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COMPATIBLE COARSE NODAL AND EDGE ELEMENTS

THROUGH ENERGY FUNCTIONALS

F. MUSY† , L. NICOLAS‡ , AND R. PERRUSSEL†‡

Abstract. We propose new algorithms for the setup phase of algebraic multigrid (AMG) solvers
for linear systems coming from edge element discretization. The construction of coarse levels is
performed by solving an optimization problem with a Lagrange multiplier method: we minimize
the energy of coarse bases under a constraint linking coarse nodal and edge element bases. On
structured meshes, the resulting AMG method and the geometric multigrid method behave similarly
as preconditioner. On unstructured meshes, the convergence rate of our method compares favorably
with the AMG method of Reitzinger and Schöberl.
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1. Introduction. Edge element discretization plays a key-rôle in computational
electromagnetism; it can be implemented for evaluating the electric or magnetic field
using the vector wave equation or for evaluating the magnetic potential using the
eddy current formulation. As this finite element discretization leads to sparse but
generally large linear systems, efficient methods are required for the solution. Multi-
level techniques have been introduced by Hiptmair [5] and Arnold et al. [1]; they are
shown to be optimal on a hierarchy of nested grids. However, the inherent need of
hierarchical finite element meshes in geometric multigrid methods is very restricting
for industrial applications. It is more convenient to make use of a grey-box multilevel
algorithm which needs a single grid but takes into account additional information on
the initial problem.

For this purpose, algebraic multilevel methods have already been developed. Be-
yond the use of specific smoothers as Hiptmair or Arnold et al. proposed, Reitzinger
and Schöberl [14] have highlighted an essential geometric compatibility relation which
means that the gradient of a coarse nodal element function must belong to the coarse
edge element space. Based on this relation, Reitzinger and Schöberl achieved an
efficient method which is now widespread in the computational electromagnetism
community [7, 9, 10, 18, 17]. However, the combinatorial approach used there does
not lead to an optimal convergence rate. Some improvements have been proposed by
Bochev et al. [2, 6] based on smoothed aggregation techniques [15] and a compatibility
with a larger class of nodal prolongation operators.

Here, we propose a somewhat different approach. Following ideas from [16] and
[19], we construct coupled nodal and edge coarse bases by energy minimization and
we enforce the compatibility relation as a constraint. A connection can be made with
the smoothed aggregation method [8], which also involves energy minimization. In
order to simplify the notations, we present our construction in a two-level framework.

In Section 2, the problem and the properties of the considered finite element space
are reviewed, especially the essential geometric relation. The constrained minimiza-
tion problem is presented in Section 3. Then we introduce the resulting linear system
with Lagrange multipliers and the edge prolongation matrix as unknowns. Section 4
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describes in detail the conditions to obtain a well-posed minimization problem. First,
we clarify the construction of the edge function supports from a given graph and the
coarse nodal function supports and we point out the satisfied constraints. Then, we
prove that the coarse graph has to satisfy a connectivity condition if the implicit con-
straints are not enforced and we propose a construction of the coarse nodal function
supports together with a suitable definition of the coarse graph. Finally in Section 5,
we evaluate the efficacy of various versions of the algorithm corresponding to differ-
ent choices of energy norm. We give numerical results for 2D and 3D problems on
structured and unstructured meshes. On a hierarchy of nested meshes, the edge bases
being computed from the geometric nodal bases at each level, the resulting AMG
method and the geometric multigrid method behave similarly as preconditioner. On
unstructured meshes, the convergence rate of our method is better than the method of
Reitzinger and Schöberl [14]. However, because of the solution of the constrained min-
imization problem, we pay this improvement with a large increase of the computing
cost for the edge bases.

2. Definition of the continuous problem and its discretization.

2.1. Formulation. The following problem has to be solved on a domain Ω ⊂ R
d,

d = 2, 3:





To find E ∈ V such that: a(E,E′) = F (E′), ∀E′ ∈ V0,

with a(E,E′) =

∫

Ω

δ curlE · curlE′ +

∫

Ω

γE · E′.
(2.1)

V is an affine subspace of H(curl,Ω) [11] taking into account essential boundary
conditions, V0 is the vector subspace parallel to V , F is a linear form on V0 which
describes the source term, δ and γ are strictly positive functions, so that a is coercive;
F , δ and γ depend on the applications under consideration.

This formulation includes many static and transient electromagnetic models: po-
tential vector formulation for magnetostatic or eddy currents, electric or magnetic
field formulation in the transient case. For instance, for an eddy current formulation
in the transient case discretized by an implicit Euler scheme with time parameter △t,
E is the electric field, δ is equal to △t/µ with µ the magnetic permeability and γ is
the electric conductivity.

2.2. Finite element space and properties. Problem (2.1) is discretized by
using the lowest order edge elements introduced by Nédélec [13], which are conforming
in H(curl,Ω). We consider triangular and tetrahedral meshes. For a tetrahedron K,
the local polynomial space VK is defined by:

VK = {x 7→ p× x + q, x ∈ K and p,q ∈ R
3}. (2.2)

The symbol × denotes the cross-product.
The local degrees of freedom which permit to ensure the conformity in H(curl,Ω)

are given by path integrals along the edges of the element:

Eh 7→

∫

e

Eh · t ds (2.3)

where e is an edge of K, t is a tangential vector to e and Eh belongs to VK . Based
on this local description, an edge finite element space can be defined on a mesh of the
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domain. Vh will denote the edge finite element space, defined on a mesh Th of the
domain Ω, and taking into account essential boundary conditions.

Therefore using this finite element space, we are led to solve a linear system:

Ax = f. (2.4)

A fundamental property links the edge elements to the nodal P1-Lagrange ele-
ments: the gradient of a nodal function belongs to the space of edge functions. If we
denote the finite element bases as follows:

(i) (φh
p)p=1,...,Nh is the nodal basis,

(ii) (λh
i )i=1,...,Eh is the edge basis,

this property can be recast as:

gradφh
p =

Eh∑

i=1

Gh
ipλ

h
i , ∀p ∈ {1, . . . , Nh}, (2.5)

where Gh is known and is the edge-node incidence matrix of the mesh Th; in what
follows, the superscript h for the fine level will be opposed to H used for the coarse
level. Gh is a discrete analogue of the gradient operator on this mesh. Moreover, if
the domain is contractible, the subspace spanned by the gradφh

p ’s coincides exactly
with the kernel of the curl operator in the edge element space [4].

