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Preliminaries

For n ≥ 0 and -1 ≤ ℓ ≤ n 2 -n, let c(n, n + ℓ) be the number of connected graphs with n vertices and n + ℓ edges. Quantifying c(n, n + ℓ) represents one of the fundamental tasks in the theory of random graphs. It has been extensively studied since the Erdős-Rényi's paper [START_REF] Erdős | On random graphs[END_REF]. The generating functions associated to the numbers c(n, n + ℓ) are due to Sir E. M. Wright in a series of papers including [START_REF] Wright | The Number of Connected Sparsely Edged Graphs[END_REF][START_REF] Wright | The Number of Connected Sparsely Edged Graphs III: Asymptotic results[END_REF]. He also obtained the asymptotic formula for c(n, n + ℓ) for every ℓ = o(n 1/3 ). Using different methods, Bender, Canfield and McKay [START_REF] Bender | The asymptotic number of labelled connected graphs with a given number of vertices and edges[END_REF], Pittel and Wormald [START_REF] Pittel | Counting connected graphs inside out[END_REF] and van der Hofstad and Spencer [START_REF] Van Der Hofstad | Counting Connected Graphs Asymptotically[END_REF] were able to determine the asymptotic value of c(n, n + ℓ) for all ranges of n and ℓ.

For ℓ ≥ -1, let W ℓ be the exponential generating function (EGF, for short) of the family of connected graphs with n vertices and n + ℓ edges. Thus, W ℓ (z) = ∞ n=0 c(n, n + ℓ) z n n! . Let T (z) be the EGF of the Cayley's rooted labeled trees. It is well known that T (z) = z e T (z) = n≥1 n n-1 z n n! (see for example [START_REF] Flajolet | Analytic Combinatorics[END_REF][START_REF] Janson | The birth of the giant component[END_REF]). Among other results, Wright proved that the functions W ℓ (z), ℓ ≥ -1, can be expressed in terms of T (z). Such results allowed penetrating and precise analysis when studying random graphs processes as it has been shown for example in the giant paper [START_REF] Janson | The birth of the giant component[END_REF]. Throughout the rest of this note, all formal power series are univariate. Therefore, for sake of simplicity we will often omit the variable z so that T ≡ T (z), W i ≡ W i (z) and so on.

We need the following notations.

Definition. If A and B are two formal power series such that for all n ≥ 0 we have

[z n ] A(z) ≤ [z n ] B(z) then we denote this relation A B or A(z) B(z).
The aim of this note is to provide an alternative and generating function based proof of the inequalities obtained by Sir Wright in [START_REF] Wright | The Number of Connected Sparsely Edged Graphs III: Asymptotic results[END_REF] (in particular, he used numerous intermediate lemmas). More precisely, Wright obtained the following.

Theorem [START_REF] Wright | The Number of Connected Sparsely Edged Graphs III: Asymptotic results[END_REF]. Let b 1 = 5 24 and c 1 = 19 24 . Define recursively b ℓ and c ℓ by

(1) 2(ℓ + 1)b ℓ+1 = 3ℓ(ℓ + 1)b ℓ + 3 ℓ-1 t=1 t(ℓ -t)b t b ℓ-t , (ℓ ≥ 1)
and

2(3ℓ + 2)c ℓ+1 = 8(ℓ + 1)b ℓ+1 + 3ℓb ℓ + (3ℓ + 2)(3ℓ -1)c ℓ + 6 ℓ-1 t=1 t(3ℓ -3t -1)b t c ℓ-t , (ℓ ≥ 1) . (2)
Then, for all ℓ ≥ 1

(3) b ℓ (1 -T (z)) 3ℓ - c ℓ (1 -T (z)) 3ℓ-1 W ℓ (z) b ℓ (1 -T (z)) 3ℓ .
(3) is known as Wright's inequalities and such results has been extremely useful in the enumerative study of graphs as well as in the theory of random graphs [START_REF] Bollobás | Random Graphs[END_REF][START_REF] Janson | The birth of the giant component[END_REF][START_REF] Janson | Random Graphs[END_REF][START_REF] Luczak | On the number of sparse connected graphs[END_REF][START_REF] Ravelomanana | The Average Size of Giant Components between the Double-Jump[END_REF].

