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Introduction

De nombreuses techniques d'apprentissage numérique appliquées au traitement de données textuelles utilisent une représentation du texte en "sac de mot". Ce codage, qui a l'avantage de la simplicité, n'utilise que les fréquences d'apparition des mots dans les documents et perd toute information liée à l'ordre des éléments (ordre des mots, structure en paragraphes ou sections, etc). Depuis une petite dizaine d'années, une nouvelle famille d'algorithme d'apprentissage, basée sur la notion de noyaux, fait l'objet d'intenses recherches. Ces noyaux permettent de définir des mesures de similarité utilisables dans de nombreux algorithmes d'apprentissage statistique (de l'analyse discriminante de Fisher aux machines à vecteur de support). Récemment, l'utilisation de noyaux spécifiques pour le traitement de données textuelles structurées a commencé à faire l'objet de recherches. Dans le cadre de la sous-tâche 3.12 du projet InfoM@gic, le LIPN a décidé de travailler sur l'application de ces méthodes à noyau au traitement de données textuelles structurées. Ce rapport intermédiaire présente un bref état de l'art dans ce domaine. Nous passons en revue les principaux types de noyaux proposés ces dernières années pour le traitement des séquences et plus généralement des données structurées (arbres, graphes).

Le noyau de convolution

Le noyau de convolution appelé R-noyau [START_REF] Haussler | Convolution kernels on discrete structures[END_REF] permet de définir un cadre général pour les noyaux appliqués aux données structurées telles que les arbres et les graphes. Les données structurées sont des objets pouvant être décomposés en sous-objets jusqu'à atteindre une unité atomique. L'idée du R-noyau est de calculer la similarité entre deux éléments x et y en effectuant une décomposition de x et de y. Plus formellement, soit x un élément appartenant à un ensemble X d'éléments structurés de même type, x peut être décomposé en sous éléments (x 1 , . . . , x D ) où x d peut être un élément structuré ou non appartenant X d . On définit la relation binaire R : X 1 × . . . × X D → X qui associe les parties d'un élément x à x et la relation inverse R -1 : {x = (x 1 , . . . , x D )|R(x, x)} qui retourne pour x l'ensemble de toutes les décompositions possibles. Le noyau de convolution (R-noyau) pour deux éléments x et y de X est alors :

k R (x, y) = x∈R -1 (x) y∈R -1 (y) d i=1 k i (x i , y i )
Le noyau p-Spectrum a été utilisé par Leslie et al. [START_REF] Leslie | The spectrum kernel : A string kernel for svm protein classification[END_REF] pour la classification de séquences de protéines avec l'algorithme SVM (Séparateur à Vaste Marge). Les résultats obtenus sur la base de données SCOP (Structural Classification of Proteins) ont montré que la classification par SVM avec le noyau p -Spectrum donne des résultats semblables aux méthodes génératives basées sur les modèles de Markov cachés. Cependant, la méthode SVM avec le noyau Fisher reste la plus performante pour la classification de séquences de protéines.

Le noyau All-SubSequences

Le noyau All-SubSequences [START_REF] Shawe-Taylor | Kernel Methods for Pattern Analysis[END_REF] permet de tenir compte des sous-séquences non contiguës de toutes tailles. Ainsi, la fonction Φ A (s) permet de plonger la séquence s dans un espace vectoriel dans lequel le u ième composant de Φ A (s) indique la fréquence d'occurrence de la séquence u dans s. On dira que u est une sous-séquence non contiguë de s, s'il existe un ensemble I = {i 1 , . . . , i |u| } tel que ∀j ∈ {2, . . . , |u|}, i j-1 < i j et ∀j ∈ {1, . . . , |u|}, u(j) = s(i j ) (u(j) désignant le j ième élément de u). On notera s[I] = u pour désigner le fait que chaque élément de u(j) est identique à l'élément s(i j ) avec i j ∈ I.

Φ A u (s) = I:s[i]=u 1 D'où : k A (s, t) = (I 1 ,I 2 ):s[I 1 ]=t[I 2 ]
1 Il est possible de définir ce noyau de manière récursive. En effet, il suffit de remarquer que toute sous-séquence de s contenant le dernier caractère a de s, tel que s = s ′ a, ne peut apparaître dans t qu'entre le premier caractère de t et la dernière occurrence de a dans t. Ainsi, on a :

k A (s, ǫ) = 1 k A (s ′ a, t) = k A (s ′ , t) + k:t[k]=a k A (s ′ , t[1 . . . k -1])
L'avantage de ce noyau est qu'il est capable de capturer tous les motifs communs à deux séquences. Le désavantage est que l'espace de projection est de très haute dimension entraînant un temps de calcul important.

Le noyau p-Fixed length SubSequence

Le noyau p-Fixed length SubSequence [START_REF] Shawe-Taylor | Kernel Methods for Pattern Analysis[END_REF] est un compromis entre le noyau p-Spectrum et le noyau All-SubSequences. Il permet de limiter la recherche de sous-séquences à des sousséquences non contiguës de taille p. Ainsi, la fonction de projection Φ F (s) sera composée des éléments Φ A u (s) tels que |u| = p. De même que précédemment, on pourra définir ce noyau par récursion en notant que la récursion sera définie sur la séquence, en retirant à chaque étape le dernier élément de la séquence, mais aussi sur la taille p du motif. En effet, si le dernier caractère du motif a été fixé, le préfixe du motif ne peut être constitué que de p -1 éléments.

k 0 (s, t) = 1 k p (s, ǫ) = 0 pour p > 0 k p (s ′ a, t) = k p (s ′ , t) + k:t[k]=a k p-1 (s ′ , t[1 . . . k -1])

Le noyau String Subsequence (SSK)

L'un des inconvénients des noyaux traitant les sous-séquences non contiguës précédemment vus est qu'ils ne tiennent pas compte de la distance séparant les éléments non contiguë. En effet, prenons l'exemple de deux séquences "aaab" et "aab", la séquence "ab" est une sous-séquence des deux premières mais elle est plus similaire à la deuxième qu'à la première. Or, les noyaux All-SubSequences et p-Fixed length SubSequence attribueront la même valeur aux couples ("aaab", "ab") et ("aab", "ab").