Our aim, as highlighted in [14], is to preserve the analogous compatibility re-
lation for coarse bases, which is natural with a hierarchy of nested grids. Thus, a
coherent representation of the kernel of the curl operator is preserved, which permits
the efficient use of the smoothers proposed by Hiptmair [5] and by Arnold et al. [1].
Therefore the gradient of a coarse nodal function must be a combination of coarse
edge functions.

Let us introduce the following notations:
(i) (φH

n )n=1,...,NH is the coarse nodal basis,
(ii) (λH

e )e=1,...,EH is the coarse edge basis,
the compatibility condition is written algebraically as:

gradφH
n =

EH∑

e=1

GH
enλ

H
e , ∀n ∈ {1, . . . , NH}. (2.6)

where GH is the discrete analogue of the gradient operator and is the edge-node
incidence matrix of a coarse graph. This operator GH or equivalently the associated
coarse graph has to be constructed before the computation of the coarse edge basis.
The way to obtain the coarse graph from the fine graph is postponed to Section 4.

These coarse bases are constructed so as to satisfy the inclusion of finite element
spaces, the “coarse” being included in the “fine”, which is expressed by the following
algebraic relations:

φH
n =

Nh∑

p=1

αpnφ
h
p , ∀n ∈ {1, . . . , NH}, (2.7a)

λH
e =

Eh∑

i=1

βieλ
h
i , ∀e ∈ {1, . . . , EH}. (2.7b)



4 F. Musy, L. Nicolas and R. Perrussel

According to relations (2.5), (2.6) and (2.7), the components αpn and βie of the
coarse bases must satisfy:

EH∑

e=1

Eh∑

i=1

βieG
H
enλ

h
i =

Nh∑

p=1

Eh∑

i=1

Gh
ipαpnλ

h
i , ∀n ∈ {1, . . . , NH}, (2.8a)

or equivalently:

EH∑

e=1

βieG
H
en =

Nh∑

p=1

Gh
ipαpn, ∀i ∈ {1, . . . , Eh}, ∀n ∈ {1, . . . , NH}. (2.8b)

Finally, if α denotes the matrix of components αin and β the matrix of components
βie, the compatibility relation (2.6) writes also under assumptions (2.5) and (2.7) as:

βGH = Ghα. (2.9)

3. Overview of the coarse bases construction.

3.1. Energy minimization problems. The domain Ω is decomposed into over-
lapping subdomains ΩH

n , for n in {1, . . . , NH}; this decomposition enables us to re-
strict the support of the coarse nodal basis functions.

In the same way, Ω is decomposed into overlapping subdomains Ue, for e in
{1, . . . , EH} in order to localize the supports of the coarse edge basis functions. The
subdomain Ue will be the intersection of two subdomains ΩH

l and ΩH
m.

Given the subdomains ΩH
n , the choice of the matrix GH determines the definition

of the subdomains Ue; we will clarify this point in Subsection 4.1.
Two minimization problems under constraints are solved successively. In analogy

with the nodal element case [16], we first solve:





To find (φH
n )n=1..NH minimizing

NH∑

n=1

c(φH
n , φ

H
n ) under the constraints:

NH∑

n=1

φH
n (x) = 1, ∀x ∈ Ω and supp(φH

n ) ⊂ ΩH
n , ∀n ∈ {1, . . . , NH}.

(3.1)

The bilinear form c can be for instance c(φ, ψ) =
∫
Ω γ gradφ · gradψ or more simply

the bilinear form associated with the Laplacian of the graph i.e. (Gh)tGh. Here the
superscript t denotes transposition.

Next, from the coarse nodal basis (φH
n )n=1,...,NH we compute the coarse edge basis

(λH
e )e=1,...,EH by solving the problem:





To find (λH
e )e=1,...,EH minimizing

EH∑

e=1

b(λH
e , λ

H
e ) under the constraints:

gradφH
n =

EH∑

e=1

λH
e G

H
en, ∀n ∈ {1, . . . , NH} and supp(λH

e ) ⊂ Ue, ∀e ∈ {1, . . . , EH}.

(3.2)
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The letter b denotes a scalar product on Vh which can be the bilinear form a(·, ·)
from (2.1) or variants, which will be introduced in Subsection 5.2 and implemented
in numerical examples in Section 5.

Problem (3.1) can be solved by using the method described in [16]. This is the
reason why we mainly concentrate our attention on Problem (3.2).

We introduce algebraic notations which encode the support constraints. First for
all e in {1, . . . , EH}, Ie is a subset of the set of indices of the fine edge basis functions
whose support is included in Ue. We assume that for all e Ie is non empty and we
define:

M̃ =

Eh∑

e=1

|Ie|. (3.3)

The term |Z| denotes the number of elements in a finite set Z. Then for e in
{1, . . . , EH} with Ie = {i1, . . . , i|Ie|}, we introduce the projection operator which
keeps only the components indexed by Ie:

Qe : R
Eh

→ R
|Ie|,

(Qex)k = xik
, ∀x ∈ R

Eh

, ∀k ∈ {1, . . . , |Ie|}.
(3.4)

The term xik
denotes the ik-th component of x. It is straightforward that the trans-

posed operation Qt
e is defined by :

Qt
e : R

|Ie| → R
Eh

,

(Qt
ey)i =

{
0 if i /∈ Ie

yk if i = ik ∈ Ie
, ∀y ∈ R

|Ie|.
(3.5)

Secondly, in order to restrict the number of constraints in Problem (3.2), we
introduce sets Jn for all n in {1, . . . , NH}. The sets Jn, like the sets Ie, are subsets
of indices of the fine edge basis functions.

