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Denote by an l-component a connected graph with l edges more than vertices. We prove that the expected number of creations of (l + 1)-component, by means of adding a new edge to an l-component in a randomly growing graph with n vertices, tends to 1 as l, n tends to ∞ but with l = o(n 1/4 ). We also show, under the same conditions on l and n, that the expected number of vertices that ever belong to an l-component is ∼ (12l) 1/3 n 2/3 .

Introduction

We consider here simple labelled graphs, i.e., graphs with labelled vertices, without self-loops and multiple edges. A random graph is a pair (G, P ) where G is a family of graphs and P is a probability distribution over G. Topics on random graphs provide a large and particularly active body of research. For excellent books on these fields, see Bollobas [START_REF] Bollobas | Random Graphs[END_REF] or Janson [START_REF] Janson | Random Graphs[END_REF]. In this paper, we consider the continuous time random graph model {G(n, t)} t which consists on assigning a random variable, T e , to each edge e of the complete graph K n . The n 2 variables T e are independent with a common continuous distribution and the edge set of {G(n, t)} t is constructed with all edge e such that T e ≤ t. Throughout this paper, a (k, k + l) graph is one having k vertices and k + l edges. its excess is k. A (k, k + l) connected graph is said an l-component.

These terms are due, as far as we know, respectively to Janson in [START_REF] Janson | Growth of components in random graphs[END_REF] and to Janson et al in [START_REF] Janson | The birth of the giant component[END_REF].

To obtain the results presented here, methods of the probabilistic model {G(n, t)} t , studied in [START_REF] Janson | Growth of components in random graphs[END_REF], are combined with asymptotic enumeration methods (having the "counting flavour") developped by Wright in [START_REF] Wright | The Number of Connected Sparsely Edged Graphs[END_REF] and by Bender et al. in [START_REF] Bender | The asymptotic number of labelled connected graphs with a given number of vertices and edges[END_REF][START_REF] Bender | Asymptotic properties of labeled connected graphs[END_REF]. The problems we consider are in essence combinatorial problems. Often, combinatorics and probability theory are closely related and the approaches given here furnish efficient uses of methods of asymptotic analysis to get extreme characteristics of random labelled graphs. Following Janson in [START_REF] Janson | Growth of components in random graphs[END_REF], we define by α(l; k), the expected number of times that a new edge is added to an l-component of order k which becomes an (l + 1)-component. This transition is denoted l → l + 1. It has been proved by Janson et al. in [START_REF] Janson | The birth of the giant component[END_REF] that with probability tending to 1, there is exactly one such transition, see Theorem 16 and its proof. Our purpose in this paper is to give a different approach to obtain this result, when l → ∞ with n. More precisely, we propose an alternative method and direct calculations of the difficult results given in [START_REF] Janson | The birth of the giant component[END_REF], connecting these results to those of Bender et al. in [START_REF] Bender | The asymptotic number of labelled connected graphs with a given number of vertices and edges[END_REF][START_REF] Bender | Asymptotic properties of labeled connected graphs[END_REF]. To do this, we evaluate α l = n k=1 α(l; k), the expected number of transitions l → l + 1, and show that, whenever l → ∞ with n but l = o(n 1/4 ), α l ∼ 1.

Moreover, let V l be the number of vertices that ever belong to an l-component and V l max the order of the largest l-component that ever appears. We prove that, whenever l ≡ l(n) → ∞ with n but l = o(n 1/4 ), V l ∼ (12l) 1/3 n 2/3 and V l max = O(l 1/3 n 2/3 ). In particular, these results improve the work of Janson and confirm his predictions (cf. [START_REF] Janson | Growth of components in random graphs[END_REF]Remark 8]).

2 The Expected Number of Creations of (l + 1)-excess Graphs When adding an edge in a randomly growing graph, there is a possibility that it joins two vertices of the same component, increasing its excess. Let α(l; k) be the expected number of times that a new edge is added to an l-component of order k. Denote by c(k, k + l) the number of connected (k, k + l)-graph then we have the following lemma.

Lemma 1 For all l ≥ -1 and k ≥ 1, we have

α(l; k) = (n) k (k + l)! k! c(k, k + l) (k 2 -3k -2l) 2 (nk -k 2 /2 -3k/2 -l -1)! (nk -k 2 /2 -k/2)! (1 
) and for all l, k and n such that

l = O(k 2/3 ), 1 ≤ k ≤ n α(l; k) = 1 2 ρ l k (3l+1)/2 n l+1 exp - k 3 24n 2 + lk 2 8n 2 + lk 2n × 1 + O k n + k 4 n 3 + 1 k + O l 3 k 2 + l 1/2 k 1/2 + (l + 1) 1/16 k 9/50 (2) 
where

ρ l = 1 2 3 π e 12l l 2 (1 + O(1/l)) (3) 
3

Before proving lemma 1, let us recall the extension, due to Bender, Canfield and McKay [START_REF] Bender | Asymptotic properties of labeled connected graphs[END_REF], of Wright's formula for c(k, k + l), the asymptotic number of connected sparsely edged graphs [START_REF] Wright | The Number of Connected Sparsely Edged Graphs[END_REF].