Le noyau String Subsequence [START_REF] Lodhi | Text classification using string kernels[END_REF] permet de tenir compte de la discontinuité dans le calcul de la similarité en pondérant les séquences en fonction de leur taille. Pour une séquence s, la fonction de projection Φ SSK (s) sera défini pour tout u ∈ Σ n par :

Φ SSK u (s) = I:u=s[I] λ card(I)
Le noyau SSK, de paramètre n, pour deux séquences s et t est alors :

k n SSK (s, t) = u∈Σ n I:u=s[I] J:u=t[J] λ card(I)+card(J)
Comme pour les noyaux précédents, en utilisant la programmation dynamique, on peut réduire la complexité à O(n.|s|.|t|).

Des expérimentations ont été menées dans [START_REF] Lodhi | Text classification using string kernels[END_REF] pour évaluer les noyaux SSK, p-Spectrum et le noyau standard Bag Of Words [START_REF] Th | Learning to Classify Text Using Support Vector Machines : Methods, Theory and Algorithms[END_REF]. La base de données utilisée est la base Reuters-21578 contenant des documents en langage naturel. L'expérience consistait a effectuer un classement binaire des documents après avoir effectué un apprentissage sur les données prévues à cet effet. Les documents ont été pré-traités en éliminant les mots d'arrêts et les signes de ponctuations. Les résultats ont montrés que les string kernels sont plus performants que l'approche standard du Bag Of Words. De plus, le noyau SSK est le plus performant lorsque la valeur de pondération est choisie judicieusement. De même, lorsque la taille p est choisie convenablement, le noyau p-Spectrum donne les meilleurs résultats. Les deux inconvénients pour l'utilisation de ces noyaux dont d'une part le temps de calcul et d'autre part le choix des paramètres qui doivent être fait de manière spécifique à chaque application.

Le noyau Séquence marginalisée

Le noyau marginalisé pour les séquences a été introduit par Kashima et al. [START_REF] Kashima | Kernel-based discriminative learning algorithms for labeling sequences, trees, and graphs[END_REF] 

y i = argmax y P (y i = y|x i ) = argmax y y:y i =y P (y|x)
Partant de cette dernière approche, Kashima et al. [START_REF] Kashima | Kernel-based discriminative learning algorithms for labeling sequences, trees, and graphs[END_REF] propose une méthode pour étiqueter une séquence. Cette méthode se base sur l'utilisation d'un perceptron à noyau [START_REF] Shawe-Taylor | Kernel Methods for Pattern Analysis[END_REF]. L'idée étant d'étiqueter les éléments individuellement, une séquence (x, y) est décomposé en triplés (x, t, y t ) où y t est le t ime élément de x. Pour cela, le perceptron à noyau est entraîné avec des séquences étiquetées auxquelles ont été rajoutés des exemples négatifs. Les exemples négatifs sont obtenus pour chaque couple (x, y) en modifiant les valeurs de y. Ainsi pour ce couple on obtient un ensemble de positifs {(x, i, y i ) : 1 ≤ i ≤ dim(x)} et un ensemble de négatifs {(x, i, z) : 1 ≤ i ≤ dim(x) ∀z ∈ Σ y }. Après apprentissage, on affecte à un élément u t d'une séquence u l'étiquette y qui maximise le score calculé par le perceptron avec un noyau marginalisé.

Le noyau marginalisé proposé est le suivant :

k(x, x ′ , τ, t, y τ , y ′ t ) = z:zτ =yτ z ′ :z ′ t =y ′ t P (z|x)P (z ′ |x ′ ) Φ(x, z; τ ), Φ(x ′ , z ′ ; t) (1) 
y τ et y ′ t étant les étiquettes respectives des éléments x τ et x ′ t ; φ f (x, y; t) indiquant la fréquence d'occurrence de f dans (x, y) incluant la t ième position. La combinatoire induit par le noyau de l'équation 1 peut-être diminuée en effectuant une recherche bidirectionnelle au sein d'une séquence. En effet, la composante φ f (x, y; t) du vecteur Φ(x, y; t) indique le nombre d'occurrence de f dans (x, y) incluant la t ième position de (x, y) ((x t , y t )). Il est alors possible de décomposer f en f u et f d tel que ((x t , y t )) soit le dernier élément de f u et le premier élément de f d . Le calcul se limitera alors à évaluer les deux ensembles

F u = {(x i , x i+1 , . . . , x t )|1 ≤ i ≤ t} et F d = {(x t , x t+1 , . . . , x k )|t ≤ k ≤ dim(x)}.
Les autres composantes de l'espace seront obtenues par combinaison de F u et de

F d i.e. F = F u × F d .
La figure 1 illustre ce principe : le couple de séquences (a) peut être obtenu en combinant (b) et (c). Afin d'effectuer la décomposition d'une séquence en fonction de la position t, on supposera que :

N V Det N N V V Det N Jeff mange la pomme Jeff mange mange la pomme (a) (b) (c) t t t
P (y|x) = t P (y t |x t )
On posant x u (t) = (x 0 , . . . , x t ) et x d (t) = (x t , . . . , x T ), de même pour y u (t) et y d (t), on obtient :