The sets Jn will be carefully defined with the help of support conditions, so
as to decrease as much as possible the number of constraints coming from (2.8b)
and to obtain a well-posed problem; the construction of the Jn’s is described in
Subsection 4.2. We introduce an integer for denoting the number of constraints :

M =

NH∑

n=1

|Jn|. (3.6)

Since some Jn’s can be empty, we introduce the set:

F = {n ∈ {1, . . . , NH} | Jn 6= ∅}. (3.7)

Similarly to the operator Qe from set Ie, we introduce a canonical projection operator
associated to Jn for n in F :

Rn : R
Eh

→ R
|Jn|. (3.8)

Let K be the matrix whose coefficients are b(λh
j , λ

h
i ). In order to obtain a matrix

form of the minimization problem, we define matrices which are restrictions to the
subdomains under consideration of the matrix K:

Ke = QeKQ
t
e. (3.9)
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We also define:

ξn = RnG
hα•n, ∀n ∈ F and βe = Qeβ•e, ∀e ∈ {1, . . . , EH}. (3.10)

where α•n denotes the n-th column of α and β•e the e-th column of β.
After solving Problem (3.1), which gives the matrix α, we compute the βe’s by

solving the problem:





To minimize

EH∑

e=1

βt
eKeβe under the constraints:

Rn

( EH∑

e=1

GH
enQ

t
eβe

)
= ξn, ∀n ∈ F.

(3.11)

3.2. Solution of Problem 3.11. The constrained problem (3.11) can be solved
by a Lagrange multiplier method. Let us introduce column vectors ξ and ρ of R

M

and matrices D and T .
The components of the vector ρ are Lagrange multipliers relative to the constraints

in (3.11) and ξ is the vector defined by (3.10). If we suppose that F = {i1, . . . , i|F |},
ξ and ρ are defined block-wise as:

ξ =



ξi1
...

ξi|F |


 , ρ =



ρi1

...
ρi|F |


with ξin

, ρin
∈ R

|Jn|. (3.12)

The matrix D of dimension (M̃, M̃) is the block-diagonal matrix whose diagonal
blocks are the matrices Ke, e ∈ {1, . . . , EH}. Finally, the matrix T maps a vector

from R
M to R

M̃ in the following way:

T : ρ 7→




Q1

(∑

n∈F

GH
1nR

t
nρn

)

...

QEH

(∑

n∈F

GH
EHnR

t
nρn

)



. (3.13)

The minimization problem (3.11) can now be written:

To find β̄c ∈ R
M̃ minimizing β̄tDβ̄ in R

M̃ under the constraint T tβ̄ = ξ, (3.14)

or by introducing Lagrange multipliers:




To find a critical point (β̄c, ρc) ∈ R
M̃ × R

M of the Lagrangian L defined by:

L(q̄β, ρ) =
1

2
β̄tDβ̄ + ρt(ξ − T tβ̄).

(3.15)
This critical point must satisfy the system of equations:

(
D −T
T t 0

)(
β̄
ρ

)
=

(
0
ξ

)
(3.16)

This linear system can be solved in the following way:
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— first, the vector ρc of Lagrange multipliers is determined by applying an
iterative method to the system:

T tD−1Tρ = ξ. (3.17)

As we will see in Subsection 4.2, the matrix T tD−1T in (3.17) is symmet-
ric positive definite; the construction of the Rn’s will precisely ensure this
property.

— then, we return to the computation of β̄c by solving:

Dβ̄ = Tρc. (3.18)

The matrix T tD−1T will not be assembled and its multiplication by a vector can
be made efficiently; details will be given in Subsection 5.1.

4. Elements required by the construction.

4.1. Algebraic decomposition into subdomains. Associated to the fine no-
dal basis (φh

p)p=1,...,Nh , we give an oriented simple connected graph by its set of

vertices indexed by {1, . . . , Nh} and its set of edges Sh ⊂ {1, . . . , Nh}2. The orienta-
tions of the edges are arbitrary; there are no loops i.e. no elements (p, p) in Sh and if
(p, q) belongs to Sh, (q, p) does not belong to Sh. By convention, p is the origin and
q is the end of the edge (p, q). The edges could be the geometric edges of the mesh,
but we do not restrict ourselves to this situation: starting from the second finest grid,
we will have no more geometric edges.

The edges are numbered by i ∈ {1, . . . , Eh}, where Eh = |Sh|; the i-th edge is
denoted by (p(i), q(i)) and conversely if p = p(i) and q = q(i), we will write i = pqh.

Let us now give the precise definition of the edge-node incidence matrix Gh of
size Eh ×Nh:

Gh
il =





−1 if l = p(i),

+1 if l = q(i),

0 otherwise.

(4.1)

Two assumptions on the fine bases are supposed to be satisfied at the beginning.
We suppose that the fine nodal basis (φh

p )p=1,...,Nh satisfies the property:

Nh∑

p=1

φh
p(x) = 1, ∀x ∈ Ω. (4.2)

We assume that there exists a set of subdomains (Ωh
p)p=1,...,Nh of Ω such that:

Ω =
Nh⋃

p=1

Ωh
p and


⋃

q 6=p

Ωh
q




c

6= ∅, ∀p ∈ {1, . . . , Nh}, (4.3)

where the superscript c is the standard set-complement, and satisfying :

supp(φh
p ) ⊂ Ωh

p , ∀p ∈ {1, . . . , Nh}

and supp(λh
i ) ⊂ Ωh

p ∩ Ωh
q if i = pqh.

