
HAL Id: hal-00153935
https://hal.science/hal-00153935

Submitted on 12 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lambda Mu Calculus and Duality: Call-by-Name and
Call-by-Value
Jérôme Rocheteau

To cite this version:
Jérôme Rocheteau. Lambda Mu Calculus and Duality: Call-by-Name and Call-by-Value. Rewriting
Techniques and Applications, Apr 2005, Nara, Japan. pp.204-218. �hal-00153935�

https://hal.science/hal-00153935
https://hal.archives-ouvertes.fr

ha
l-

00
15

39
35

, v
er

si
on

 1
 -

 1
2

Ju
n

20
07

λµ-calculus and duality:

call-by-name and call-by-value

Jérôme Rocheteau

ESTAS – INRETS

20 rue Élisée Reclus – BP 317
F-59666 Villeneuve d’Ascq Cedex

jerome.rocheteau@inrets.fr

Preuves, Programmes et Systèmes
CNRS – Université de Paris VII

UMR 7126 – Case 7014
175 rue du Chevaleret – 75013 Paris – France

Abstract. Under the extension of Curry-Howard’s correspondence to
classical logic, Gentzen’s NK and LK systems can be seen as syntax-
directed systems of simple types respectively for Parigot’s λµ-calculus
and Curien-Herbelin’s λ̄µµ̃-calculus. We aim at showing their compu-
tational equivalence. We define translations between these calculi. We
prove simulation theorems for an undirected evaluation as well as for
call-by-name and call-by-value evaluations.

1 Introduction

Key systems for classical logic in proof theory are Gentzen’s NK and LK. The log-
ical equivalence between the latter was proved in [Gentzen, 1934]. We deal with
the extension of Curry-Howard’s correspondence between proofs and programs
through the systems of simple types for the λµ and λ̄µµ̃-calculi. This extension
concerns some other calculi. It is initially Felleisen’s λc-calculus. Its type system
is the intuitionistic natural deduction with the double negation axiom. Griffin
proposed this axiom as the type for the c-operator in [Griffin, 1990]. However, we
focus on calculi that correspond closer to Gentzen’s systems. The λµ-calculus
was defined for NK in [Parigot, 1992]. The λ̄µµ̃-calculus was designed for LK

in [Curien and Herbelin, 2000]. In the general case, these two calculi are not
deterministic. There exists critical pairs. The λ̄µµ̃-calculus admits two deter-
ministic projections depending on choosing one of the two possible symmetric
orientations of a critical pair. They correspond to the call-by-name/call-by-value
duality.

We aim at proving the computational equivalence between λµ and λ̄µµ̃-
calculi. A major step was reached with the proof of the simulation of the λµ-
calculus by the λ̄µµ̃-calculus in [Curien and Herbelin, 2000]. It holds both for
call-by-name and call-by-value evaluations. We present the call-by-name/call-
by-value projections of the λµ-calculus in the same way as for the λ̄µµ̃ in
[Curien and Herbelin, 2000] . It consists of choosing one of the two possible
orientations of a critical pair. We prove that the λµ-calculus simulates back-
wards the λ̄µµ̃-calculus in such a way that we obtain easily the same result
for the call-by-name, for the call-by-value and for the simple type case. The

λ̄µµ̃-calculus is composed of three syntactic categories: terms, contexts (or envi-
ronments) and commands. The λµ-calculus is basically composed of terms and
commands. We add contexts to the λµ-calculus. It eases mappings between the
λµ and λ̄µµ̃-calculi. We extend the translation from the λµ-calculus to the λ̄µµ̃-
calculus defined in [Curien and Herbelin, 2000] over the λµ-contexts. We define
backwards a translation from the λ̄µµ̃-calculus to the λµ-calculus.

In section 2 we present the λµ-calculus. In section 3 we present the λ̄µµ̃-
calculus. In section 4 we define translations between these two calculi. In section
5 we prove simulation theorems that hold for call-by-name and call-by-value.

2 λµ-calculus

We follow the definition given in [Parigot, 1992]. Firstly, we present the gram-
mar of terms and commands. Secondly, we present the system of simple types.
Thirdly, we present generic reductions and their call-by-name and call-by-value
projections. Fourthly, we extend both the grammar and the type system to the
contexts.

Basically, the λµ-calculus is composed of terms and commands. They are
defined by mutual induction:

t ::= x | λx.t | (t) t | µα.c c ::= [α] t

Symbols x range over λ-variables, symbols α range over µ-variables. We note
x ∈ t or α ∈ t the fact that x or α has a free occurrence in t. Symbols λ and µ
are binders. Two terms are equal modulo α-equivalence.