P (y|x) = P (y u (t)|x u (t)). P (y t |x t ) (P (y t |x t )) 2 .P (y d (t)|x d (t))
En décomposant, l'équation 1 on obtient :

k(x, x ′ , τ, t, y τ , y ′ t ) = k u (x, x ′ , τ, t).k p (x, x ′ , τ, t, y τ , y ′ t ).k d (x, x ′ , τ, t)
avec :

k u (x, x ′ , τ, t) = yu(τ ) y ′ u (t) P (y u (τ )|x u (τ ))P (y ′ u (t)|x ′ u (t)). Φ(x u (τ ), y u (τ ); τ ), Φ(x ′ u (t), y ′ u (t); t) k d (x, x ′ , τ, t) = y d (τ ) y ′ d (t) P (y d (τ )|x d (τ ))P (y ′ d (t)|x ′ d (t)). Φ(x d (τ ), y d (τ ); τ ), Φ(x ′ d (t), y ′ d (t); t) k p (x, x ′ , τ, t, y τ , y ′ t ) = P (y τ |x τ )P (y ′ t |x ′ t ). Φ(x τ , y τ ; τ ), Φ(x ′ t , y ′ t ; t) ( zτ z ′ t P (z τ |x τ )P (z ′ t |x ′ t ). Φ(x τ , z τ ; τ ), Φ(x ′ t , z ′ t ; t) ) 2 (2) 
La complexité pour l'évaluation de ces noyaux peut être ramenée à O(T.T ′ ) avec T et T ′ la taille des séquences en utilisant la programmation dynamique. On obtient alors les noyaux suivants :

k u (x, x ′ , τ, t) = 0 si τ = 0 ou t = 0 c 2 k(x τ , x ′ t )(k u (x, x ′ , τ -1, t -1) + 1) k d (x, x ′ , τ, t) = 0 si τ > dim(x) ou t > dim(x ′ ) c 2 k(x τ , x ′ t )(k d (x, x ′ , τ + 1, t + 1) + 1) k(x τ , x ′ t ) = 0 si x τ = x ′ t y P (y|x τ )P (y|x ′ t ) k p (x, x ′ , τ, t, y τ , y ′ t ) = 0 si (x τ , y τ ) = (x ′ t , y ′ t ) c 2 P (yτ |xτ )P (y ′ t |x ′ t ) (c 2 k(xτ ,x ′ t ) 2
La constante c est utilisée pour pondérer les termes φ f selon la taille de f . Il est aussi possible de permettre des discontinuités dans les sous-séquences comme dans le cas du noyau String Subsequence. Il suffit alors, juste, de modifier k u et k d (voir [START_REF] Kashima | Kernel-based discriminative learning algorithms for labeling sequences, trees, and graphs[END_REF] pour plus de détails).

Ce noyau, combiné au noyau polynomial de degré deux, a été utilisé avec un perceptron pour résoudre un problème de reconnaissance d'entités nommées et un problème d'extraction d'information. La loi uniforme est utilisé pour modéliser P (y t |x t ). Les expériences ont été menées en utilisant la validation croisée à 3 blocs. En outre, pour chaque expérience le noyau marginalisé est comparé à un perceptron utilisant le modèle de markov caché [START_REF] Collins | Discriminative training methods for hidden markov models : Theory and experiments with perceptron algorithms[END_REF]. L'idée de base de cet algorithme est d'utiliser l'algorithme de Viterbi sur un modèle de markov caché afin d'attribuer la meilleure séquence d'étiquettes à une séquence de terme. Le perceptron est utilisé pour calculer un score à une séquence étiquetée. Ce score sera utilisé par l'algorithme de Viterbi pour trouver la séquence d'étiquettes optimale.

Pour la reconnaissance d'entités nommées, les données utilisées sont un sous-ensemble d'un corpus espagnol fourni par CoNLL2002. Ce corpus est composé de 300 phrases comprenant au total 8541 termes. L'objectif est d'attribuer à chaque terme un des neuf labels désignant le type d'entité nommée (un des neufs labels correspond au type "non-entité nommée). Les résultats montrent que le noyau marginalisé à un taux de reconnaissance, tant au niveau de la précision que du rappel, supérieur à celui du modèle de markov caché.

La deuxième expérience consistait à extraire des informations concernant l'utilisation de produits. A partir d'une base de 184 phrases (soit 3570 termes) en japonais, l'objectif est de reconnaître le nom du produit, le vendeur, le nombre de produit acheté, les raisons de l'achat etc. Ainsi, il s'agit d'attribuer à chaque terme une des 12 étiquettes correspondants aux informations citées. Les termes ont été annotés en effectuant une analyse lexicale. En outre, un noyau marginalisé sur les arbres (voir la section sur les arbres)a été utilisé. Pour ce noyau, les données ont été structurées en arbre lexical de dépendance représentant la structure linguistique de la phrase en terme de dépendance entre les mots. Les expériences montrent que les noyaux marginalisés sont plus performants que le perceptron utilisant le modèle de markov caché. De plus, le noyau marginalisé sur les arbres obtient de meilleurs résultats que le noyau sur les séquences. Ce résultat peut être expliqué par le fait que le noyau sur les arbres tire avantage de l'information structurelle contrairement au noyau sur les séquences.

Les noyaux pour les arbres

Les arbres sont des structures de données permettant de représenter efficacement des données organisées de manière hiérarchique. Ainsi, ils sont communément utilisés dans de nombreux domaines. La majorité des documents structurés et semi-structurés, tels que les documents XML, sont représentés de manière arborescente. Ainsi, il peut être intéressant de tenir compte de cette structure dans l'évaluation des critères de similarités entre ces différents documents.

le noyau Tree kernel

Le noyau Tree Kernel (appelé aussi parse tree kernel) [START_REF] Collins | Convolution kernels for natural language[END_REF] a été défini pour le calcul de similarité entre les arbres grammaticaux (ou arbres syntaxiques). Un arbre syntaxique est obtenu à partir d'une phrase en la décomposant en groupe grammatical. La figure 2 montre l'arbre syntaxique associé à la phrase "Jeff mange la pomme". La notion de sous-arbre co-enraciné permet de garantir la consistance des règles grammaticales. Par exemple, pour l'arbre T de la figure 2, il existe des arbres co-enracinés de T qui produisent : "N V la N", "Jeff mange GN", "GN V GN", ... Toutefois, il n'existe pas d'arbres co-enracinés de T produisant "Jeff mange Det", "GN mange N", ... Soit Γ l'ensemble de tous les arbres propres possibles, un arbre T peut être plongé, par une fonction Φ r , dans un espace vectoriel de caractéristique (feature-space). Le u ème composant de Φ r , associé à S u ∈ Γ, donne le nombre de noeud n de T tel que S u est un sous-arbre co-enraciné de τ T (n) (Rf req T (S u )), soit :