(4.4)

Assumptions (4.3) and (4.4) on the subdomains (Ωh
p)p=1,...,Nh enable us to control the

supports of the nodal (edge) functions and to avoid the linear dependence of these
functions.
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4.1.1. Notations and principle of the construction for the coarse nodal

basis. Several steps have to be considered:

1. In order to localize the supports of the coarse nodal functions (φH
n )n=1,...,NH ,

we introduce sets (Ln)n=1,...,NH of indices in {1, . . . , Nh} such that:

NH⋃

n=1

Ln = {1, . . . , Nh}, (4.5)

and we will write:

ΩH
n =

⋃

p∈Ln

Ωh
p . (4.6)

Then it is equivalent to state supp(φH
n ) ⊂ ΩH

n , and to require the unknowns
(αpn) in (2.7a) to satisfy:

αpn = 0, ∀n ∈ {1, . . . , NH}, ∀p ∈ {1, . . . , Nh} \ Ln. (4.7)

We introduce a reciprocal set-valued function L̃ defined by:

L̃p =
{
n ∈ {1, . . . , NH} | p ∈ Ln

}
, ∀p ∈ {1, . . . , Nh}. (4.8)

Because of (4.5), L̃p is non empty. Observe that (4.7) can be rewritten:

αpn = 0, ∀p ∈ {1, . . . , Nh}, ∀n ∈ {1, . . . , NH} \ L̃p. (4.9)

An illustration of these definitions is given in Figure 4.1. For the fine graph
in Figure 4.1(a), we set L1 = {1, 2, 3, 4, 5, 6, 7}, L2 = {5, 6, 8, 9, 13, 14} and

L3 = {7, 8, 10, 11, 12}. One obtains, for instance, the sets L̃7 = {1, 3} and

L̃4 = {1}.
2. The constant preservation constraint of (3.1) is obtained by enforcing:

NH∑

n=1

αpn = 1, ∀p ∈ {1, . . . , Nh}. (4.10)

Indeed, we substitute (2.7a) into the constant preservation constraint and we
use (4.2):

NH∑

n=1

φH
n (x) =

NH∑

n=1

( Nh∑

p=1

αpnφ
h
p(x)

)

=

Nh∑

p=1

φh
p (x)

( NH∑

n=1

αpn

)
=

Nh∑

p=1

φh
p(x) = 1.

3. We compute the prolongation matrix α with the encoded support constraint
(4.7) by minimizing the energy functional from (3.1) under the constant
preservation constraint (4.10). A method is given in [16].
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Fig. 4.1. Representation of the fine and coarse graphs, sets (Ln)n=1,...,3, C3 and Ie3
.

4.1.2. More notations and definitions: how to relate coarse and fine,

edge and nodal elements. For all n in {1, . . . , NH}, we let Cn be a set of fine edge
indices; these fine edges start or end in a node whose index is in Ln:

Cn =
{
i ∈ {1, . . . , Eh} | i = pqh with p or q ∈ Ln

}
. (4.11)

By (4.4) and (4.6), for i in Cn, the support of the fine edge basis function λh
i is

included in the n-th coarse nodal domain:

i ∈ Cn =⇒ supp(λh
i ) ∈ ΩH

n . (4.12)

We say that the fine edge function λh
i contributes to the gradient of the coarse

nodal function φH
n if i belongs to Cn. Indeed, from (2.5) and (2.7a), we get:

gradφH
n =

Nh∑

p=1

αpn

( Eh∑

i=1

Gh
ipλ

h
i

)
=

Eh∑

i=1

(Ghα•n)iλ
h
i ,

and from (4.1), (4.7) and (4.11):

(Ghα•n)i = 0, ∀n ∈ {1, . . . , NH}, ∀i ∈ {1, . . . , Eh} \ Cn. (4.13)

We introduce the reciprocal set-valued function C̃:

C̃i =
{
n ∈ {1, . . . , NH} | i ∈ Cn

}
, ∀i ∈ {1, . . . , Eh}. (4.14)

In Figure 4.1(b), the fine edges are numbered, set C3 is highlighted and we can draw

out, for instance, the set C̃8 = {1, 3}.
According to (4.8), (4.11) and (4.14) we infer:

C̃i = L̃p ∪ L̃q, if i = pqh. (4.15)

As a consequence, C̃i cannot be empty and the constant preservation constraint (4.10)
with (4.9) becomes:

∑

n∈C̃i

αpn =
∑

n∈C̃i

αqn = 1, if i = pqh. (4.16)

By analogy with the beginning of Subsection 4.1, we let SH be the set of edges
of a simple oriented connected graph whose vertices are indexed by {1, . . . , NH}; the
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elements of SH are indexed by e ∈ {1, . . . , EH}, and the inverse of the bijection
e 7→ (n(e),m(e)) is (n,m) 7→ nmH . Similarly to the matrix Gh, we introduce the
coarse edge-node incidence matrix GH of dimension EH ×NH with EH = |SH |.

The set SH has to satisfy a compatibility relation with the sets Cn:

Cn ∩ Cm 6= ∅, ∀(n,m) ∈ SH . (4.17)

For e in {1, . . . , EH}, we define the non empty index set Ie of the coarse edge
corresponding to e = nmH :

Ie = Cn ∩ Cm if e = nmH . (4.18)

Then from (4.12), if i belongs to Ie, the fine edge function λh
i has its support included

in Ue:

i ∈ Ie =⇒ supp(λh
i ) ⊂ Ue with Ue = ΩH

n ∩ ΩH
m.

The coarse graph in Figure 4.1(c) is related to the fine graph in Figure 4.1(a). Set
Ie3

is represented in Figure 4.1(d).
In order to satisfy the support constraint supp(λH

e ) ⊂ Ue, we impose on the
unknowns (βie) in (2.7b) the constraints:

βie = 0, ∀e ∈ {1, . . . , EH}, ∀i ∈ {1, . . . , Eh} \ Ie. (4.19)

By introducing the reciprocal set-valued function Ĩ defined by:

Ĩi =
{
e ∈ {1, . . . , EH} | i ∈ Ie

}
, ∀i ∈ {1, . . . , Eh}, (4.20)

the relation (4.19) can be rewritten as:

βie = 0, ∀i ∈ {1, . . . , Eh}, ∀e ∈ {1, . . . , EH} \ Ĩi. (4.21)

The set Ĩi might be empty for some i ∈ {1, . . . , Eh} i.e. some fine edge function might
not contribute to any coarse edge function but, as the sets Ie are never empty, we get:

Eh⋃

i=1

Ĩi = {1, . . . , EH}.

4.1.3. Graph- and set-theoretical properties of Ĩ and C̃. We will show
that it is not necessary to enforce the constraints (2.8b) for all (i, n). We need the
following lemma which is a direct consequence of (4.14), (4.18) and (4.20):

Lemma 4.1. If Ĩi is non empty, the following equivalence holds:

mnH ∈ Ĩi ⇔ (m,n) ∈ SH and {m,n} ⊂ C̃i.