Theorem 2 (Bender-Canfield-McKay 1992) There exists sequence r i of constants such that for each fixed ǫ > 0 and integer m > 1/ǫ, the number c(k, k + l) of connected sparsely edged graphs satisfies

c(k, k + l) = 3 π w l 2 e 12l l/2 k k+(3l-1)/2 × exp   m-2 i=1 r i l i+1 k i + O   l m k m-1 + l k + (l + 1) 1/16 k 9/50     (4) 
uniformly for l = O(k 1-ǫ ).
The first few values of the constant r i are

r 1 = - 1 2 , r 2 = 701 2100 , r 3 = - 263 1050
, r 4 = 538 859 2 695 000 .

3

Note that, the factor w l in (4) is given, for l > 0, by

w l = π Γ(l) Γ(3l/2) d l 8 3 27l 8e l/2 (5) 
where d l = 1/(2π) + O(1/l) and w 0 = π/ √ 6 (see [START_REF] Bender | The asymptotic number of labelled connected graphs with a given number of vertices and edges[END_REF][START_REF] Wright | The Number of Connected Sparsely Edged Graphs[END_REF]). We also remark here that in lemma 1, we restrict our attention to values of l such that l = O(k 2/3 ) which will be shown to be sufficient to obtain the result in theorem 4.

Proof of lemma 1. The proof given here are based on the works of Janson in [START_REF] Janson | Multicyclic components in random graphs process[END_REF][START_REF] Janson | Growth of components in random graphs[END_REF]. However, the main difference comes from the fact that our parameter, representing the excess of the sparse components l, is no more fixed as in [START_REF] Janson | Growth of components in random graphs[END_REF].

When a new edge is added to an l-component of order k, there are n k c(k, k + l) manners to choose an l-component and k 2 -k -l ways to choose the new edge. Furthermore, the probability that such possible component is one

of {G(n, t)} t is t k+l (1 -t) (n-k)k+( k
2 )-k-l and with the conditional probability dt (1-t) that a given edge is added during the interval (t, t + dt) and not earlier, integrating over all times, we obtain

α(l; k) = n k c(k, k + l) k 2 -3k -2l 2 1 0 t k+l (1 -t) (n-k)k+( k 2 )-k-l-1 dt (6)
which evaluation leads to (1). For 1 ≤ k ≤ n and l = O(k 2/3 ), the value of the integral in ( 6) is

(nk -k 2 /2 -3k/2 -l -1)! (nk -k 2 /2 -k/2)! = k -k-l-1 (n -k/2) -k-l-1 1 + O( k n ) . (7) Furthermore, (n) k (n -k/2) k = exp - k 3 24n 2 1 + O(k/n + k 4 /n 3 ) (8)
and obviously

k 2 -k -l = k 2 2 (1 + O(1/k)) . (9) 
Thus, combining ( 7),( 8) and ( 9) in ( 1), we infer that

α(l; k) = 1 2 (k + l)! k! c(k, k +l) exp -k 3 24n 2 (n -k/2) l+1 k k+l-1 1 + O(1/k + k/n + k 4 /n 3 ) . ( 10 
) Using Taylor expansions ln (k + l)! k l k! = l 2 2k + O(l 3 /k 2 ) + O(l/k) (11) 
which is sufficient for our present purpose (l = O(k 2/3 )). Also, we get

(n -k/2) l+1 n l+1 = exp - lk 2n - lk 2 8n 2 1 + O(k/n + lk 3 /n 3 ) . (12) 
Note that k 4 n 3 dominates the term lk 3 n 3 in (12). Then, using the asymptotic formula for the number c(k, k + l) given by theorem 2 in (10), we obtain (2). 2

The form given by equation ( 2), in lemma 1, suggests us to consider the asymptotic behaviour of

n k=1 k a exp - k 3 24n 2 + lk 2 8n 2 + lk 2n
where a = 3l+1 2 , l ≡ l(n) as n → ∞.

Lemma 3 As n → ∞, l ≡ l(n) = o(n 1/4
) and a = 3l+1 2 , we have

n k=1 k a exp - k 3 24n 2 + lk 2 8n 2 + lk 2n ∼ 2 a+1 3 (a-2)/3 Γ a + 1 3 n 2(a+1)/3 . (13) 3 
Proof. We start estimating the summation by an integral using, for e.g., the classical Euler-Maclaurin method for asymptotics estimates of summations (see [START_REF] De Bruijn | Asymptotic Methods in Analysis[END_REF]),

n k=1 k a exp - k 3 24n 2 + lk 2 8n 2 + lk 2n ∼ n 0 t a exp - t 3 24n 2 + lt 2 8n 2 + lt 2n dt (14) 
If we denote by I n the integral, we have after substituting t = 2n 2/3 e z :