Φ r Su (T ) = Rf req T (S u ) = n∈T I Su (τ T (n)) (3) 
Avec I Su (τ T (n)) = 1 si l'arbre S u est un sous-arbre co-enraciné de τ T (n) et 0 sinon. Le noyau permettant de calculer la similarité entre deux arbres T 1 et T 2 est :

k tree (T 1 , T 2 ) = Φ r (T 1 ), Φ r (T 2 ) = Su∈Γ Φ r Su (T 1 ).Φ r Su (T 2 ) = Su∈Γ ( n 1 ∈T 1 I Su (τ T 1 (n 1 ))).( n 2 ∈T 2 I Su (τ T 2 (n 2 ))) = n 1 ∈T 1 n 2 ∈T 2 Su∈Γ I Su (τ T 1 (n 1 ))).I Su (τ T 2 (n 2 ))) = n 1 ∈T 1 n 2 ∈T 2 k r tree (τ T 1 (n 1 ), τ T 2 (n 2 )) (4) 
k r tree (T 1 , T 2 ) indique le nombre de sous-arbres co-enracinés qu'ont en commun les arbres T 1 et T 2 . Cette fonction retourne 0 si 1) les racines sont différentes, ou 2) si le nombre de fils de T 1 et de T 2 ne correspondent pas ou 3) si ∃i, f ils i (T 1 ) = f ils i (T 2 ). Dans les autres cas, on peut définir k r tree (T 1 , T 2 ) par récurrence. En effet, cette fonction sera égale au produit des nombres de sous-arbres co-enracinés communs à chacun des fils de T 1 et de T 2 . Il est à noter que si k r tree (T 1 , T 2 ) = 0 mais que k r tree (τ T 1 (f ils i (rac(T 1 )), f ils i (rac(T 2 ))) = 0, il existe un unique sousarbre co-enraciné commun à T 1 et T 2 pour la partie du sous-arbre induit par f ils i . On peut ainsi définir k r tree (T 1 , T 2 ) dans le cas non nul :

k r tree (T 1 , T 2 ) = i (k r tree (τ T 1 (f ils i (rac(T 1 ))), τ T 2 (f ils i (rac(T 2 )))) + 1) La complexité temporelle du noyau k tree (T 1 , T 2 ) est O(|T 1 ||T 2 |) [1]
avec |T | le nombre de noeuds dans T . Collins et al. ont utilisé ce noyau pour associer à une phrase l'arbre syntaxique le plus plausible (parsing) [START_REF] Collins | Convolution kernels for natural language[END_REF]. La décomposition d'une phrase en arbre syntaxique est un problème difficile. En effet, l'ambiguïté sous-jacente au langage naturel entraîne plusieurs décompositions possibles pour une même phrase. L'objectif proposé par Collins et al. est de sélectionner l'arbre le plus probable par une approche discriminante. Soit F une fonction permettant de générer un ensemble d'arbres syntaxiques pour une phrase, les données sont représentés par un doublet (s, F (s)). Pour l'ensemble d'apprentissage, l'arbre syntaxique correct pour chaque s est connu dans F (s). Un séparateur est alors "appris" en utilisant un perceptron. Pour une phrase s, on lui associe l'arbre T s i de F (s) tel que :

T s i = argmax T ∈F (s) (w * .Φ r (T ))
Avec w * le vecteur optimal associé à :

w = s,j>1 α s,j (Φ r (T s i ) -Φ r (T s j ))
Avec s i une phrase d'apprentissage, s 1 ∈ F (s) l'arbre syntaxique correct de s et s j ∈ F (s). Les expériences sur le corpus Penn treebank ATIS, qui est un corpus anglais annoté sous forme arborescente, ont montré que l'utilisation de cette méthode améliore de prés de 4% les résultats obtenus par une méthode conventionnelle stochastique (Probabilistic Context Free Grammar).

le noyau Tree kernel généralisé

Le noyau Tree Kernel a été essentiellement développé pour traiter des arbres spécifiques telles que les arbres syntaxiques. Le Tree Kernel se base donc sur les propriétés :

1. les descendants d'un noeud n'ont jamais les mêmes étiquettes que les noeuds ancêtres 2. le noyau utilise la définition de sous-arbre co-enraciné pour calculer la similitude entre deux arbres.

Une généralisation de ce noyau a été proposée dans [START_REF] Kashima | Kernels for semi-structured data[END_REF] pour traiter des arbres complexes tels que les arbres XML et HTML. Toutefois, on impose que l'arbre soit étiqueté et ordonné (tel que c'était le cas pour les arbres syntaxiques). Le cadre général du noyau Tree Kernel reste valide. En effet, pour généraliser le noyau, il suffit de modifier la fonction I S (T ) et de changer le noyau spécifique k r tree (T 1 , T 2 ). Dans le cas d'un arbre quelconque étiqueté et ordonné T , I S (T ) retournera la fréquence d'occurrence du sous-arbre S dans T . Definition 4 (Sous-arbre) Un arbre S (possédant au moins un noeud) est un sous-arbre de T si et seulement si il existe un noeud n de T tel que l(n) = l(rac(S)) (l(n) correspondant à l'étiquette du noeud n) et une liste ordonnée d'indexes {j 1 , . . . , j k } tel que ∀i, l(f ils i (rac(S))) = l(f ils j i (τ T (n))) avec i < j i et τ S (f ils i (rac(S))) soit, soit une feuille soit un sous-arbre de τ T (f ils j i (τ T (n))) partageant la même racine.

