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Observer Design with H,, Performance for Delay Descriptor Systems

D. Koenig and B. Marx

Abstract— This note deals with the problem of full-order  stability criterion for constant time-delay systems (not i
observer design for linear, descriptor systems with unknow  descriptor form), by using a bilinear matrix inequality (BM

input (Ul) and time-varying delays. The resulting filter is of g5 mylation. Unfortunately, only few papers deal with de-
Luenberger observer type, and it guarantees that theH..- int ¢ ith del ’ 71 1111 [15
norm of the system, relating the exogenous signals to the scriptor systems wi elay [7], [11], [15].

estimation error, is less than a prescribed level. Four sldc In this note, aH ., filtering design is proposed for linear,
matrix variables are introduced in the derivative of the Lya- continuous time-invariant systems with time varying-gela
gg{;’v dt’”grt]iggr?t' si?agi:ﬁercéiéﬁi%ﬁze Bcc())t?lsg(g\ll:tisdrg ign%iztri]’g and Ul. The proposed observer is a full-order observer, whic
dela;s;-indpependent criter)ila are obtaiﬁed. The ap)[/:)Iic;biIiy ofthe 'S T‘Ot in descriptor form, in order to faC|I.|tate its 'mplgme .
proposed approach is shown through a numerical example.  tation. Both delay-dependent and delay-independentigyabi
of the observer are studied.

In section IlI, the studied systems are defined, they are

H..observer design, time delay system, time-varying detescribed by a delay differential-algebraic equation with
lay, descriptor systems. a state-delay. This model is called singular, implicit or
descriptor system with delay. Our main contribution, dethi

) in section 111, is to propose for descriptor time-delay syss,
On the one hand, observer design for standard systems e\ 7. observer with delay-dependent conditions using

with unknown inputs (UI) has received considerable attenti 5 | v formulation. The recent stabilization method of [13]
in the last two decades [2], [3] since, in many practicalg extended to the descriptor estimation problem and new

situations, disturbances or some inputs cannot be measurg%bi”ty conditions are given in terms of LMIs. An example
On the other hand, singular systems have been extensiv%ygiven in section V.

studied in the past years due to the fact that singular
systems provide a more natural description of dynamic f the blocks induced by symmetry.) > 0 denotes
SVSte.”_‘S ‘haf_‘ the non-s!ngular representation [1_7]' [20 ymmetric positive definite matrices)*™ denotes any gener-
Specific applications of singular systems are, for iNStance i o4 inverse of the matrik), where(.)* (.)(.)* = (.)* and
constrained mechanical systems [12], electrical cird@i83, OO0 = (. Sym {X} = ’{X o XT} AL
robotics [22], social, biological and economic SyStemS“20The space of functions iR¢ that are square integrable over

Since, singular systems are very sensitive to slight inp b - q -
4 . s denoted by3 [0 th norm ||.|| ;. .
changes [5], the presence of Ul is very detrimental to tere’OO) I ¥z [0, 00) wi Il

observer design. This fact motivates the design of obsgrver

for descriptor systems in presence of Ul [3], [1], [15] and [I. PROBLEM FORMULATION

[16]. In addition, the existence of delay in practical spsse

may induce instability, oscillations and poor performace Consider linear continuous time-delay systems of the form
Moreover, descriptor systems may be destabilized by small

KEYWORDS

|I. INTRODUCTION

Notation 1: (.)” is the transpose matrix an) is used

delay in the feedback [19]. Therefore, current efforts on Ei(t) = Aoz (t)+Arz(t — 7(t))+ Bu(t) +Ww(?)

this topic have been carried out. Contributions on thisdopi z(t) = o(t), te€[-Tm,0] (1)
can be classified into two main categories, namely delay- v (t) = Cx (t)

independent criteria [21], [4] and delay-dependent deter 2 (t) = Lz (t)

[24], [25], [9], [14], [28], [13], [4]. It is well known that
the delay-independent criteria is more conservative thatherer (¢) is a known positive number denoting the delay,
the delay-dependent conditions especially for small delay™ (t) < 7. E may be rectangularr € R" is the state,
To the best of our knowledge, only in [4], the functionalu € R™ is the control inputy € R? is the Ul,y € R” is the
observer design for time-delay systems has been studigdeasurement ande R" is the vector to be estimated’ €
Specifically, Darouach [4] has proposed a delay dependéﬁfxn. A; € RF*n B, € RFXm (O ¢ RP*?, W € R*¥4
and L € R™*™, Without loss of generality it is assumed that