Our proof of ( 3) is based upon two ingredients:

Fact 1. We know that the EGFs W ℓ satisfy W -1 = T -T 2 2 , W 0 = -1 2 log (1 -T ) -T 2 -T 2 4 and (4) 
(1 -T ) ϑ z W ℓ+1 + (ℓ + 1) W ℓ+1 = ϑ 2 z -3ϑ z 2 -ℓ W ℓ + 1 2 ℓ k=0 (ϑ z W k ) (ϑ z W ℓ-k ) , (ℓ ≥ 0) ,
where T = T (z), W k = W k (z) and ϑ z = z ∂ ∂z corresponds to marking a vertex (such combinatorial operator consists to choose a vertex among the others). For the combinatorial sense of (4), we refer the reader to [START_REF] Bender | The asymptotic number of labelled connected graphs with a given number of vertices and edges[END_REF][START_REF] Janson | The birth of the giant component[END_REF] or [START_REF] Wright | The Number of Connected Sparsely Edged Graphs[END_REF].

Fact 2. Let A and B be two formal power series and ℓ ∈ N.

If (1 -T ) ϑ z A + (ℓ + 1) A (1 -T ) ϑ z B + (ℓ + 1) B then A B.
To prove Fact 2, fix ℓ ≥ 0. We write ( 5)

B(z) -A(z) = ∞ n=0 (b n -a n ) z n n! and ∀n, c n = b n -a n . Suppose that (1 -T ) ϑ z A + (ℓ + 1) A (1 -T ) ϑ z B + (ℓ + 1) B. We then have n! [z n ] ((1 -T (z)) ϑ z (B(z) -A(z)) + (ℓ + 1) (B(z) -A(z))) = (n + ℓ + 1)c n - n k=1 n k k k-1 (n -k)c n-k ≥ 0 . (6) 
It is now easily seen that ∀n, c n ≥ 0. Therefore, A B.

Our proof of (3) is divided into two parts each of each are given in the next Sections.

Proof of W ℓ b ℓ (1-T ) 3ℓ

Define the family (W ℓ ) ℓ≥0 as W 0 = -1 2 log (1 -T ) and for ℓ ∈ N ⋆ , W ℓ = b ℓ (1-T ) 3ℓ . Observe that we have W 0 W 0 and W 1 W 1 has been proved in [START_REF] Wright | The Number of Connected Sparsely Edged Graphs III: Asymptotic results[END_REF]. Now, we can proceed by induction. Suppose that for 2

≤ i ≤ ℓ, W i W i = b i
(1-T ) 3i and let us prove that

W ℓ+1 W ℓ+1 = b ℓ+1
(1-T ) 3ℓ+3 . Simple calculations show that ( 7)

ϑ 2 z -ϑ z 2 W ℓ ϑ 2 z 2 W ℓ 3ℓ(3ℓ + 2) 2 b ℓ (1 -T ) 3ℓ+4 - 3ℓ(3ℓ + 2) 2 b ℓ (1 -T ) 3ℓ+3 , (8) ϑ z W 0 ϑ z W ℓ 3ℓb ℓ 2 b ℓ (1 -T ) 3ℓ+4 - 3ℓb ℓ 2 b ℓ (1 -T ) 3ℓ+3 and (9) 1 2 ℓ-1 p=1 ϑ z W p ϑ z W ℓ-p 1 2 ℓ-1 p=1 9p(ℓ -p)b p b ℓ-p 1 (1 -T ) 3ℓ+4 - 1 (1 -T ) 3ℓ+3 .
Summing ( 7), ( 8), ( 9), using the recurrence (1) and the induction hypothesis, we find that [START_REF] Ravelomanana | The Average Size of Giant Components between the Double-Jump[END_REF] (

1 -T )ϑ z W ℓ+1 + (ℓ + 1)W ℓ+1 3(ℓ + 1)b ℓ+1 (1 -T ) 3ℓ+4 - 3(ℓ + 1)b ℓ+1 (1 -T ) 3ℓ+3 . Since (11) (1 -T )ϑ z W ℓ+1 + (ℓ + 1)W ℓ+1 = 3(ℓ + 1)b ℓ+1 (1 -T ) 3ℓ+4 - 2(ℓ + 1)b ℓ+1 (1 -T ) 3ℓ+3
by Fact 2, we have W ℓ+1 W ℓ+1 .