Étant donnée cette définition de sous-arbre, le noyau k r tree (T 1 , T 2 ) peut être défini comme étant la fonction qui retourne le nombre de sous-arbres commun à T 1 et T 2 avec pour racine rac(T 1 ), en tenant compte de la fréquence d'occurrence dans chaque arbre. Autrement dit, il s'agit de la somme, pour chaque sous-arbre possible S de racine rac(T 1 ), des produits des nombres d'occurrences de S dans T 1 et dans T 2 . Les arbres étant ordonnés, le noyau sur T 1 et T 2 peut être calculé en introduisant une récurrence sur le nombre de fils de T 1 (nf (rac(T 1 ))) et le nombre de fils de T 2 . Ainsi, la fonction S T 1 ,T 2 (i, j) est introduite pour calculer k r tree (T 1i , T 2j ) tel que T 1i est le sous-arbre de T 1 obtenu en supprimant tous les fils d'index supérieurs à i, ainsi que leurs descendants, de même pour T 2j .

k r tree (T 1 , T 2 ) = 0 si l(rac(T 1 )) = l(rac(T 2 )) S T 1 ,T 2 (nf (rac(T 1 )), nf (rac(T 2 ))) (5) 
avec

S T 1 ,T 2 (0, 0) = S T 1 ,T 2 (i, 0) = S T 1 ,T 2 (0, j) = 1 S T 1 ,T 2 (i, j) = S T 1 ,T 2 (i -1, j) + S T 1 ,T 2 (i, j -1) (6) 
-S T 1 ,T 2 (i -1, j -1) + S T 1 ,T 2 (i -1, j -1).k r tree (τ T 1 (f ils i (rac(T 1 ))), τ t 2 (f ils j (rac(T 2 ))
)) Le noyau peut être généralisé en introduisant deux concepts : la similarité entre les étiquettes et les sous-arbres non-contigus [START_REF] Kashima | Kernels for semi-structured data[END_REF]. Soit Σ l'ensemble de toutes les étiquettes et f : Σ × Σ → [0, 1] indiquant un score de "mutation" entre deux étiquettes tel que f (e, a) indique la probabilité d'acceptation de la mutation de l'étiquette a vers e, la fonction de similarité entre deux étiquettes de deux noeuds n 1 et n 2 est :

Sim(l(n 1 ), l(n 2 )) = a∈Σ f (l(n 1 ), a).f (l(n 2 ), a)
En introduisant la fonction de similarité dans l'équation 5, on obtient :

k r tree (T 1 , T 2 ) = Sim(l(n 1 ), l(n 2 )).S T 1 ,T 2 (nf (rac(T 1 )), nf (rac(T 2 ))) (7) 
Le deuxième cadre de généralisation est l'intégration, au niveau du noyau, de la notion d'élasticité des sous-arbres. Ainsi, la définition de sous-arbre se voit élargie en permettant la non contiguïté au niveau des noeuds d'un chemin. En effet, il n'est plus nécessaire qu'un chemin d'un sous-arbre apparaisse de manière contiguë dans un arbre. Cependant, la contrainte d'arbre ordonné reste valable.

Definition 5 (Sous-arbre non contigu) Un arbre S (possédant au moins un noeud) est un sous-arbre de T si et seulement si il existe un noeud n de T tel que l(n) = l(rac(S)) (l(n) et une liste ordonnée d'indexes {j 1 , . . . , j k } tel que ∀i, τ S (f ils i (rac(S))) soit un sous arbre de τ T (f ils j i (τ T (n))).

Afin de prendre en compte la définition de sous-arbre non-contigu, il est nécessaire de généraliser la formule de k r tree (T 1 , T 2 ) (équations 5 et 7). En effet, cette formule retourne une valeur nulle (ou faible selon la similarité) si les étiquettes des racines sont différentes. En d'autre terme, tout sous-arbre commun à T 1 et T 2 doit être enraciné aux noeuds racines de T 1 et T 2 impliquant ainsi que les arbres possèdent la même racine. Or, dans le cas des sous-arbres non-contigus, un sous-arbre commun à T 1 et T 2 peut être construit par combinaison (ordonnée) à partir de sous-arbres enracinés à n'importe quelles noeuds descendants de T 1 et T 2 .

Soit k r old le noyau définit par l'équation 5, le noyau spécifique pour les arbres élastiques utilisés par le noyau Tree Kernel (équation 4) est :

k r tree (T 1 , T 2 ) = n 1 ∈T 1 n 2 ∈T 2 k r old (τ T 1 (n 1 ), τ T 2 (n 2 ))
Cette formule peut être calculée efficacement de manière récursive :

k r tree (T 1 , T 2 ) = k r old (T 1 , T 2 ) + n i =f ils i (T 1 ) k r tree (τ T 1 (n i ), T 2 ) + n j =f ils j (T 2 ) k r tree (T 1 , τ T 2 (n j )) - n i =f ils i (T 1 ) n j =f ils j (T 2 ) k r tree (τ T 1 (n i ), τ T 2 (n j ))
De même que dans le cas du noyau parse tree kernel vu dans la section précédente, la complexité du noyau tree kernel est O(|T 1 |.|T 2 |) dans les différents cas de généralisation.

Kashima et al [START_REF] Kashima | Kernels for semi-structured data[END_REF] ont utilisé les noyaux généralisés élastiques et non élastiques, sans tenir compte des mutations d'étiquettes, pour la classification et l'extraction d'information à partir de documents HTML. Les performances ont été évaluées en utilisant la méthode de validation croisée leave-one-out. L'apprentissage a été effectué en utilisant l'algorithme du perceptron "kernelisé".

Pour la classification de documents, une base de données comprenant 30 documents HTML en japonais et 30 documents HTML en anglais a été construite en extrayant les documents aléatoirement sur le site, américain resp. japonais, d'IBM. La classification devant être structurelle, seules les balises HTML ont été préservées, éliminant ainsi les attributs et les données. De plus, les noyaux sur arbres ont été combinés avec le noyau polynomial. Les résultats ont montrés que le noyau non élastique était de 12% plus performant que le noyau élastique en atteignant prés de 80% de bon classement. Ces résultats ont été obtenus avec un noyau polynomial d'ordre 4 (resp. 3).