D. Koenig is with Laboratoire d’Automatique de Grenoble (BM ... % =p, rankL = r andrankW = q
, .
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dani en. koeni g@ npg. f r For the sake of simplicity, only one delay is considered

B. Marx is with the Centre de Recherche en Automatiquebut the method can be easily extended to multiple delays.

de Nancy UMR 7039, Nancy Université - CNRS, 2 avenue de In th L desi b f
la forét de Haye, 54516 Vandoeuvre-les-Nancy Cedex, France n the present paper our aim Is to design an observer for

benoi t. mar x@nsem i npl - nancy. fr the system (1). The proposed observer (2) is a full-order and



non descriptor Luenberger observer. where® and ¥ are given by

C(t)= Fo¢(t) + Fi¢ (¢ —7(t)) + TBu(t) E A A
+Goy (t) + Gry (t — 7 (1)) 2) C 0 0
z (t) = < (t) + Ny (t) o= 0 -I, 0 c R(k+2n+3p)><3n
Z(t)= Lz (t) 0 -C 0
with the initial state¢ (¢t) = ¢1 (¢) Vt € [—7m, 0], and where 8 8 :é’j

¢ € R" is the state observef: € R™ is the estimate of,
%2 € R"=" s the estimate ok. Matrices Fy, Fi, Go,G1, U=[I, 0 0] R

T and N are unknown matrices to be de5|gngd. 'ﬂﬁ@) The solution of (8) depends on the rank of matéx A
observer problem for a performance levet> 0 is to find solution exists if and only if [26]

the gains of the observer (2) that stabilizes asymptoticall
the state estimation errar(t) = #(¢t) — z(t) and ensures the rank {@] — rank® 9)
following performance index. N

I R U 9 T which is obviously equivalent to (4).
S = /0 (Z" (0)2(v) = 7*w" (Vw(v)) dv <0 (3) Under (4), the general solution of (8) is given by

where0 < 7(t) < 7, 7(t) < d < 1, 2(t) = 2(t) — 2 (1) T N Fy, Gy Fi G
and wherew(t) € ¢4 satisfiesw(t) # 0. — VO — K (Ipsansap — 0O (10)

. MAIN RESULTS where K is an arbitrary matrix of appropriate dimensions

The objective of the observer design is to minimize thend©+ is the generalized inverse matrix f Let us define
Hoc-norm of the transfer from the Ul to the estimation ofy, for i ¢ {1,2,3} by

a linear combination of the state variables, nams(y) = -
La(t). oo =[AT 0 0 —=CcT 0 0]

o1 =[AT 0 0 0 0 —C7]

A. Observer design
ey =[I, 0 0 0 0 0

The following theorem gives the structure of the state

estimation error. in this case the matrig” and the conditions 2) of theorem 1
Theorem 1:Under the condition can be rewritten as
E
rank {C} =n 4) [T F, F

_ _ =T N F, Go F, G 11
there exist matrice¥’, N, Fy, Iy, Go andG; such that the [ 0 o 1} [W v gpl} (1)

following conditions hold Substituting (10) into (11), we obtain

1) TE+ NC =1, Fy = xo — Kfo

2) Fi=TA; - G,C, i=0,1 Fr=x1-Kb& (12)

3) ¢(t) = (xo — Kfo)e(t) + (x1 = Kpr)e(t —7(t)) — T =x2—Kp

(X2 = KB5) W (2) where
whereG; = G;—F;N fori = {0,1} ande (t) = &(t) —x(t). Yo = UO* ¢,
Matricesx;, G;, for i = {0, 1,2} are defined in (13). x1 = ¥Otp,
A Proof: From (4), the state estimation erreft) = Y2 = ¥O1p, (13)
&(t) — z(t) becomes Bo=(I—007)p
e(t) = ((t) = TEa(t) ©®) b= (I —667) @

o - . . Bo= (I -00%)p
and the state estimation error (5) satisfies the differentia o , i
delay equation Substituting (12) in (7), relation 3) of theorem 1 followm