The system of simple types for the λµ-calculus is based on two kinds of
sequents. The first Γ ⊢ t : T | ∆ concerns the terms and the second c : (Γ ⊢ ∆)
concerns the commands in which T is a simple type obtained by the grammar
T ::= X | T → T , Γ is a finite domain application from λ-variables to simple
types and ∆ is a finite domain application from µ-variables to simple types. Γ, Γ ′

denotes the union of the applications Γ and Γ ′. System rules are:

x:A⊢x:A |
Γ⊢t:B | ∆

Γ\{x:A}⊢λx.t:A→B | ∆

Γ⊢u:A→B | ∆ Γ ′⊢v:A | ∆′

(∗)
Γ,Γ ′⊢(u) v:B | ∆,∆′

Γ⊢t:A | ∆
(∗)

[α] t:(Γ⊢∆,α:A)

c:(Γ⊢∆)

Γ⊢µα.c:A | ∆\{α:A}

The restriction (∗) requires that Γ and Γ ′ match each other on the intersection
of their domains. This holds for ∆ and ∆′ too.

The category of contexts is introduced in order to ease comparisons with the
homonymous category of the λ̄µµ̃-calculus. λµ-contexts are defined by mutual
induction with the terms:

e ::= α | β(t) | t · e

We can see contexts as commands with a hole to fill. The first construction α
expects a term t in order to provide the command [α] t. The second β(t) expects

a term u in order to provide the command [β] (t)u. The last t · h puts the term
t on a stack and expects another term to fill the hole.

Definition 1. Let t a term and e a context. The command e{t} is defined by

induction on e:

e{t} =











[α] t if e = α

[β] (u) t if e = β(u)

h{(t)u} if e = u · h

The type system is extended to another kind of sequents Γ | e : T ⊢ ∆. The
typing rules give the context e the type of the term t that fills the hole of e:

| α:A⊢α:A
Γ⊢t:(A→B) | ∆

Γ | β(t):A⊢∆,β:B

Γ⊢t:A | ∆ Γ ′ | e:B⊢∆′

Γ,Γ ′ | t·e:(A→B)⊢∆,∆′

A sequent calculus like cut-rule can then be derived in this system as a term
against context application.

Lemma 1. The rule
Γ⊢t:A | ∆ Γ ′ | e:A⊢∆′

e{t}:(Γ,Γ ′⊢∆,∆′)
holds in λµ.

Proof. By induction on e.

– if e = α then e{t} = [α] t and
Γ⊢t:A | ∆

[α] t:(Γ⊢∆,α:A)

– if e = β(u) then e{t} = [β] (u) t and

Γ⊢u:(A→B) | ∆ Γ ′⊢t:A | ∆′

Γ,Γ ′⊢(u) t:B | ∆,∆′

[β] (u) t:(Γ,Γ ′⊢∆,∆′,β:B)

– if e = u · h then e{t} = h{(t)u} and

Γ⊢t:(A→B) | ∆ Γ ′⊢u:A | ∆′

Γ,Γ ′⊢(t) u:B | ∆,∆′ Γ ′′ | h:B⊢∆′′

ind. hyp.
h{(t) u}:(Γ,Γ ′,Γ ′′⊢∆,∆′,∆′′)

Definition 2. Let t a term, e a context and α a µ-variable, The term t[α← e]
– the substitution of α by e in t – is defined by induction on t:

t[α← e] =



















x if t = x

λx.u[α← e] if t = λx.u

(u[α← e]) v[α← e] if t = (u) v

µβ.c[α← e] if t = µβ.c

c[α← e] =

{

e{t[α← e]} if c = [α] t

[β] t[α← e] if c = [β] t

The computation notion is based on reductions. We remind one-step reduc-
tion rules:

(λx.u) t→β u[x← t]
µδ.[δ] t →θ t (if δ /∈ t)

(µα.c) t →µ µα.c[α← t · α]
(t)µα.c→µ′ µα.c[α← α(t)]
[β] µα.c →ρ c[α← β]

The reduction
∗
→γ stands for the reflexive and transitive closure of →γ and the

reduction
∗
→ stands for the union of

∗
→γ for γ ∈ {β, µ, µ′, ρ, θ}.

Some of these reductions are linear. Both of the ρ and θ-reductions are linear
because they correspond to the identity in NK. The β-reduction from the term
(λx.t) y is linear because it consists of replacing a variable by another variable
inside a term. It corresponds to a normalisation against an axiom rule in NK.
The β-reduction from the term (λx.t)u where x has a single free occurrence in t
is linear too because it consists either of substituting a single variable occurrence
by any term. It corresponds either to a normalisation without a proof-tree branch
duplication.

Reductions ;γ ,
∗
;γ and

∗
; have the same meanings as in the general

case. The relation ≈ is defined as the reflexive, transitive and symmetric closure
of

∗
; .
There exists a critical pair for computation determinism. Applicative terms

(λx.t)µβ.d and (µα.c)µβ.d can be β or µ′-rewritten in the first case and µ or
µ′-rewritten in the second case. We can see the call-by-name and call-by-value
disciplines as restrictions of the generic reductions.