L'extraction d'information consiste à apprendre et à reconnaître une information précise dans des documents HTML. Il s'agit ici du marquage des noeuds pertinents. Le problème du marquage consiste à apprendre à partir d'arbres correctement marqués puis à marquer les noeuds pertinents des arbres non traités. Ce problème peut être ramené à un problème de classification en effectuant une transformation du marquage. En effet, pour un noeud marqué, on insère entre le noeud concerné et le noeud père, un noeud portant une étiquette appropriée pour signaler le marquage. Puis, un ensemble d'arbres négatifs est générés à partir des arbres corrects en retirant le marquage et en les plaçant sur des noeuds non initialement marqués. Un apprentissage peut ensuite être effectué sur ces données. Pour le marquage sur un arbre, on effectue pour chacun de ses noeuds un marquage puis on le classe. Pour l'expérimentation, une base a été créée à partir de 54 pages HTML extraites d'un catalogue de vente d'ordinateurs portables d'IBM Japon. L'objectif de l'expérience était de retrouver l'image de l'ordinateur à vendre. Pour cela, les noeuds contenants les images pertinentes ont été marqués et les données textuelles présentes dans les pages ont été éliminées. Les résultats ont montré que le noyau élastique a permis d'extraire l'information avec une précision de 99.3% et un rappel de 68.6% contre une précision de 11.9% et un rappel de 79.6% pour le noyau non élastique. Ces résultats ont été obtenus sans la combinaison avec le noyau polynomial. En effet, ce dernier n'a pas permis d'améliorer les résultats.

le noyau Tree kernel marginalisé

Le noyau marginalisé pour les arbres a été introduit par Kashima et al. [START_REF] Kashima | Kernel-based discriminative learning algorithms for labeling sequences, trees, and graphs[END_REF] pour répondre aux problèmes d'étiquetages (voir la section sur le noyau marginalisé sur les séquences). L'objectif de ce noyau est de permettre de calculer la similarité entre deux arbres étiquetés. Un arbre étiqueté étant simplement un arbre où chaque noeud représente un élément observable (un terme) et à chaque noeud est associé une étiquette. L'avantage de résoudre un problème d'étiquetage en utilisant un modèle de donnée arborescent, plutôt que séquentiel, est qu'il est possible d'exploiter l'information structurelle pour améliorer la discrimination.

Le noyau marginalisé sur les arbres est obtenu en intégrant le noyau Tree kernel généralisé dans le cadre théorique du noyau marginalisé définit par la série d'équation 2. Ainsi, k d (T 1 , T 2 , τ, t) est le noyau ne prenant en compte que les sous-arbres ayant la même racine rac(T 1τ ) (T 1τ indique ici le sous-arbre de T 1 induit par le noeud d'index τ ). De même, k u (T 1 , T 2 , τ, t) ne prend en compte que les sous-arbres ayant une feuille correspondant au noeud d'index τ de T 1 (rac(T 1τ )).

Pour le calcul de k d , on se base sur les équations 5 et 6. L'équation 6 calcul la somme des contributions des sous-arbres communs à T 1 et T 2 en explorant à chaque niveau les fils de droite à gauche. En modifiant cette équation on obtient :

S F (T 1 , T 2 , τ, t, 0, 0) = S F (T 1 , T 2 , τ, t, i, 0) = S F (T 1 , T 2 , τ, t, 0, j) = 1 S F (T 1 , T 2 , τ, t, i, j) = S F (T 1 , T 2 , τ, t, i -1, j) + S F (T 1 , T 2 , τ, t, i, j -1) -S F (T 1 , T 2 , τ, t, i -1, j -1) + S F (T 1 , T 2 , τ, t, i -1, j -1).k d (T 1 , T 2 , ch(T 1 , τ, i), ch(T 2 , t, j))
Avec ch(T 1 , τ, i) l'index, dans T 1 , du i ième fils de la racine de T 1τ .

Le noyau k d devient alors :

k d (T 1 , T 2 , τ, t) = c 2 k(T 1τ , T 2t ).(1 + S F (T 1 , T 2 , τ, t, nf (rac(T 1τ )), nf (rac(T 2t ))))
Pour k u , le calcul s'effectue de la feuille vers la racine. Ainsi, on utiliser la fonction pa(T 1 , τ ) qui retournera l'index du père du τ ième noeud dans T 1 . En outre, il faut aussi tenir compte des frères gauches et des frères droits du τ ième noeud de T 1 . Pour la contribution des frères gauches, la fonction S F pourra être utilisée. Quant aux frères droits, il faudra les explorer de la gauche vers la droite. On utilisera la fonction n = chID(T 1 , τ ) pour indiquer que le noeud d'index τ est le n ième fils de son père. On définit, donc, une fonction symétrique à S F :

S B (T 1 , T 2 , τ, t, i, j) = 1 si i ≥ nf (rac(T 1τ )) ou si j ≥ nf (rac(T 2t )) S B (T 1 , T 2 , τ, t, i, j) = S B (T 1 , T 2 , τ, t, i + 1, j) + S B (T 1 , T 2 , τ, t, i, j + 1)
-S B (T 1 , T 2 , τ, t, i + 1, j + 1)

+ S B (T 1 , T 2 , τ, t, i + 1, j + 1).k d (T 1 , T 2 , ch(T 1 , τ, i), ch(T 2 , t, j))
L'expression de k u est :

k u (T 1 , T 2 , τ, t) = c 2 k(T 1τ , T 2t ).(1 + k u (T 1 , T 2 , τ, t)) . S F (pa(T 1 , τ ), pa(T 2 , t), τ, t, chID(T 1 , τ ) -1, chID(T 2 , t) -1)
. S B (pa(T 1 , τ ), pa(T 2 , t), τ, t, chID(T 1 , τ ) + 1, chID(T 2 , t) + 1)

Les expériences menées sur ce noyau sont décrites dans la section sur le noyau marginalisé pour les séquences.

Les noyaux pour les graphes

Le graphe est une structure de donnée très utilisée dans le domaine informatique pour modéliser des informations structurées complexes. En effet, les séquences et les arbres vus précédemment sont, en réalité, des graphes acycliques orientés. De plus, dans le cas de la séquence, le graphe est de degré maximum 1. Nous définirons un graphe étiqueté G par le triplé (V, E, σ) où V est l'ensemble des noeuds de G, σ l'ensemble des étiquettes tel que sigma i représente l'étiquette du noeud i (il est aussi possible d'étiqueter les arcs : on notera sigma (i,j) l'étiquette de l'arc reliant le noeud i à j) et E, une matrice d'adjacence tel que E ij = 1 si et seulement si il existe un arc reliant le noeud i au noeud j (afin de simplifier l'écriture on utilisera la même notation i, j pour désigner les indexes dans E que pour designer les noeuds de V ). L'une des propriétés de la matrice d'adjacence est que [E n ] ij indique le nombre de chemin de longueur n reliant le noeud i au noeud j.