Thus the edges indexed by Ĩi are the edges of SH whose extremity nodes are
indexed by C̃i. From this result, we will first deduce that the relations in (2.8b) are

always fulfilled in the case n /∈ C̃i.
Proposition 4.2. For every i in {1, . . . , Eh} and every n in {1, . . . , NH} \ C̃i,

the constraints (2.8b) of index (i, n) are implicitly satisfied.
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Proof. According to (4.13), the (i, n) coefficient of the right-hand side of (2.8b)
vanishes.

Conversely, according to (4.21) the left-hand side of (2.8b) is given by:

∑

e∈Ĩi

βieG
H
en.

It vanishes if Ĩi is empty. If e = lm
H

belongs to Ĩi, Lemma 4.1 implies that l and m
belong to C̃i. However for GH

en not to vanish, m and l must be equal to n and this

contradicts the assumption n /∈ C̃i.
Secondly, the following proposition points out that some relations in (2.8b) are

linearly dependent.
Proposition 4.3. Let i be a fixed index in {1, . . . , Eh} and m some index in

C̃i. If the constraints (2.8b) of index (i, n) are satisfied for all n in C̃i \ {m}, the
constraint of index (i,m) is also satisfied.

Proof. It is sufficient to prove the equality:

∑

n∈C̃i

( EH∑

e=1

βieG
H
en

)
=
∑

n∈C̃i

( Nh∑

r=1

Gh
irαrn

)
.

For i = pqh, according to (4.1) and (4.16), the right-hand side vanishes since:

∑

n∈C̃i

( Nh∑

r=1

Gh
irαrn

)
=
∑

n∈C̃i

αqn −
∑

n∈C̃i

αpn.

For the left-hand side, according to (4.21), it comes:

∑

n∈C̃i

( EH∑

e=1

βieG
H
en

)
=
∑

e∈Ĩi

βie

( ∑

n∈C̃i

GH
en

)
.

It vanishes if Ĩi = ∅ and also if Ĩi 6= ∅ since for all e in Ĩi, by Lemma 4.1 and the
definition of GH :

∑

n∈C̃i

GH
en =

NH∑

n=1

GH
en = 0.

4.2. How to choose the Rn’s in order to simplify the computational

process and to have a unique coarse edge basis. The choice of the index set
Jn and therefore the projections Rn can now be explicitly defined.

All the matrices (Ke)e=1,...,EH are assumed to be symmetric positive definite;
from the definition of the matrix D (Subsection 3.2), it is clear that D−1 is symmetric
positive definite. Therefore, in order to obtain a unique solution of (3.17), the matrix
T must have full column rank, which has to be enforced by a proper choice of the
Rn’s. If T does not satisfy this property, the set of β satisfying (2.9) can be empty
and the existence of a solution to (3.17) is not ensured.
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We define the reciprocal set-valued function J̃ :

J̃i =
{
n ∈ {1, . . . , NH} | i ∈ Jn

}
, ∀i ∈ {1, . . . , Eh}. (4.22)

Since the sets Ĩi and J̃i may be empty, we introduce the set F̃ :

F̃ =
{
i ∈ {1, . . . , Eh} | Ĩi 6= ∅ and J̃i 6= ∅

}
. (4.23)

Then, for i in F̃ , we can define G̃H,i the matrix of dimensions |Ĩi|×|J̃i| extracted from

the matrix GH by keeping only the rows e ∈ Ĩi and the columns n ∈ J̃i.
Proposition 4.4. The following conditions are necessary and sufficient for T to

be one-to-one:

ker(G̃H,i) = {0}, ∀i ∈ F̃ , (4.24a)

∀i ∈ {1, . . . , Eh}, Ĩi = ∅ ⇒ J̃i = ∅. (4.24b)

Proof. Let ρ be in R
M . For n in F defined in (3.7), we observe that:

Rt
nρn =

∑

i∈Jn

ρn,iui, (4.25)

where ui is the i-th vector of the canonical basis of R
Eh

. We let T operate on ρ, and
for that purpose we look at the block-wise result. Let e be in {1, . . . , EH}, by the
definition of T in (3.13):

(Tρ)e = Qe

(∑

n∈F

GH
en

( ∑

i∈Jn

ρn,iui

))
, (4.26a)

=
NH∑

n=1

∑

i∈Jn

GH
enρn,iQe(ui). (4.26b)

From (4.22), the components of ρ indexed by the set of couples (n, i) with n in

{1, . . . , NH} and i in Jn can equivalently be indexed by i in {1, . . . , Eh} and n in J̃i.
Thus (Tρ)e can be rewritten as:

(Tρ)e =

Eh∑

i=1

( ∑

n∈J̃i

GH
enρn,i

)
Qe(ui), (4.26c)

but Qe(ui) is equal to 0 if i is not in Ie, then:

(Tρ)e =
∑

i∈Ie

( ∑

n∈J̃i

GH
e,nρn,i

)
Qe(ui). (4.26d)

Since the vectors (Qe(ui))i∈Ie
are linearly independent in R

|Ie|, we infer from rela-
tion (4.26d):

Tρ = 0 ⇔
∑

n∈J̃i

GH
e,nρn,i = 0, ∀e ∈ {1, . . . , EH}, ∀i ∈ Ie, (4.27a)
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Remarking that i ∈ Ie corresponds to e ∈ Ĩi, (4.27a) becomes:

Tρ = 0 ⇔
∑

n∈J̃i

GH
e,nρn,i = 0, ∀i ∈ F̃ , ∀e ∈ Ĩi, (4.27b)

which can be written, according to the definition of G̃H,i, as:

Tρ = 0 ⇔ G̃H,iρi = 0, ∀i ∈ F̃ , (4.27c)

where ρi ∈ R
|J̃i| is of components ρn,i for n in J̃i. Finally, one obtains:

Tρ = 0 ⇔ ρi ∈ ker(G̃H,i), ∀i ∈ F̃ . (4.28)

We can now prove the sufficiency of (4.24). If we assume condition (4.24b) is
satisfied then:

F̃ =
{
i ∈ {1, . . . , Eh} |J̃i 6= ∅

}
,

and ρ, vector of R
M , is defined by the knowledge of its blocks ρi for all i in F̃ .