The call-by-name evaluation consists of allowing every reduction but the µ′-
rule. The β-reduction holds in the first case and the µ-reduction in the second.
Formally the call-by-name reduction is

∗
→n =

∗
→\

∗
→µ′ .

The call-by-value evaluation consists of prohibiting β and µ-reductions in
which the argument is a µ-abstraction. Formally we define a subset of terms
called values by this grammar: v ::= x | λx.t. βv and µv-reductions are defined
instead of generic β and µ ones:

(λx.u) v →βv
u[x← v] (µα.c) v →µv

µα.c[α← v · α]

The call-by-value reduction
∗
→v is the union of

∗
→γ for γ ∈ {βv, µv, µ

′, ρ, θ}.
Critical pairs are then µ′-rewritten.

There is another way to define call-by-value into the λµ-calculus. The solution
is detailed in [Ong and Stewart, 1997]. It consists of restricting the µ′-rule to
values instead of the µ:

(v)µα.c→µ′
v

µα.c[α← α(v)]

Formally
∗
→v becomes the union of

∗
→γ for γ ∈ {βv, µ, µ′

v, ρ, θ}. In fact terms
(λx.t)µα.c and (µα.c)µα′.c′ are respectively µ′ and µ-reduced because µα.c is
not a value in these cases. However, we follow Curien-Herbelin’s call-by-value
definition.

We finish this section by a lemma. It is useful for the section 5 simulation
theorems. Any command of the form e{µα.c} is a redex. However, some can not
be reduced in call-by-name nor in call-by-value.

Lemma 2. e{µα.c}
∗
→ c[α← e]

Proof. By induction on e.

– if e = β then e{µα.c} = [β] µα.c ;ρ c[α← β]
– if e = β(t) then

e{µα.c} = [β] (t)µα.c
→µ′ [β] µα.c[α← α(t)]
;ρ c[α← α(t)][α← β]
= c[α← β(t)]

– if e = t · h then
e{µα.c} = h{(µα.c) t}

→µ h{µα.c[α← t · α]}
∗
→ c[α← t · α][α← h]
= c[α← t · h]

This lemma does not hold in call-by-name for the β(t) induction case because
no µ′-rule is allowed. It holds in call-by-value if t is a value for the h · t induction
case.

3 λ̄µµ̃-calculus

The λ̄µµ̃-calculus has the same relation against LK as the λµ-calculus against
NK. Reductions of λ̄µµ̃-calculus correspond to the cut elimination steps in LK

as well as the λµ-reductions correspond to the NK-normalisation. We follow the
definition given in [Curien and Herbelin, 2000]. Firstly, we present the grammar
of the λ̄µµ̃-calculus. Secondly, we present the simple type system. Thirdly, we
present generic reductions and their call-by-name and call-by-value projections.

The λ̄µµ̃-calculus is basically composed of terms, commands and contexts1.
They are defined by mutual induction:

t ::= x | λx.t | µα.c c ::= 〈t | e〉 e ::= α | t · e | µ̃x.c

As in the λµ, symbols x range over λ-variables, symbols α range over µ-variables
and symbols λ, µ and µ̃ are binders. Terms are equal modulo α-equivalence.

This calculus symmetry looks like LK’s left/right symmetry. It is confirmed
by its system of simple types. This system shares types with the λµ-calculus. It
shares the same kinds of sequents too. Its rules are:

1 In [Dougherty et al., 2004] these are referred to respectively callers, callees and cap-
sules. We kept the terminology in [Curien and Herbelin, 2000] that sounds closer to
its meaning: terms are programs, contexts are environments and commands represent
”a closed system containing both the program and its environment”.

x:A⊢x:A | | α:A⊢α:A
Γ⊢t:B | ∆

Γ\{x:A}⊢λx.t:A→B | ∆

Γ⊢t:A | ∆ Γ ′ | e:B⊢∆′

(∗)
Γ,Γ ′ | t·e:A→B⊢∆,∆′

c:(Γ⊢∆)

Γ⊢µα.c:A | ∆\{α:A}

c:(Γ⊢∆)

Γ\{x:A} | µ̃x.c:A⊢∆

Γ⊢t:A | ∆ Γ ′ | e:A⊢∆′

(∗)
〈t | e〉:(Γ,Γ ′⊢∆,∆′)

The restriction (∗) is the same as that of λµ.
We present one-step reduction rules. Substitutions inside the λ̄µµ̃-calculus

are supposed to be known. Each rule concerns a command but the θ-rule:

〈λx.u | t · e〉 →β 〈t | µ̃x.〈u | e〉〉 〈µα.c | e〉 →µ c[α← e]
µδ.〈t | δ〉 →θ t (δ /∈ t) 〈t | µ̃x.c〉 →µ̃ c[x← t]

µ and µ̃-reductions are duals of each other. They correspond to the structural
rules in LK. Reductions

∗
→γ and

∗
;γ have the same meanings as in the λµ-

calculus. The β-rule is a mere term modification without term duplication. It
is therefore a linear reduction. The θ-reduction is linear too. There is no ρ-
reduction. It is a µ-rule particular case in which e = β.