La conception d'un noyau nécessite une définition de la similarité entre deux graphes. Pour cela, il existait deux approches standards [START_REF] Gärtner | A survey of kernels for structured data[END_REF][START_REF] Gärtner | A short tour of kernel methods for graphs[END_REF]. La première consiste à déterminer si les deux graphes sont isomorphes (ils ne se distinguent que par l'ordre des noeuds) ou à déterminer le nombre de sous-graphes isomorphes communs. Cependant, il est connu que ce problème est fortement combinatoire. La deuxième approche consiste à projeter le graphe G dans un espace vectoriel où chaque dimension est indexée par un graphe H tel que la valeur de la projection de G sur cet axe représente la fréquence d'occurrence de H, en tant que sous-graphe, dans G. Il est alors possible de concevoir un noyau qui identifie certaines propriétés dans les sous-graphes H. En particulier, il est possible de concevoir un noyau qui effectue le produit scalaire dans l'espace vectoriel en se limitant aux sous-graphes qui sont des chemins hamiltoniens (H est un chemin hamiltonien de G si et seulement si H est un sous-graphe de G et si H est de même ordre que G i.e. H contient tous les noeuds de G exactement une fois). De même que pour la première approche, le problème du chemin hamiltonien est NP-difficile. Afin de réduire la complexité dans l'évaluation de la similarité d'autres approches ont été explorées. L'approche la plus répandue consiste à calculer la similarité en se basant sur les chemins parcourus [START_REF] Gärtner | Graph kernels and gaussian processes for relational reinforcement learning[END_REF][START_REF] Gärtner | A short tour of kernel methods for graphs[END_REF][START_REF] Kashima | Kernels for graph classification[END_REF][START_REF] Kashima | Marginalized kernels between labeled graphs[END_REF]. L'un des problèmes principaux de cette approche est qu'il existe une infinité de chemins possibles dès lors qu'il existe dans le graphe un cycle. On a alors le noyau :

k(G, G ′ ) = lim n→∞ n i=1 p∈P i (G) p ′ ∈P i (G ′ ) λ i .k p (p, p ′ ) (8) 
Avec P l (G) l'ensemble des chemins de G de longueur l, lambda l un réel pondérant les chemins de longueur l (on fixera λ l = λ l ) et k p un noyau définit sur les chemins. Il existe plusieurs façons de définir k p selon qu'on veuille tenir compte des étiquettes sur les noeuds, sur les arcs ou encore permettre des discontinuités (gap).

Dans [START_REF] Gärtner | Graph kernels and gaussian processes for relational reinforcement learning[END_REF][START_REF] Gärtner | A short tour of kernel methods for graphs[END_REF], k p est définit sur des chemins contiguës en tenant compte des étiquettes sur les noeuds et sur les arcs. Ainsi, le noyau sur les arcs revient à énumérer le nombre de chemins communs aux deux graphes. De plus, l'équation 8 est réécrite plus élégamment en utilisant la propriété de la matrice d'adjacence. Pour cela, un nouveau graphe G × : (V × , E × , σ × ) est introduit en effectuant le produit direct des graphes G : (V, E, σ) et G ′ : (V ′ , E ′ , σ ′ ) :

V × = {(v, v ′ ) ∈ V × V ′ |σ v = σ v ′ } σ × k=(v,v ′ ) = σ v Pour (i, j) correspondant à ((u, u ′ ), (v, v ′ )) ∈ V 2 × [E × ] i,j = 1 si [E] u,v = [E ′ ] u,v ′ = 1 et σ (u,v) = σ ′ (u ′ ,v ′ ) 0 sinon σ × (i,j) = sigma (u,v) L'équation 8 devient : k(G, G ′ ) = lim n→∞ n i=1 |V × | u,v λ i .[E i × ] u,v
L'expression E i × peut être simplifiée si la matrice E × est diagonalisable. Dans le cadre d'un graphe non-orienté, la matrice E × étant une matrice réelle et symétrique, elle peut être diagonalisée. Ainsi, si E × peut être exprimé sous la forme T -1 .D.T alors E× i = T -1 .D i .T . On peut alors réécrire le noyau sous la forme :

k(G, G ′ ) = |V × | u,v (T -1 .( lim n→∞ n i=1 λ i .D i ).T ) u,v
Pour calculer la limite [START_REF] Gärtner | Graph kernels and gaussian processes for relational reinforcement learning[END_REF], propose d'utiliser une décomposition en série exponentielle ou en série géométrique. La décomposition en série exponentielle se base sur le principe que :

e β.E = lim n→∞ n i=0 (βE) i i! Ainsi, en fixant λ i = β i i! , on obtient : k(G, G ′ ) = |V × | u,v (T -1 .e β.D .T ) u,v
De même, la décomposition en série géométrique se base sur, pour γ < 1 :

lim n→∞ n i=0 γ i = 1 1 -γ En fixant γ = λ.D et en veillant à ce que λ.D < I, on a : k(G, G ′ ) = |V × | u,v (T -1 .(I -λ.D) -1 .T ) u,v
Dans [START_REF] Kashima | Kernels for graph classification[END_REF], Kashima et al. ont décomposé la similarité de deux graphes par une somme de similarité entre noeuds :

k(G, G ′ ) = 1 |V |.|V ′ | v i ∈V,v j ∈V ′ k n (v i , v j ) Avec V et V ′ l'ensemble de noeuds de G et respectivement de G ′ .
La similarité de deux noeuds sera d'autant plus importante qu'il existera des chemins longs communs aux deux graphes issus de ces noeuds. Pour assurer la terminaison du calcul, une probabilité 1λ est fixée pour terminer le chemin et une probabilité λ pour continuer vers un successeur du noeud courant. Ainsi, plus le chemin sera long et plus la probabilité de terminer le chemin deviendra importante. On obtient, ainsi, le noyau suivant :

k n (u, u ′ ) = I(u, u ′ ).((1 -λ) + λ. (v,v ′ )∈A G (u)×A G ′ (u ′ ) I A ((u, v), (u ′ , v ′ )) |A G (u)|.|A G ′ (u ′ )| .k n (v, v ′ ))
Avec A G (u) = {v ∈ V |E uv = 1}, I(u, u ′ ) = 1 si les étiquettes des noeuds u de G et u ′ de G ′ sont identiques ou 0 sinon et de même pour I A ((u, v), (u ′ , v ′ )) qui retourne 1 si l'étiquette de l'arc reliant u et v de G est identique à l'étiquette de l'arc reliant u ′ et v ′ de G ′ .