Condition (4.24a) associated with relation (4.28) enables us to conclude:

Tρ = 0 ⇒ ρ = 0.

Then, conditions (4.24) are sufficient for T to be one-to-one.
Conversely, assume that:

∃i0 ∈ F̃ , ker(G̃H
i0

) 6= {0},

Let ρ be in R
M \ {0} such that:

ρj = {0}, ∀j 6= i0 and ρi0 ∈ ker(G̃H
i0

) \ {0}.

By relation (4.28), ρ is in ker(T ). Hence, condition (4.24a) is necessary for T to be
one-to-one.

In the same way, assume that:

∃i0 ∈ {1, . . . , Eh}, Ĩi0 = ∅ and J̃i0 6= ∅,

Let ρ in R
M \ {0} be such that:

ρj = {0}, ∀j 6= i0.

Since i0 is not in F̃ , ρ is in ker(T ) from (4.28). Condition (4.24b) is necessary for T
to be one-to-one.

In order to reduce the number of enforced constraints, from Propositions 4.2 and
4.3, a suitable choice of sets J̃i is

J̃i = C̃i \ {m}, with m ∈ C̃i, ∀i ∈ {1, . . . , Eh}.

For such a choice, the condition of Proposition 4.4 can be given in terms of
connectivity of induced subgraphs of the graph of edges in SH . More precisely, for
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any fine edge i of Sh, let SH,i be the induced subgraph of the graph of edges in SH ,
whose vertices are indexed by C̃i and edges by Ĩi.

Corollary 4.5. For J̃i = C̃i \ {m}, i = 1, . . . , Eh, T is one-to-one iff for all i
in {1, . . . , Eh} the induced subgraph SH,i is connected.

Proof. Observe first that J̃i is empty if and only if the subgraph SH,i reduces to
one vertex which happens by Lemma 4.1 if Ĩi is empty.

Assume now Ĩi is non empty. By Lemma 4.1 the edge-node incidence matrix of
the subgraph is deduced from GH by keeping only the rows e ∈ Ĩi and the columns
n ∈ C̃i. By deleting one column of index m ∈ C̃i, the obtained matrix G̃H,i satisfies
the condition (4.24a) of Proposition 4.4 iff the subgraph SH,i is connected.

The following subsection is devoted to the construction of index sets Ln and an
incidence matrix GH which satisfy the connectivity condition on the induced subgraph
SH,i.

4.3. Construction of the index sets Ln. We start from an Nh × Nh nodal
symmetric matrix Bh. When passing from a fine level to a coarser level, we just
require:

Bh
pp 6= 0, ∀p ∈ {1, . . . , Nh} (4.29)

and a compatibility condition with the set Sh:

(p, q) ∈ Sh =⇒ Bh
pq 6= 0. (4.30)

This condition means that Bh
pq must not vanish on the couples (p, q) corresponding to

the edges belonging to Sh, but it might also be different from zero on other couples.
In other words, there may be more edges (p, q) determined by the condition Bh

pq 6= 0

than elements (p, q) or (q, p) in Sh.
As Reitzinger and Schöberl do in [14], we define a map:

ind : R
Nh

→ R
NH

p 7→ ind(p).
(4.31)

The inverse images of n by the mapping ind make up a partition of {1, . . . , Nh} into
sets. The set Hn is the aggregate of fine indices indexed by n:

Hn =
{
p ∈ {1, . . . , Nh} | ind(p) = n

}
, (4.32)

An example of a fine graph with the partition of the nodes is given in Figure 4.2(a).
The Hn’s make up an arbitrary partition of {1, . . . , Nh}, but there are algorithms for
choosing good partitions, for instance the aggregation algorithm proposed in [15,
Section 5].

For every fine index p in {1, . . . , Nh}, we define:

Np =
{
q ∈ {1, . . . , Nh} | Bh

pq 6= 0
}
. (4.33)

This is the set of all the Bh-neighbors of the nodal variable p and the variable itself.
From the compatibility relation (4.30), we remark that:

(p, q) ∈ Sh =⇒ q ∈ Np. (4.34)
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For all n in {1, . . . , NH}, we will write:

Ln =
⋃

p∈Hn

Np (4.35)

Observe that the set L̃p defined in (4.8) is related to Np as follows:

L̃p = ind(Np). (4.36)

We also infer from (4.33) and the symmetry of Bh:

p ∈ Nq ⇔ q ∈ Np.

Some sets Ln corresponding to the partition of Figure 4.2(a) are represented in Fig-
ure 4.2(b).

Remark 4.6. On the initial mesh, some choices for B are proposed by Reitizinger
and Kaltenbacher in [7]. Observe that the simplest way to take into account the
connectivity of the initial mesh and to satisfy conditions (4.29) and (4.30) is to put
Bh = (Gh)tGh. For the coarser level, the matrix can be constructed from the Galerkin
product αtBhα.

4.4. Definition of a compatible coarse edge incidence matrix GH . By
analogy with Reitzinger and Schöberl in [14], we choose SH such that (n,m) or (m,n)
is an edge if there exists p ∈ Hn and q ∈ Hm defined in (4.32) such that p and q are
Bh-neighbors, i.e.:

SH =
{
(n,m) ∈ {1, . . . , NH}2 | n 6= m, ∃p, q ∈ {1, . . . , Nh}

with ind(p) = n, ind(q) = m, p < q and Bh
pq 6= 0

}
.

(4.37)

From this definition, we easily verify that the connectivity property of the fine graph
Sh remains for the coarse graph SH . Observe also that Bh

pq 6= 0 implies that p is in

Lind(p)∩Lind(q). Then Cind(p)∩Cind(q) is non empty and SH satisfies condition (4.17).
The coarse graph coming from the graph partition of Figure 4.2(a) is represented

in Figure 4.2(c). Some sets L̃p are also represented in Figure 4.2(d).
For proving the connectivity of the induced graph SH,i, we need an intermediate

result.
Lemma 4.7. Let p ∈ {1, . . . , Nh} be a fine nodal index and assume that the coarse

nodal set L̃p has at least two elements. Then ind(p) is connected to the other vertices

in L̃p by an edge of SH .