I n ∼ 2 a+1 n 2(a+1) 3 +∞ -∞ exp(h(z))dz ( 15 
)
where

h(z) = - 1 3 e 3z + l 2n 2/3 e 2z + l n 1/3 e z + (a + 1)z . ( 16 
)
We have

h ′ (z) = -e 3z + l n 2/3 e 2z + l n 1/3 e z + (a + 1) (17) 
and

h ′′ (z) = -3e 3z + 2l n 2/3 e 2z + l n 1/3 e z . ( 18 
)
Let z 0 be the solution of h ′ (z) = 0. z 0 is located near 1 3 ln(a + 1) because a = (3l +1)/2 is large. Note that z 0 can be obtained solving the cubic equation h ′ (z) = 0. Straightforward calculations leads to the following estimate

z 0 = 1 3 ln 3 2 (l + 1) + O l 1/3 n 1/3 = 1 3 ln (a + 1) + O l 1/3 n 1/3 (19) 
and

h(z 0 ) = a + 1 3 ln (a + 1) - a + 1 3 + O( l 4/3 n 1/3 ) . (20) 
We have also h ′′ (z 0 ) = -3(a + 1) + 2l/n 1/3 e z 0 + l/n 2/3 and more generally

h (m) (z 0 ) = -3 m-1 (a + 1) + A m l n 1/3 e z 0 + B m l n 2/3 e 2z 0 . (21) 
Thus,

+∞ -∞ e h(z) dz = e h(z 0 ) +∞ -∞ exp h ′′ (z 0 ) (z -z 0 ) 2 2 + P (z -z 0 ) dz ( 22 
)
where P is a power series of the form P (x) = (a + 1) i≥3 p i x i and h ′′ (z 0 ) < 0.

At this stage, one can consider exp h

′′ (z 0 ) (z-z 0 ) 2 2
as the main factor of the integrand. We refer here to the book of De Bruijn [4, §4.4 and §6.8] for more discussions about asymptotic estimates on integrals of the form given by ( 22) and we infer that

+∞ -∞ e h(z) dz ∼ - 2π h ′′ (z 0 ) exp (h(z 0 )) . (23) 
Using the Stirling formula for Gamma function, i.e., Γ(t + 1) ∼ √ 2πt t t e t and the fact that z 0 is located near 1 3 ln(a + 1), h(z 0 ) ∼ (a+1) 3 (ln(a + 1) -1) and h ′′ (z 0 ) ∼ -3(a+1), we can see that (23) leads to (13) which is also the formula obtained by Janson in [START_REF] Janson | Growth of components in random graphs[END_REF].
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To estimate α l , due to (2), it is convenient to compare the magnitudes of

n k=1 k (3l+1)/2 n l+1 exp - k 3 24n 2 + lk 2 8n 2 + lk 2n (24) 
and of

n k=1 k 4 n 3 k (3l+1)/2 n l+1 exp - k 3 24n 2 + lk 2 8n 2 + lk 2n . (25) 
Also we need to compare (24) to the other "error terms" contained in the "big-ohs" of (2). Using the asymptotic value given by lemma 3, we easily obtain the estimates of the two quantities and we compute respectively 2 (3l+3)/2 3 (l-1)/2 Γ((l + 1)/2) for (24) and 2 (3l+11)/2 3 l/2+5/6 Γ((l + 1)/2 + 4/3)/n 1/3 for (25). Thus, the term "O(k 4 /n 3 )" in (2) can be neglected if l = o(n 1/4 ) otherwise the quantity represented by (25) is not small compared to that represented by (24). Similarly, straightforward calculations using [START_REF] Bollobas | Random Graphs[END_REF] show that the terms k/n, 1/k, l 3 /k 2 , l 1/2 /k 1/2 and (l + 1) 1/16 /k 9/50 can also be neglected. Using Stirling formula for Gamma function, lemmas 1 and 3, we have

α l ∼ ρ l 2 2 3l+3 2 3 l-1 2 Γ( l + 1 2 ) . (26) 
After nice cancellations, it results that:

Theorem 4 In a randomly growing graph of n vertices, if l, n → ∞ but l = o(n 1/4 ), the expected number of transitions l → l + 1, for all l-components,

is α l ∼ 1. 3 
Note that in [7, p 301-306, §16-18], the authors already proved, by entirely different methods, that the most probable evolution of a random graph, when regarding the excess of connected component, is to pass directly from 1component to 2-component, from 2-component to 3-component, and so on.

Similarly, as an immediate consequence of calculations above and [6, Theorem 9], we have:

Corollary 5 As n → ∞ and l = o(n 1/4 ), the expected number of vertices that ever belong to an l-component is EV l ∼ (12l) 1/3 n 2/3 and the expected order of the largest l-component that ever appears is EV l max = O(l 1/3 n 2/3 ). 3

Note that these results answer the last remark in [START_REF] Janson | Growth of components in random graphs[END_REF].

Conclusion

We briefly point out a remark concerning the restrictions on l in constrained graphs problems, i.e., the creation and growth of components with prefixed configurations. A possible way of investigations could be to search for similar results with those of Bender-Canfield-McKay [START_REF] Bender | The asymptotic number of labelled connected graphs with a given number of vertices and edges[END_REF][START_REF] Bender | Asymptotic properties of labeled connected graphs[END_REF] for supergraphs of a given graph H.