Proof of b

ℓ (1-T ) 3ℓ - c ℓ (1-T ) 3ℓ-1 W ℓ Define W 0 = W 0 and for ℓ ∈ N ⋆ , W ℓ = b ℓ (1-T ) 3ℓ - c ℓ (1-T ) 3ℓ-1 .
As before, we shall proceed by induction. We have W 0 W 0 and

(12) W 1 -W 1 = 13 12 (1 -T ) - 1 2 - T 8 + T 2 24 13 12 1 (1 -T ) -T -1 = 13 T 2 12(1 -T ) 0 . Suppose that for 2 ≤ k ≤ ℓ, W k = b k (1-T ) 3k - c k (1-T ) 3k-1 W k . We have to prove that W ℓ+1 = b ℓ+1 (1-T ) 3ℓ+3 -c ℓ+1 (1-T ) 3ℓ+2
W ℓ+1 . For this purpose, define Ψ ℓ+1 as

Ψ ℓ+1 = ϑ 2 z -3ϑ z 2 -ℓ W ℓ + (ϑ z W 0 ) (ϑ z W ℓ ) + 1 2 ℓ-1 k=1 ϑ z W k - (3ℓ -1)c ℓ (1 -T ) 3ℓ ϑ z W ℓ-k - α ℓ (1 -T ) 3ℓ+2 + β ℓ (1 -T ) 3ℓ+1 + γ ℓ (1 -T ) 3ℓ + δ ℓ (1 -T ) 3ℓ-1 , (13) 
where α ℓ , β ℓ , γ ℓ and δ ℓ are given by

α ℓ = (7ℓ + 4)c ℓ+1 2 -3(ℓ + 1)b ℓ+1 - 3 4 ℓb ℓ + (3ℓ -1)(3ℓ + 4) 4 c ℓ + 1 2 ℓ-1 t=1 (3t -1)c t (3ℓ -3t -1)c ℓ-t , (14) 
β ℓ = - (3ℓ + 2)c ℓ+1 2 + 2(ℓ + 1)b ℓ+1 - 3 4 ℓb ℓ - (3ℓ -1)(3ℓ + 4) 4 c ℓ - 1 2 ℓ-1 t=1 (3t -1)c t (3ℓ -3t -1)c ℓ-t , (15) 
γ ℓ = ℓb ℓ 2 + (3ℓ -1)c ℓ 2 and δ ℓ = - ℓ -1 2 c ℓ . (16) 
Rewritting the formal power series

α ℓ (1-T ) 3ℓ+2 + β ℓ (1-T ) 3ℓ+1 + γ ℓ (1-T ) 3ℓ + δ ℓ (1-T ) 3ℓ-1 as follows (7ℓ + 4)/2 c ℓ+1 -3(ℓ + 1)b ℓ+1 -3/4ℓb ℓ (1 -T ) 3ℓ+2 - (3ℓ + 2)/2 c ℓ+1 -2(ℓ + 1)b ℓ+1 + 3/4ℓb ℓ (1 -T ) 3ℓ+1 + (3ℓ -1)(3ℓ + 4)c ℓ 1 (1 -T ) 3ℓ+2 - 1 (1 -T ) 3ℓ+1 + 2ℓb ℓ 2(1 -T ) 3ℓ + (3ℓ -1)c ℓ 2(1 -T ) 3ℓ - (ℓ -1)c ℓ 2(1 -T ) 3ℓ-1 , (17) 
it is easily seen that if the quantity (coming from the denominators of the 2 first terms of the above equation) Using (1) and (2), after simple algebra we have (18). Therefore by construction, RHS of(4) Ψ ℓ+1 . After nice cancellations, it yields 

(

  2ℓ + 1)c ℓ+1 -(ℓ + 1)b ℓ+1 -T ) 3ℓ+1 + γ ℓ (1-T ) 3ℓ + δ ℓ (1-T ) 3ℓ-1 0. (We used 1/(1 -T ) a 1/(1 -T ) b if a ≥ b).

  + 1)b ℓ+1 (1 -T ) 3ℓ+4 -2(ℓ + 1)b ℓ+1 + (3ℓ + 2)c ℓ+1 (1 -T ) 3ℓ+3 + (2ℓ + 1)c ℓ+1 (1 -T ) 3ℓ+2 . Remarking that (1 -T )ϑ z W ℓ+1 + (ℓ + 1) W ℓ+1 = Ψ ℓ+1 , we have completed the proof of W ℓ+1 W ℓ+1 .