Proof. Let n be in L̃p \ {ind(p)}. By (4.36), there exists pn in Np such that
n = ind(pn), then:

Bh
ppn

6= 0 and ind(p) 6= ind(pn).

From definition (4.37) of SH , we conclude that (n, ind(p)) or (ind(p), n) is in SH .
Proposition 4.8. For all i in {1, . . . , Eh}, the coarse graph SH,i is connected.

Proof. Let i = pqh; then from (4.15) C̃i = L̃p ∪ L̃q. From (4.34) and (4.36), we
infer:

{ind(p), ind(q)} ⊂ L̃p ∩ L̃q.
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(a) Initial graph and partition
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(b) Representation of L1, L5 and L2.
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(c) Coarse graph for partition 4.2(a) (d) Representation of L̃q (△) and

L̃p (�). Nodes p and q are in
Fig. 4.2(b)

Fig. 4.2. Fig. 4.2(a): Initial graph and partition of nodes in sets Hn, Fig. 4.2(b): some sets
Ln, Fig. 4.2(c): construction of the coarse graph corresponding to the partition in Fig. 4.2(c) and

Fig. 4.2(d): representation of the sets L̃q and L̃p referring to Fig. 4.2(b).

Assume first ind(p) 6= ind(q). Lemma 4.7 implies that ind(p) and ind(q) are connected

and for all n in C̃i \ {ind(r)} with r ∈ {p, q}, n and ind(r) are connected.

Assume now ind(p) = ind(q) = n with |C̃i|> 1. From Lemma 4.7, we infer:

∀m ∈ C̃i \ {n}, n and m are connected.

Remark 4.9. Reitzinger and Schöberl’s approach in [14] can be described with
our notations. They chose Ln = Hn for all n in {1, . . . , NH} and the coarse graph GH

defined in (4.37). This leads to |L̃p|= 1 for all fine nodal index p and it implies |C̃i|= 1

or |C̃i|= 2 with |Ĩi|= 1. Our construction gives larger edge aggregates, which is a nice
situation because in the end few fine edges will not contribute to the computation of
the coarse edge basis.

Remark 4.10. For two nested meshes τh and τH , if we take Ln as the set of
indices of the τh-neighbors of the coarse node of index n and GH as the matrix natu-
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rally associated with the coarse mesh τH , the connectivity condition for Corollary 4.5
is clearly satisfied.

5. Numerical experiments.

5.1. Matrix multiplication algorithm. In order to solve the linear system
(3.17), a non-preconditioned conjugate gradient algorithm is used. Thus only the
multiplication of T tD−1T by a vector of R

M is required. We can compute T tD−1Tρ =
ρ̃ in three steps:

• Step 1: For e = 1, . . . , EH , compute:

be = Qe

(
∑

n∈F

GH
enR

t
nρn

)
= Qe(R

t
mρm −Rt

nρn), for e = nmH . (5.1)

• Step 2: For e = 1, . . . , EH , solve:

Kexe = be. (5.2)

• Step 3: For n = 1, . . . , NH , compute:

ρ̃n = Rn




EH∑

e=1

GH
enQ

t
exe


 . (5.3)

The step 1 requires M̃ additions and the number of arithmetical operations in

step 3 is bounded by maxn(
∑EH

e=1|G
H
en|)M . The most expensive part is the solution

of all the local problems: Kexe = be, for all e in {1, . . . , EH}.
Observe that such solutions of local problems are also required for the computa-

tion of the prolongation matrix β̄c from the Lagrange multiplier vector ρc by using
(3.18). For an exact solution of local problems, a factorization of each matrix Ke

must be done.

5.2. Choice of the bilinear form b. In the following tables, different bilinear
forms b are used for the minimisation. For convenience, we define a few abbreviations:

- A refers to the bilinear form a of the problem. With this choice, spatial
variations of γ and δ together with mesh heterogeneity are completely taken
into account for the construction of the finite element basis.

- A + GhM−1
φ (Gh)t refers to the bilinear form defined from this matrix, Mφ

being the mass matrix on nodal elements, with mass lumping; hence Mφ is
diagonal. This choice enables us to improve the conditioning of local matrices
Ke as it will be noted for 2D simulations.

- S + reg(η) refers to the bilinear form
∫
Ω

curlE · curlE′ added to a local
regularisation depending on the parameter η; more precisely the matrix of the
local problem is Se + ηmax(diag(Se)) Id where the matrix Id is the identity
matrix and Se is the local matrix computed from

∫
Ω

curlE ·curlE′. The focus
is to improve the conditioning of the local matrices, the essential part of the
original bilinear form a being kept.

- Id refers to the use of the identity matrix for the local problems. Then no
factorisation is needed but the original problem is no more taken into account
in the definition of b.

The annotation GSsym means that one symmetric Gauss-Seidel iteration is performed
in the local systems instead of an exact solution in order to significantly reduce the
complexity.
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5.3. Structured meshes and constant coefficients. In order to validate the
proposed choices of bilinear form b, we begin the numerical experiments with struc-
tured meshes and constant coefficients in the problem. The coefficients δ and γ are
set equal to 1. A sequence of nested meshes (τh

k )k=0,...,4 is constructed by a regular re-
finement starting from a simple triangular or tetrahedral mesh on the unit square and
the unit cube (see Fig. 5.3 and 5.2). The source term is given by non-homogeneous
boundary conditions. For each level, the edge prolongation matrix β is computed by
solving system (3.16) with the right-hand side member ξ defined from the standard
nodal prolongation operator [3, Chapter 6]. The sets Ln together with the edge-node
incidence matrices are defined frome the meshes as described in Remark 4.10.
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Fig. 5.1. Initial mesh τh
0

(5.1(a)) and first refinement τh
1

(5.1(b)).