This system is not deterministic. There is a single critical pair 〈µα.c | µ̃x.d〉.
It can be both µ or µ̃-rewritten so that Church-Rosser’s property does not hold.
In fact 〈µα.〈x | y · α〉 | µ̃x.〈z |x · β〉〉 is µ-rewritten as 〈x | y · µ̃x.〈z |x · β〉〉 and is
µ̃-rewritten as 〈z |µα.〈x | y · α〉 · β〉. These are two different normal forms.

Call-by-name and call-by-value disciplines still deal with this problem. They
both consist of restricting the context construction. The first new grammar is
called λ̄µµ̃T and the second is called λ̄µµ̃Q.

The call-by-name evaluation consists of restricting the µ-rule to a subset of
contexts that are called stacks. λ̄µµ̃T -grammar is:

t ::= x | λx.t | µα.c c ::= 〈t | e〉 s ::= α | t · s e ::= s | µ̃x.c

The µn-rule is restricted to the stacks:

〈µα.c | s〉→µn
c[α← s]

Call-by-name reduction
∗
→n is the union of

∗
→γ for γ ∈ {β, µn, µ̃, θ}. The critical

pair can then only be µ̃-rewritten. This reduction was proved confluent and
stable in the λ̄µµ̃T -calculus in [Curien and Herbelin, 2000].

The call-by-value oriented grammar consists of allowing the t · e context con-
struction only for values. λ̄µµ̃Q-grammar is:

t ::= x | λx.t | µα.c v ::= x | λx.t c ::= 〈t | e〉 e ::= α | v · e | µ̃x.c

The µ̃v-rule is restricted to values:

〈v | µ̃x.c〉→µ̃v
c[x← v]

Call-by-value reduction
∗
→v is the union of

∗
→γ for γ ∈ {β, µ, µ̃v, θ}. The com-

mand 〈µα.c |µα′.c′〉 can then only be µ-rewritten. This reduction was proved
confluent and stable in the λ̄µµ̃Q-calculus in [Curien and Herbelin, 2000].

The β′-rule contracts as shortcut for both a linear β-rule and a µ̃-rule:

〈λx.u | t · e〉 →β′ 〈u[x← t] | e〉

This β′-rule is obviously compatible with the call-by-name evaluation. It is also
compatible with the call-by-value because t is a value by definition of λ̄µµ̃Q.

4 Translations between λµ and λ̄µµ̃-calculi

We define a translation ()
†

from λµ to λ̄µµ̃. It extends that of Curien-Herbelin
to the λµ-contexts. We define backwards a translation ()

◦
from λ̄µµ̃ to λµ. We

prove properties about their compatibilities with the simple type system and
about their compositions.

Definition 3. Application ()
†

maps any λµ-term t, command c and context e

respectively to a λ̄µµ̃-term, command and context. ()
†

is defined by induction

on t, c and e:

t† =



















x if t = x

λx.u†
if t = λx.u

µβ.〈v† | µ̃y.〈u† | y · β〉〉 if t = (u) v (⋆)

µα.c† if t = µα.c

c† = [α] t
†

= 〈t† |α〉

e† =











α if e = α

µ̃y.〈t† | y · β〉 if e = β(t) (⋆⋆)

t† · h†
if e = t · h

Condition (⋆) requires that variables y and β have no free occurrence in u neither
in v. Condition (⋆⋆) requires that y /∈ t. A straightforward induction leads us to
state that t and t† have the same free variables set.

It seems more natural to translate (u) v by µβ.〈u† | v† · β〉. This shorter term
corresponds in LK to the arrow elimination rule in NK too. But it would not
be compatible with the call-by-value evaluation. For example, (x)µα.c would be
translated as µβ.〈x |µα.c† · β〉 in this case. It can not be reduced by any rule in
the λ̄µµ̃-calculus. However, (x)µα.c can be µ′-reduced in the λµ-calculus.

(u) v should be translated as µβ.〈u† | µ̃y.〈v† | µ̃x.〈y |x · β〉〉〉 with Ong and
Stewart’s call-by-value definition in [Ong and Stewart, 1997].

We show that translation ()
†

is compatible with the type system. If a typing
environment for a term t exists, it holds for t†.

Lemma 3. Γ ⊢ t : A | ∆ =⇒ Γ ⊢ t† : A | ∆

Proof. By a straightforward induction on t. We show the less than obvious cases.