~ In other words, under condition (4), the state estimation
é(t) =Fpe(t) + Fre(t — 7(t)) + (Fo + GoC — T Ao) =(t)  error given by (2) is governed by

+ (FL + G1C — TAy) a(t — 7(t)) — TWuw(t) (6) &(t) = (xo — K Bo) e(t) + (x1 — KBi) e (t — 7 (£))
Now, if the condition 2 of theorem 1 holds, then (6) becomes — (x2 — KB2) Wuw(t) (14)
é(t) = Foe(t) + Fre(t — 7(t)) — TWw(t) (7) Z(t) =Le(t)

In the sequel the observer design reduces to find matricediere the matrices; and 3; are known (13). Then, the

T, N, Fy, Gy, F1, G, such that conditions 1) and 2) of the-observer design reduces to find the matrix g&irsuch that

orem 1 are satisfied. Rewriting conditions 1), 2) of theorer{iL4) is asymptotically stable and such that (3) is satisfied.

1as From [4], we can distinguish two different stability crite-
[T N Fy, Gy Fi Gi|e=V (8) ria, the first one is delay-dependent and the second one is



delay-independent. These criteria are related to theliggabi where (22) and < p (see eq. (24) in [6]).

of matricesF' = F, + F; and Fy. Before giving the stability (1) E 0 o 0
conditions of the obtained observer, we give the necessary Za(t) = L‘(t)} E, = [0 I] Af = {0 —pI]
and sufficient condition for the existence of a matkixsuch

that F and I, are Hurwitz. B, = {B] F, = [F”] A% = { © O}
Lemma 1:There exists a parameter matrik such that 0 0 pCr2, 0
N i T i F
F = x — Kp is Hurwitz if and only if Fly = [ (ﬂ Co = [Chyy 1] (22)
the pai is detectabl 15 N
e pair (x, () is detectable (15) Now, the estimation problem becomes &fh,, observer
or equivalently design problem of the form
AE — Ag — Ay D(t) = Fod(t) + Fyo(t — 7 (t)) + TBu(t)
k = YAeC,R(\) >0 (16 “ < “
ran { c } " €OR(N =20 (19 +Gy1 (1) + Goyz (t) + Gryz (t — 7 (1))
where To (t) = O@)+ Ny2(t), 9(t)=Li,(t)
X=Xx0+x1=UYO0T¢p whereG = T'F,; and where the next steps correspond to the
5 Bo+B1=—-060%)p methodology described previously (i.e. section I11.A).tNde
= [AT+AT 0 0 CT 0 —CT] that assumption (4) for system (21), venk [EY  C¢7| =
Proof: The proof of (15)>(16) is done in appendix@® n + dim¢, is equivalent torank [ET  CT, | = n which is
Lemma 2:There exists a matri¥{ such thatf, = xo —  equivalent to the following impulse observability conditi
K3y is Hurwitz if and only if B B, )
the pair (xo, Bo) is detectable a7) rank |0 E | —rank [E] =n (23)
0 0120
or equivalently ) _
since E' is of full row rank. Now, from Lemma 3.1-1) of
rang [N~ Aol _ VA EC,R(O) >0 (18) [3] we deduce that (23) is equivalent to (24) which is less
¢ , _ - restrictive than (4).
Proof: 1t can be easily derived from the proof of Lemma
. . EV AV
1, hence it is omitted. ] Y .
Remark 1: The computation of” is included in the design rank | 0 Ev —rank [E7] =n (24)
procedure, contrary to [15], [16]. More precisely, the matr 0 c