Dans [START_REF] Kashima | Marginalized kernels between labeled graphs[END_REF], un noyau marginalisé sur tous les chemins possible est proposé en ne considérant que des graphes orientés. Ainsi, le noyau est défini par :

k(G, G ′ ) = lim L→∞ L l=1 h h ′ k z (G, G ′ ,
h, h ′ ).P (h|G).P (h ′ |G ′ ) La probabilité a posteriori d'avoir un chemin h de G de longueur l (P (h|G)) est défini en fonction de la probabilité de débuter un chemin par un noeud h 1 (P s (h 1 )), la probabilité de terminer ce chemin par un noeud h l (P q(h l )) et les probabilités d'effectuer une transition d'un noeud h i vers un noeud h i+1 (P t (h i+1 |h i )). D'où : P (h|G) = P s (h 1 ). l=|h| i=2 P t (h i |h i-1 ).P q (h l ) Le noyau k z effectue la comparaison des deux chemins h et h ′ des graphes respectifs G et G ′ . Pour cela, le noyau calcule le produit des similarités entre les étiquettes des noeuds et des arcs du chemins :

k z (G, G ′ , h, h ′ ) = 0 si |h| = |h ′ | k e (σ h 1 , σ ′ h ′ 1 ) l i=2 k e (σ (h i-1 ,h i ) , σ ′ (h ′ i-1 ,h ′ i ).k e (σ h l , σ ′ h ′ l )
On rappelle que σ h i indique l'étiquette du noeud h i de G et que σ (h i ,h i+1 ) indique l'étiquette de l'arc reliant le noeud h i à h i+1 . Étant données deux étiquettes e et e ′ , on peut définir k e comme étant un noyau retournant 1 si e = e ′ ou 0 sinon. Toutefois, on peut définir un noyau un peu complexe si les étiquettes sont des réelles avec une certaine métrique. On pourrait alors définir un noyau gaussien qui tolérerait certaines différences entre les étiquettes.

Outre les graphes que nous venons de voir, Suzuki et al. ont introduit dans [START_REF] Suzuki | Hierarchical directed acyclic graph kernel : methods for structured natural language data[END_REF][START_REF] Suzuki | Kernels for structured natural language data[END_REF] la notion de graphe acyclique orienté hiérarchique (HDAG). Les HDAG sont des graphes dont certains noeuds contiennent des graphes acycliques orientés. Cette structure a été proposée pour permettre la représentation de documents textuels ainsi que d'informations connexes. En effet, un document textuel peut subir de multiple pré-traitement et des informations grammaticales et sémantiques peuvent lui être ajoutées. Ces informations combinées entre elles forment des structures hiérarchiques complexes. En outre, un noyau a été proposé pour calculer la similarité entre les HDAG. Ce noyau a été évalué sur un problème de classification multi-classe avec l'algorithme SVM et la méthode "un contre tous" (un classifieur SVM par classe). Une base de données de 3000 questions divisées en 148 classes a été utilisée pour l'expérimentation. Les questions ont été pré-traitées à l'aide d'un parser. En outre, les entités nommées ont été étiquetées et les informations sémantiques ajoutés. Les résultats ont montrés que le noyau HDAG était plus performant que le noyau SubString Kernel et le noyau "sac de mots".
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 1 Fig. 1: (a) Exemple de couple de séquences (x, y). (b) sous-séquences de (a) où les x i avec i > t ont été éliminés. (c) sous-séquences de (a) obtenu en éliminant les x i de (a) pour i < t.

Fig. 2 :

 2 Fig. 2: Arbre syntaxique pour la phrase "Jeff mange la pomme"

  afin d'étiqueter des structures complexes tels que les séquences, les arbres et les graphes. Le problème de l'étiquetage consiste à affecter à une donnée x = (x 1 , . . . , x T ) un groupe d'étiquettes y = (y 1 , . . . , y T ) ∈ Σ T y . Par exemple, en langage naturel x peut représenter une phrase, et le problème consiste à attribuer à chaque mot de x une étiquette désignant son groupe grammatical (Part Of Speech tagging).La figure 1(a) montre un exemple de couple (x, y) où les noeuds noirs représentent les éléments x i et les noeuds blancs les étiquettes y i associées à x i . Pour résoudre le problème de l'étiquetage, l'approche standard consiste à attribuer à x la séquence d'étiquettes y tel que : y=argmax y i logP (y i |x i ). Il s'agit ici de maximiser la probabilité que la séquence entière soit correcte. Une autre approche consiste à maximiser individuellement la probabilité qu'une étiquette y i corresponde à l'élément x i . Soit :

Conclusion

Nous avons présenté une collection de méthodes assez variées, adaptées aux différents cas rencontrés lors du traitement des données structurées. La diversité de ces méthodes rend pour l'instant délicate toute évaluation comparative de leurs performances respectives. Le caractère très récent de ces travaux fait qu'il n'existe pas pour l'instant d'étude expérimentale comparative sérieuse des comportements de ces différents algorithmes sur des données issues du monde réel et plus particulièrement du langage naturel. Insistons sur le fait que la souplesse des méthodes à noyaux facilite la construction de méthodes ad-hoc adaptées à la structure du problème à traiter.