– if t = (u) v then t† = µβ.〈v† | µ̃y.〈u† | y · β〉〉 and

Γ ′⊢v†:A | ∆′

Γ⊢u†:A→B | ∆

y:A⊢y:A | | β:B⊢β:B

y:A | y·β:(A→B)⊢β:B

〈u† | y·β〉:(Γ,y:A⊢∆,β:B)

Γ | µ̃y.〈u† | y·β〉⊢∆,β:B

〈v† | µ̃y.〈u† | y·β〉〉:(Γ,Γ ′⊢∆,∆′,β:B)

Γ,Γ ′⊢µβ.〈v† | µ̃y.〈u† | y·β〉〉:B| ∆,∆′

– if e = β(t) then e† = µ̃y.〈t† | y · β〉 and

Γ⊢t†:(A→B) | ∆

y:A⊢y:A | | β:B⊢β:B

y:A | y·β:(A→B)⊢β:B

〈t† | y·β〉:(Γ,y:A⊢∆,β:B)

Γ | µ̃y.〈t† | y·β〉:A⊢∆,β:B

Definition 4. Application ()◦ maps backwards any λ̄µµ̃-term t to a λµ-term.

Definition 1 is used to translate any λ̄µµ̃-command c. Definition of the λµ-

contexts is used to map the λ̄µµ̃-contexts e as well. ()
◦

is built by induction on

t, c and e:

t◦ =











x if t = x

λx.u◦
if t = λx.u

µα.c◦ if t = µα.c

c◦ = 〈t | e〉
◦

= e◦{t◦}

e◦ =











α if e = α

t◦ · h◦
if e = t · h

β(λx.µδ.c◦) if e = µ̃x.c (∗)

Condition (∗) requires that δ /∈ c. t and t◦ have the same free variables set.
Application ()

◦
is compatible with the type system too.

Lemma 4. Γ ⊢ t : A | ∆ =⇒ Γ ⊢ t◦ : A | ∆

Proof. By a straightforward induction on t. We give two cases.

– if c = 〈t | e〉 then c◦ = e◦{t◦} and

Γ⊢t:A | ∆ Γ ′ | e:A⊢∆′

〈t | e〉:(Γ,Γ ′⊢∆,∆′)

◦

=
Γ⊢t◦:A | ∆ Γ ′ | e◦:A⊢∆′

lem. 1
e◦{t◦}:(Γ,Γ ′⊢∆,∆′)

– if e = µ̃x.c then e◦ = β(λx.µδ.c◦) and

c:(Γ⊢∆)

Γ\{x:A} | µ̃x.c:A⊢∆

◦

=

c◦:(Γ⊢∆)

Γ⊢µδ.c◦:B | ∆

Γ\{x:A}⊢λx.µδ.c◦:(A→B)

Γ\{x:A} | β(λx.µδ.c◦):A⊢∆,β:B

We focus on properties about the composition of ()† and ()◦. We want to
state that t†◦ = t and that t◦† = t for any term. But it is not the case, these
results hold modulo linear reductions.

Theorem 1. t†◦
∗
; t

Proof. By a straightforward induction on t. Every cases is obtained successively
by expanding definitions 3, 1, 4 and by applying the induction hypothesis. We
give the case which uses linear reductions additionally.

– if t = (u) v then

(u) v
†◦

= µβ.〈v† | µ̃y.〈u† | y · β〉〉
◦

= µβ.[γ] (λy.µδ.[β] (u†◦) y) v†◦
∗
; µβ.[γ] (λy.µδ.[β] (u) y) v
;β µβ.[γ] µδ.[β] (u) v
;ρ µβ.[β] (u) v
;θ (u) v

We prove two lemmas before stating backwards that ()
◦†

is the identity
modulo linear reductions. The first lemma is useful to prove the second.

Lemma 5. 〈t0t1 . . . tn
† | e〉

∗
; 〈t0

† | t1
† · . . . · tn

† · e〉

Proof. By induction on n.

– if n = 0 then it is obvious
– if n = m + 1 then

〈t0t1 . . . tmtm+1
† | e〉 = 〈µβ.〈tm+1

† | µ̃y.〈t0t1 . . . tm
† | y · β〉〉 | e〉

;µ 〈tm+1
† | µ̃y.〈t0t1 . . . tm

† | y · e〉〉
;µ̃ 〈t0t1 . . . tm

† | tm+1
† · e〉

∗
; 〈t0

† | t1
† · . . . · tm

† · tm+1
† · e〉

The second lemma shows how to map a definition 1 command.

Lemma 6. e{t}
† ∗

; 〈t† | e†〉

Proof. By induction on e.