K involved in T (12) plays the role of a parametrization.B. The case of delay-dependent and rate-dependent syabilit
Hence, T cannot involve a loss of detectability (for more
details see [2]). Determination of the observer gains is detailed in the
Remark 2: The above results were obtained for the cas®llowing theorem..
where no delay and Ul are encountered in the measurementTheorem 2:Under conditions (4) and (16), and for a given
If we consider the general system function 7(¢) satisfying0 < 7(t) < 7, and7(t) < d < 1,
. the observer (2) for system (1) is asymptotically stable and
Evg(t)iAéx(t)+A¥f(t_7(t))+Bgu($)+Wmvw ®) achieves (3), if for a prescribegd > 0 and some prescribed
y' (O)=C"2(t) + Cya(t —7(t)) + Wy w(t) scalarsey, 9,3 € R there existP > 0, X >0, 5 >0, U
2(t)=La(t) (19) and matricedd; for i € {1..4} satisfying the LMI (25).
where we have rank [CV CV Wv] = dlmy s a1l Qi 13 Q4 T Hi

rank [WyT WJT] = ¢ < dimy" andrankE" =r <n, Qg2 03 Q2q T Ho
or if (4) does not hold, then the system (19) is, firstly, o33 Q34 TmHs <0 (25)

* X X X

transformed to the following equivalent descriptor system * * o4 T Hy
Ei(t)=®ox(t)+®12(t — 7(t))+Bu(t) + Fuiys + Fiows oo X
y1(t)=Cr,z(t) + Cr1, x(t — 7(t)) + w1 where
yQ(t):Clgo.CC(t) + Clglx(t — T(t)) 1] = Sym {61 (PXO — Uﬁo) + Hl} + S+ LTL
_ _ (20) iy =1 (Px1 —UB1) +e2(Pxo— Uho)" — Hy + HY
where £ € R™", rankE = r, and where a3 = (I —e ) P+ HT + &3 (Pxo — UﬁO)T

E...Cia, y1,y2,w; and wy are easily deduced from the a1 = —1PxaW +e1UBW + HE
results developed in section Il in [3]. Secondly, (20) is os = — (1 —d) S + Sym {e2 (Pxf—Uﬁl)—HQ}
transformed to the following equivalent system ass = —HT + 25 (Px1 — UB )T P

23 — — {13 3 1= 1 —c2

Eoiq(t) = Abz(t)+Ax, (t—7 (t))+Bau(t) Qgq = —e2PxoW + eUBeW — HY
+Fa1y1 (t) + Fagwz (t) 21) 9= TmX — 2e3P
yi(t) = Cuez(t) +Cryz(t—7(t) +wr a3q = —e3PxoW + e3U B W
y2 (1) = Cgxg (1) gy = —721,



The parameter matri¥_ is given by K = P~1U.

Proof: Consider the following Lyapunov candidate
function
Vi(t) =Vi(t)+Va(t)+ V() (26)
Wherevl =e ()Pe (1), ol e é(s)dsde,

ftrt

Se(r )dr P>O X>0 andS> 0. Note

that % corresponds to necessary and sufficient conditions

for stability of system without delay)s is typical for
delay-dependent criteria, whil&s corresponds to delay-
independent stability conditions. In order to establisffisu

a1 = Sym {€1PFO + Hl} + S + LTL

0412261PF1 —|—€2FOP H1+H2
a13=P+HI —e;P+e3FTP

Qg = —1 PTW + HI

Qg = — (1 — d)S+ Sym{sgPFl — Hg}
o3 = —Hg — 82P+83F1TP

gy = —EQPTW — H;{

gy = TmX - 263P

a3y = —e3 PTW

s = =21,

DefmmgX by (31), then for any semipositive-definite matrix

cient conditions of the existence of the observer (2) weyapplX; the inequality (32) is always true.

the Lyapunov-Krasovskii method and requires tb(a(te

t)

is strictly negative in order to guarantee the asymptotic

stability of system (14) and that

t)+ 21 (0)2(1) — v’ (uw(t) <0 (27)

is strictly negative in order to satisfy (3).
Since

H(e,w,t) = V(

0

e(t) —e(t—71(t)) — /t o é(s)ds

Foe(t) + Fre(t — 7(t)) = TWw(t) — é(t) =0

there exists matricedl;, i € {1..4}, free scalars;, i €
{1,2,3} and P such that

{

The time derivative ofV; for i € {1,2, 3} is defined by

2 [BT( )Hl —|—€ (t—T( ))HQ +8 ( )Hg —|—’LUT(t)H4}

X [e(t)—e (t—7(t ft )€ ds] =0
(28)
{ 2 [e1eT ()P + 2T (t — 7 (¢)) P + e3¢7 (1) P]
X [Foe(t)+ Fie(t—7 () —TWw(t) —é(t)] = (()29)

