from the reference (Table 1).

Currently, we generate the different modes separately, while the

reference design integrates the three modes in a single 2400 memory

points design. But when we concatenate our three designs (one for

each mode) in a single architecture, the total area is about 14%

smaller than the reference design. Future works will enable the

generation of optimized multi-modes architectures to further reduce

the area.

VI. CONCLUSION

In this paper, we proposed a design space exploration

methodology for Space-Time AdapteR STAR components. This

approach relies on the formal modeling of communication constraints

based on a Resource Compatibility Graph RCG describing timing

relations between data. The binding and optimization steps that

assign data to storage elements according to the timing relations have

been presented. Experimental results in the telecom domain have

demonstrated the interest of this methodology. Formal modeling

allows RTL architectures to be synthesized from a single C functional

specification and under various I/O timing constraints. We also show

that it is easy to explore different solution by applying different

constraints during synthesis. This allows enhancements based on

refinements. Future works will focus on the formal transformation of

the RCG in order to generate multi-configuration and pipelined

architectures.

REFERENCES

[1] F. Abbes, E. Casseau, M. Abid, P. Coussy, J-B. Legof, “IP integration

methodology for SoC design”, ICM,, 2004.

[2] A. Baganne, J-L. Philippe, E. Martin, “A Formal Technique for Hardware

Interface design”, IEEE Trans. On Circuits And Systems, Vol.45, N°5, 1998.

[3] P. Bomel, E. Martin, E. Boutillon, “Synchronization Processor Synthesis

for Latency Insensitive Systems”, DATE, 2005.

[4] P. Coussy, E. Casseau, P. Bomel, A. Baganne, E. Martin, “A formal

method for hardware IP design and integration under I/O and timing

constraints”, ACM Trans. on Embeded Computing System, 2005.

[5] L. Dinoi, S. Benedetto, “Variable-size interleaver design for parallel turbo

decoder architectures”, IEEE Transaction on Communication, Vol.53, No11,

Nov. 2005.

[6] A. Fraboulet, T. Risset, “Efficient On-chip Communications for Data-

flow IPs”, ASAP, p.293-303, 2004.

[7] D. Hommais, F. Pétrot, I. Augé, “A Practical Toolbox for System Level

Communication Synthesis”, In Proceedings of the 9th IEEE International

Symposium on Hardware/Software Co-design CODES, 2001.

[8] A. Turjan, et al., “A compile time based approach for solving out-of-order

communication in Kahn Process Networks”, ASAP, 2002.

[9] F. Vermeulen, F. Catthoor, D. Verkest, H. De Man, “Formalized Three-

Layer System-Level Model and Reuse Methodology for Embedded Data-

Dominated Applications”, IEEE Trans. on VLSI Systems, Vol.8, N° 2, 2000.

[10] S.II Han, A. Baghdadi et al. “An efficient scalable and flexible data

transfer architecture for multiprocessor SoC with massive distributed

memory”, DAC, 2004.

[11] C. Zissulescu-Ianculescu, A. Turjan, B. Kienhuis and E. Deprettere,

“Solving Out of Order communication using CAM memory: an

implementation”, ProRisc, 2002.

[12] Virtual Socket Interface Alliance, http://www.vsi.org.

[13] OCP-IP International Partnership, Open Core Protocol Specification, v-

2.0, http://www.ocpip.org.

[14] IEEE 802.15.3a, WPAN High Rate Alternative.

Figure 8: Optimization of Figure 7 graph.

Table 1. Compared results for a given I/O parallelism

Reference
F/L

(Min 7 / 95%)

F/L
(Min 15 / 90%)

No F/L
Mode

Saved Ctrl Saved Ctrl Saved Ctrl Saved Ctrl

300 n/a 300 56 77 60 240 60 240

600 n/a 600 83 101 130 470 130 470

1200 n/a 1200 96 117 120 609 168 1032