– if e = α then it is obvious by definitions 1 and 3
– if e = β(u) then

β(u){t}
†

= [β] (u) t
†

= 〈µγ.〈t† | µ̃y.〈u† | y · γ〉〉 |β〉
;µ 〈t

† | µ̃y.〈u† | y · β〉〉

= 〈t† |β(u)†〉

– if e = u · h then
u · h{t}

†
= h{(t)u}

†

∗
; 〈(t)u† |h†〉
∗
; 〈t† |u† · h†〉

= 〈t† |u · h†〉

Theorem 2. t◦†
∗
; t

Proof. By induction on t. We apply definitions 3, 4 successively and the induction
hypothesis. We give a typical case and another which needs either the previous
lemma or linear reductions.

– if c = 〈t | e〉 then

〈t | e〉◦† = e◦{t◦}†

∗
; 〈t◦† | e◦†〉
∗
; 〈t | e〉

– if e = µ̃x.c then

µ̃x.c◦† = β(λx.µβ.c◦)
†

= µ̃y.〈λx.µβ.c◦† | y · β〉
∗
; µ̃y.〈λx.µβ.c | y · β〉
;β µ̃y.〈y | µ̃x.〈µβ.c |β〉〉
;µ̃ µ̃x.〈µβ.c |β〉
;µ µ̃x.c

5 Simulations between λµ and λ̄µµ̃-calculi

We want to prove that the λµ-calculus simulates and is simulated backwards
by the λ̄µµ̃-calculus. We focus on the undirected evaluation. Call-by-name and
call-by-value are drawn from this.

We begin with the simulation of the λµ by the λ̄µµ̃. The next four lemmas
show results of a λµ-substitution after a β, µ, µ′ and ρ-reduction. Each proof
consists successively of

– expanding the λµ-substitution
– expanding the definition of ()

†

– applying the induction hypothesis if necessary
– factorising the λ̄µµ̃-substitution
– factorising the definition of ()†

We give basic cases and those which use lemmas additionally for any proof.

Lemma 7. t[x← u]† = t†[x← u†]

Proof. By induction on t.

– if t = x then x[x← u]† = u† = x†[x← u†]

– if t = y then y[x← u]† = y = y†[x← u†]
– if t = (v)w then

(v)w[x← u]† = (v[x← u])w[x← u]†

= µβ.〈w[x← u]† | µ̃y.〈v[x← u]† | y · β〉〉
= µβ.〈w†[x← u†] | µ̃y.〈v†[x← u†] | y · β〉〉
= µβ.〈w† | µ̃y.〈v† | y · β〉〉[x← u†]

= (v)w
†
[x← u†]

Lemma 8. t[α← u · α]
† ∗

; t†[α← u† · α]

Proof. By induction on t.

– if t = (a) b then

(a) b[α← u · α]
†

= (a[α← u · α]) b[α← u · α]
†

= µβ.〈b[α← u · α]
†
| µ̃y.〈a[α← u · α]

†
| y · β〉〉

∗
; µβ.〈b†[α← u† · α] | µ̃y.〈a†[α← u† · α] | y · β〉〉
= µβ.〈b† | µ̃y.〈a† | y · β〉〉[α← u† · α]

= (a) b†[α← u† · α]

– if c = [α] w then

[α] w[α← u · α]
†

= [α] w[α← u · α]
†

= u · α{w[α← u · α]}
†

= 〈w[α← u · α]† |u† · α〉
∗
; 〈w†[α← u† · α] |u† · α〉
= 〈w† |α〉[α← u† · α]

= [α] w
†
[α← u† · α]

Lemma 9. t[α← α(u)]
† ∗

; t†[α← µ̃y.〈y | y · α〉]u†

Proof. By induction on t.

– if t = (a) b then

(a) b[α← α(u)]
†

= (a[α← α(u)]) b[α← α(u)]
†

= µβ.〈b[α← α(u)]
†
| µ̃y.〈a[α← α(u)]

†
| y · β〉〉

∗
; µβ.〈b†[α← µ̃y.〈u† | y · α〉] | µ̃y.〈a†[α← µ̃y.〈u† | y · α〉] | y · β〉〉
= µβ.〈b† | µ̃y.〈a† | y · β〉〉[α← µ̃y.〈u† | y · α〉]

= (a) b
†
[α← µ̃y.〈u† | y · α〉]

– if c = [α] w then

[α] w[α← α(u)]
†

= [α] (w[α← α(u)])u
†

= 〈(w[α← α(u)])u
†
|α〉

∗
; 〈w[α← α(u)]

†
|u† · α〉

∗
; 〈w†[α← µ̃y.〈u† | y · α〉] |u† · α〉
= 〈w† |α〉[α← µ̃y.〈u† | y · α〉]

= [α] w†[α← µ̃y.〈u† | y · α〉]

Lemma 10. t[α← β]† = t†[α← β]

Proof. By induction on t.