Vi = 2¢T (t) Pé(t)
‘:/2 = el ()X 6é(t) — f:ﬂ_m ¢T(s)Xé(s)ds
Va=el'(t)Se(t) — (1 —7(t) e (t — 7 (t))Se(t — 7 ()

Substituting (28) and (29) into (27), we obtain

H(e,w,t) =Vi + Vo + V5 + (28) + (29)

+ET ()2 () =’ (w ()

gr{(t)wlrl(t)—/tt ¢T(s)Xé(s)ds

¢
—2¢g (t) /t_ o é(s)ds (30)

= eT(t)H1 + eT(t — T(t))HQ + éT(t)Hg + wT(t)H4

Q11 Qa2 Qi3 Qg e(t)

\ifl _ * 6[22 6?23 (?24 Fl(t) _ €(t — T (t))
* * Q33 (34 (& (t)
* * * Q44 w (t)

Xll

*

X1z
Xoo

*

X3
Xo3

X33
k

X4

X:

*

(31)

* *

0 <7 I T ()X (t) - / t Tt XT(t)ds  (32)
t—7(t)
= 1, 0T () XT(t) — 7 () TT (1) XT (¢)
With (30) and (32) we obtain

t
H(e,w,t) <TT ()W (t) — / T (t, s)Waly (¢, s)ds
t—7(t)

(33)
where
U3 (ts)=[ TT(t) €"(s) ]
Xu X X3 Xu H
* Xoo Xog Xou H>
Uy = | * * X3z Xgza H3
* * * X44 H4
* * * * X
Uy \ifl + TmX

If U3 < 0and¥y, > 0 then H(e,w,t) < 0 and thus the
performance index (3) is satisfied. Specifically, if we selec
a matrix X, as

X =HX'AT (34)
where HY = [ H' Hf HJ H{ ] and X > 0 it
follows that X > 0 and ¥, > 0. In this caseH (e, w, t)

becomes negative definite for any nonzérdt) if ¥; < 0
which is equivalent to

011 Q12 Q13 g Ty My

* Qi Qligz  Qiaq T Ho

* * Q33 Q34 TmHs <0 (35)
* * * Q44 TmHy

* * * * —TmX

according to the Schur’'s complement. Substituting (12) int
(35), we obtain the LMI (25). ]
Algorithm 1: For a prescribed > 0 and scalarsy, s, €3

solve the LMI (25) onP > 0, X > 0, S > 0, U
and H;,(i = 1..4). The matrix gainK is deduced by
K P~'U. From (10) andG; = G; + F;N deduce
[T N Fy, Go Fi Gi ] andG,, i = 0,1 respec-
tively.



Remark 3:The delay-dependent and rate-independent cr
teria can be derived from Theorem 2 by settisig= 0.

C. The case of delay-independent and rate-dependent s
bility T

The delay-independent and rate-dependent criterion can ¢
derived from Theorem 2 by setting = 1, e = e3 =0,
H, = H, = H; = Hy = 0, X = 0, then the following 5
corollary is obtained.

Corollary 1: Under conditions (4) and (18), and given a 4f
function 7(¢) satisfying7(t) < d < 1, the observer (2) for
system (1) is asymptotically stable and achieves (3), ifafor ¥
prescribedy > 0 there existP > 0, S > 0 andU solving
the following LMI

z11 Px1—UB1 —PxoW +UBW ‘ , . ,
s —(1-d)5 0 <0 (36) r
* * -2,

13

Fig. 1. ~ function of r,, for d = 0.1, d = 0.4, d = 0.9 and anyd
wherexy; = Sym {Pxo —UBo} + S + LTL
Algorithm 2: For a prescribed > 0 solve the LMI (36)
onP > 0,5 >0andU . The matrix gaink is deduced One can easily verify that the design techniques presented
by K = P~'U. From (10) andG; = G; + F;N deduce in [13], [10] and [4] cannot be applied, since the system is
[T N F, Gy Fi Gi]andG,i=0,1 respectively. in singular form. Only [11] and [15] have presented some
Note that ford = 0, (i.e. constant delay) and = I,,, the  results about the observers design for linear singular-time