– if c = [α] u then

[α] u[α← β]† = [β] u[α← β]†

= 〈u[α← β]† |β〉
= 〈u†[α← β] |β〉
= 〈u† |α〉[α← β]

= [α] u
†
[α← β]

Theorem 3 (simulation of the λµ-calculus by the λ̄µµ̃-calculus).

t→γ v =⇒ ∃u t†
∗
→ u ∧ v†

∗
; u

Proof. By cases on γ.

– if γ = β then

(λx.u) v
†

= µβ.〈v† | µ̃y.〈λx.u† | y · β〉〉
;β µβ.〈v† | µ̃y.〈y | µ̃x.〈u† |β〉〉〉
;µ̃ µβ.〈v† | µ̃x.〈u† |β〉〉
→µ̃ µβ.〈u†[x← v†] |β〉
;θ u†[x← v†]

= u[x← v]†

– if γ = µ then

(µα.c) v
†

= µβ.〈v† | µ̃y.〈µα.c† | y · β〉〉
;µ̃ µα.〈µα.c† | v† · α〉
→µ µα.c†[α← v† · α]

≈ µα.c[α← v · α]
†

– if γ = µ′ then

(v)µα.c
†

= µβ.〈µα.c† | µ̃y.〈v† | y · β〉〉
→µ µα.c†[α← µ̃y.〈v† | y · α〉]

≈ µα.c[α← α(v)]
†

– if γ = ρ then

[β] µα.c
†

= 〈µα.c† |β〉
;µ c†[α← β]

= c[α← β]
†

– if γ = θ then µδ.[δ] t
†

= µδ.〈t† | δ〉 ;θ t†

Corollary 1 (call-by-name case). t→n v =⇒ ∃u t†
∗
→n u ∧ v†

∗
;n u

Proof. By cases on β and µ-rules.

(λx.u) v is β-reduced in call-by-name without any restriction. It is simulated
in the λ̄µµ̃-calculus by a µ̃-reduction. The latter is in call-by-name without any
restriction too.

(µα.c) v is µ-reduced in call-by-name without any restriction. It is simulated
in the λ̄µµ̃-calculus by a µ-reduction. The latter is in call-by-name if v† · α is a
stack. It is the case by definition 3.

Corollary 2 (call-by-value case). t→v v =⇒ ∃u t†
∗
→v u ∧ v†

∗
;v u

Proof. By cases on β, µ and µ′-rules.

(λx.u) v is β-reduced in call-by-value if v is a value. It is simulated in the
λ̄µµ̃-calculus by a µ̃-reduction. The latter is in call-by-value if v† is a value. It
is the case by the definition of λ̄µµ̃Q.

(µα.c) v is µ-reduced in call-by-value if v is a value. It is simulated in the λ̄µµ̃-
calculus by a µ-reduction. The latter is in call-by-value without any restriction.

(v)µα.c is µ′-reduced in call-by-value without any restriction. It is simulated
in the λ̄µµ̃-calculus by a µ-reduction. The latter is in call-by-value without any
restriction as well.

The λ̄µµ̃-simulation by the λµ-calculus requires preliminary lemmas showing
that ()

◦
commutes over λµ and λ̄µµ̃-substitutions. Each proof consists of

– expanding the λ̄µµ̃-substitution

– expanding the definition of ()◦

– applying the induction hypothesis if necessary

– factorising the λµ-substitution

– factorising the definition of ()
◦

Lemma 11. t[x← u]◦ = t◦[x← u◦]

Proof. By induction on t.

– if t = x then x[x← u]
◦

= u◦ = x◦[x← u◦]

– if t = y then y[x← u]
◦

= y = y◦[x← u◦]

– if t = 〈t | e〉 then

〈t | e〉[x← u]
◦

= 〈t[x← u] | e[x← u]〉
◦

= e[x← u]
◦
{t[x← u]

◦
}

= e◦[x← u◦]{t◦[x← u◦]}
= e◦{t◦}[x← u◦]
= 〈t | e〉

◦
[x← u◦]

Lemma 12. t[α← h]
◦

= t◦[α← h◦]

Proof. By induction on t.

– if c = 〈t | e〉 then

〈t | e〉[α← h]◦ = 〈t[α← h] | e[α← h]〉◦

= e[α← h]
◦
{t[α← h]

◦
}

= e◦[α← h◦]{t◦[α← h◦]}
= e◦{t◦}[α← h◦]
= 〈t | e〉

◦
[α← h◦]

– if e = α then α[α← h]
◦

= h◦ = α◦[α← h◦]
– if e = β then β[α← h]

◦
= β◦ = β◦[α← h◦]

Theorem 4 (simulation of the λ̄µµ̃-calculus by the λµ-calculus).

t→γ v =⇒ ∃u t◦
∗
→ u

∗
; v◦

Proof. By cases on γ.

– if γ = β′ then
〈λx.u | v · e〉◦ = v◦ · e◦{λx.u◦}

= e◦{(λx.u◦) v◦}
→β e◦{u◦[x← v◦]}
= e◦{u[x← v]◦}
= 〈u[x← v] | e〉

◦

– if γ = µ then
〈µα.c | e〉

◦
= e◦{µα.c◦}
∗
→ c◦[α← e◦]
= c[α← e]

◦

– if γ = µ̃ then
〈t | µ̃x.c〉

◦
= [β] (λx.µδ.cδ) t◦

→β [β] µδ.c◦[x← t◦]
;ρ c◦[x← t◦]
= c[x← t]

◦

– if γ = θ then µδ.〈t | δ〉
◦

= µδ.[δ] t◦ ;θ t◦

Corollary 3 (call-by-name case). t→n v =⇒ ∃u t◦
∗
→n u

∗
;n v◦

Proof. By cases on β′, µ and µ̃-rules.
〈λx.u | v · e〉 is β′-reduced in call-by-name without any restriction. It is simu-

lated in the λµ-calculus by a β-reduction. The latter is in call-by-name without
any restriction too.
〈µα.c | e〉 is µ-reduced in call-by-name if e 6= µ̃x.c′ else it were µ̃-reduced.

It is simulated in the λµ-calculus with the help of lemma 2. The latter is in
call-by-name if e◦ 6= β(t) i.e. if e 6= µ̃x.c′. It is the case by definition 4.
〈t | µ̃x.c〉 is µ̃-reduced in call-by-name without any restriction. It is simulated

in the λµ-calculus by a β-reduction. The latter is in call-by-name without any
restriction as well.

Corollary 4 (call-by-value case). t→v v =⇒ ∃u t◦
∗
→v u

∗
;v v◦

Proof. By cases on β′, µ and µ̃-rules.
〈λx.u | v · e〉 is β′-reduced in call-by-value if v is a value. It is simulated in

the λµ-calculus by a β-reduction. The latter is in call-by-value if v◦ is a value.
It is the case by definition 4.
〈µα.c | e〉 is µ-reduced in call-by-value if e is either a µ-variable or a context

of the form v · h where v is a value or a µ-abstraction by the definition of λ̄µµ̃Q.
It is simulated in the λµ-calculus with the help of lemma 2. The latter is in
call-by-value if v◦ is a value in a context of the form h◦ · v◦ i.e. if v is a value in
a v · h context. It is the case by definition 4.
〈t | µ̃x.c〉 is µ̃-reduced in call-by-value if t is a value. It is simulated in the

λµ-calculus by a β-reduction. The latter is in call-by-value if t◦ is a value. It is
the case by definition 4.

6 Conclusion

Analysis of the λµ and λ̄µµ̃-calculi has shown their computational equivalence.
It holds for undirected evaluations of pure calculi (see theorems 3 and 4). This
result is then easily obtained for call-by-name and call-by-value evaluations (see
corollaries 1, 2, 3 and 4). It concerns the simple type system too (see lemmas 3
and 4).

The simulation of the λ̄µµ̃-calculus by the λµ-calculus is smoother than the
simulation of the λµ-calculus by the λ̄µµ̃-calculus. The first is obtained with the
help of linear reductions whereas the second is obtained with the help of linear
expansions.

This work can be extended in three ways. The first consists of proving
the same results for the call-by-value evaluation of the λµ-calculus defined in
[Ong and Stewart, 1997]. The second consists of defining CPS translations to
λ-calculus in order to complete [Curien and Herbelin, 2000]. The third consists
of extending the type system to the other logical constants.

References

Curien and Herbelin, 2000. Curien, P.-L. and Herbelin, H. (2000). The Duality of
Computation. In Proceedings of the International Conference on Functional Pro-

gramming.
Dougherty et al., 2004. Dougherty, D. J., Ghilezan, S., and Lescanne, P. (2004). Char-

acterizing strong normalization in a language with control operators. In Proceedings

of the 6th International ACM SIGPLAN Conference on Principles and Practice of

Declarative Programming, pages 155–166.
Gentzen, 1934. Gentzen, G. (1934). Investigations into Logical Deduction. In Szabo,

M., editor, Collected Papers of Gerhard Gentzen. North Holland.
Griffin, 1990. Griffin, T. G. (1990). The Formulae-as-Types Notion of Control. In

Proceedings of the 17th ACM Symposium on Principles of Programming Languages,
pages 47–57. ACM Press.

Ong and Stewart, 1997. Ong, L. and Stewart, C. (1997). A Curry-Howard foundation
for functional computation with control. In Proceedings of the 24th Annual ACM

Symposium on Principles of Programming Languages, pages 215–227. ACM Press.
Parigot, 1992. Parigot, M. (1992). λµ-calculus: an Algorithmic Interpretation of Clas-

sical Natural Deduction. In Proceedings of Internationnal Conference on Logic Pro-

gramming and Automated Deduction, volume 624 of Lectures Notes in Computer

Science, pages 190–201. Springer.