LMI (36) is equivalent to the LMI (7) defined in [15]. _delay systems. More precisely in [11] the delay- indepehden
Remark 4:The unknown matrices of the observers (2) idiltering design for an undisturbed descriptor system was
obtained from the general solutidsi of the LMI (25). proposed. While in [15] the delay-independéy, filtering

Remark 5:The H, observer design for linear time-delay design for disturb descriptor system with constant timizyle
systems has been addressed in [29], [6], [8] and [10] whetgas proposed. We can note that, for the casel of 0,
the case of the time-varying delay was considered in [8hpplying the result of Theorem 2 in [15], no solution has
[10]. The advantages of our results is that the systemeen found.
considered is really a descriptor system. While, the demri A procedure of dichotomy were used in order to determine
system (3) described in [6], is equivalent to the systerthe boundr,,, v and the scaling factors; for i € {1,2,3}.
(1) described in [6], if and only if the system (1) is notapplying algorithm 1 to the above descriptor system it is

in a descriptor form. In fact, the descriptor systéii = found that in the case of time varying delay satisfying
Aoz (t) + A1z (t — h), whereh is a constant delay, can o < (¢) < 7,, and7(t) < d < 1 the state estimation
be rewritten in the equivalent descriptor form [& (1) =  error (7) is asymptotically stable and the specifiéd upper
7(t),0=—F(t)+(Ao+ A1)z (t)— A1 [| , 7(s)dsifand  pound constraint (3) is simultaneously guaranteed. Theeigu
only if £ =1, sinceftt_hg(s) ds = Ex(t) — Ex(t — h). 1 summarized the results where for anyed = 1.3,e5 =
. N 02,65 =13, ford=0.1:6; = 1.5,69 = —0.4,65 = 1.2,

D. The case of delay-independent stability for d — 04 : &, = 1.5,e0 = —0.1,e5 = 1.3 and for

The delay-independent criterion can be derived fromThe@t = 0.9 : ¢, = 1.6, = —0.3,e5 = 1.3. For the
rem 3 by setting; = 1,2 =0, Hy = Hy = H3; = H, =0 case of delay-independent criteria (algorithm 2), no smtut
and X = 0. has been found since the detectability condition (18) is not

satisfied.

IV. EXAMPLE

Consider the linear algebra-differential system (1) where V. CONCLUSION

100
L=[0 1 0] B=03, E=|1 1 0
00 0 This paper have presented the design of observer for time-
delay descriptor systems affected by unknown inputs (Ul).
-2 0 0 -1 0 0 N L
. . The objective is to minimize théi,.-norm of the transfer
Ao=10 0 0| A=1|-1 -1 0 o ; o
0 o0 1 1 0 o0 from the Ul to the estimation of a linear combination of the

state variables. The convergence of the observer is based on
1 0 0 some new stability criteria for time-delay descriptor syst
] Like [13], the delay-dependent stability criterion is byadity

0
W=11 C= [
0 less conservative than [8], [30] and [4]. Sufficient coratit



to achieve prescribed disturbance attenuation level are dgg]
rived in terms of LMIs for the case of descriptor systems
with time-varying delay. The delay-independent conditiomlo]
for the case of time-varying delay is derived as a special
case of our conditions. The method developed in this papﬁrl]
generalize the results of [13], [15] and [4].

VI. APPENDIX

[12]
. . . [13]
Proof of Lemma 1There existsK such thatf' is Hurwitz
if and only if the pair(y, §) is detectable i.e.,
— 14
[51"5 X} —n, Vs €C, R(s) >0 (15) (4l
Let us define the nonsingular matricés, V, and the full-  [15]
column rank matrixVs by
. . I, 0 0 [16]
V1—[_1 ] Vo= |sI, I, O
© ¥ I3n 0 0 I2n
[17]
I 9ot
Va=1|0 I—-66t [18]
0 eet
Since (19]
sE—Ag— A sl, W
rank [ CO 1} = rank [ o 9] Vo —3n [20]
21
= rank [SIn g} —3n=n (2]
v [22]
we obtain
23
rank[SI" qj}zrank%{ﬂ" \Ij}Vl—éln (23]
¢ © ¢ © [24]
or equivalently
sl, —x X [25]
rank | B x | =4n
0 (C]
. . [26]
or equivalently(15) since from (9),rank® = 3n.
[27]
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