(a) (b)

Fig. 5.2. Initial mesh τh
0

(5.2(a)) and first refinement τh
1

(5.2(b))

5.3.1. Dimensions. For the finest level, the number of Lagrange multipliers M
given by the vector ρ are reported in Table 5.1 for the 2D case and Table 5.2 for the
3D case. The number of unknowns Eh for each problem is also recalled. Observe that
the number of multipliers is less than twice the number of unknowns in the 2D case.
The ratio is slightly larger in 3D except for problems with few unknowns.
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τh
1 τh

2 τh
3 τh

4

M = Nb of multipliers 40 152 592 2336

Eh = Nb of unknowns 20 88 368 1504
Table 5.1

Number (Nb) of Lagrange multipliers and unknowns — 2D, structured meshes.

τh
1 τh

2 τh
3 τh

4

M 164 1060 7544 56752

Eh 26 316 3032 26416
Table 5.2

Number of Lagrange multipliers and unknowns — 3D, structured meshes.

5.3.2. Computation of Lagrange multipliers. The multipliers are initialized
to zero. The number of iterations required to divide the Euclidean norm of the residual
by 103 during the iterative process is reported in Table 5.3 for the 2D case and Table
5.4 for the 3D case. These numbers are given for several choices of bilinear forms b.
We also give the number of iterations for each level: finest level + . . .+ coarsest level.

Norm τh
1 τh

2 τh
3 τh

4

A 5 42+11 64+42+14 79+64+42+14

A (GSsym) 11 12+11 12+12+11 11+11+12+11

A+GhM−1
φ (Gh)t 4 9+7 9+8+7 9+8+8+7

A+GhM−1
φ (Gh)t (GSsym) 4 9+7 9+8+7 9+8+8+7

S + reg(0.1) 6 19+10 19+19+9 18+19+19+10

Id 2 2+2 2+2+2 2+2+2+2
Table 5.3

Number of iterations for the multiplier computation (division of the Euclidean norm of the
residual by 103) — 2D, structured meshes.

Norm τh
1 τh

2 τh
3 τh

4

A 24 32+13 46+16+15 61+20+17+17

A (GSsym) 23 25+13 32+16+15 39+20+18+17

A+GhM−1
φ (Gh)t 41 93+21 181+27+17 381+29+21+16

A+GhM−1
φ (Gh)t (GSsym) 26 42+18 56+21+15 62+22+16+14

S + reg(0.1) 20 22+13 29+15+14 36+18+15+15

Id 3 3+3 3+3+3 3+3+3+3
Table 5.4

Number of iterations for the multiplier computation (division of the Euclidean norm of the
residual by 103) — 3D, structured meshes.

In the 2D case, the behaviour of the algorithm with the original matrix A is not
good since the number of iterations increases with the fineness of the initial mesh.
The surprising thing is that the number of iterations becomes constant when a Gauss-
Seidel iteration is used instead of an exact solution. For the other cases, the behaviour
is relatively homogeneous and the number of iterations is almost constant. In 3D, we
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notice a slow increase in the number of iterations and the behaviour for the original
matrix A is not as bad as in the 2D case. The behaviour for the matrix Id is the best
in both cases.

5.3.3. Solution of system (2.4). System (2.4) is solved by a preconditioned
conjugate gradient algorithm. The preconditioner is a multilevel method which uses
one pre- and one post-smoothing step by Arnold’s smoother [1]; on the coarse grid, a
direct solver is used. The conjugate gradient method stops when the Euclidean norm
of the residual has been divided by 1010. Table 5.5 gives the results for the 2D case
and Table 5.6 for the 3D case. The mention “geometric” corresponds to the classical
geometric multigrid.

Norm τh
1 τh

2 τh
3 τh

4

A 5 6 7 7

A (GSsym) 5 6 7 9

A+GhM−1
φ (Gh)t 5 6 7 8

A+GhM−1
φ (Gh)t (GSsym) 5 6 7 8

S + reg(0.1) 5 6 7 7

Id 5 7 9 11

geometric 5 6 7 7
Table 5.5

Number of iterations of the conjugate gradient preconditioned by a multilevel method (division
of the Euclidean norm of the residual by 1010) — 2D, structured meshes.

Norm τh
1 τh

2 τh
3 τh

4

A 4 7 10 11

A (GSsym) 4 7 10 11

A+GhM−1
φ (Gh)t 4 7 10 11

A+GhM−1
φ (Gh)t (GSsym) 4 7 10 11

S + reg(0.1) 4 7 10 11

Id 4 7 10 11

geometric 4 7 10 11
Table 5.6

Number of iterations of the conjugate gradient preconditioned by a multilevel method (division
of the Euclidean norm of the residual by 1010) — 3D, structured meshes.

Once the multipliers are computed, and for all choices of bilinear forms b, the
efficacy of the geometric and algebraic multigrid methods are comparable.

5.4. Unstructured meshes and varying coefficients. We consider a 2D
problem whose structure is pictured in Figure 5.3; γ is set equal to 1 and δ takes
the values displayed in this figure.

A mesh generator gives an initial unstructured mesh. We only control the maximal
diameter hmax of elements, and the generator takes the interfaces into account.

The matrix Bh for the initial level is given by (Gh)tGh, the simplest choice under-
lined in Remark 4.6. The nodal prolongation matrix α is obtained from the solution
of (3.1) with the bilinear form c(·, ·) associated with (Gh)tGh. The sets Ln and the
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Fig. 5.3. Geometry of the problem with the values of δ.

matrix GH are defined as in (4.35) and (4.37) with the map ind constructed from the
aggregation algorithm given in [15].

5.4.1. Number of unknowns. In Table 5.7, the number of unknowns on each
level is given for several choices of hmax. The notation new denotes our algorithm,
and RS denotes the algorithm of Reitzinger and Schöberl given in [14].

Method hmax = 0.2 0.1 0.05 0.025

new 276+31 1005+114+6 3843+405+23 15957+1467+82+3

RS 276+31 1005+114+11 3843+405+29 15957+1467+151+21
Table 5.7

Number of unknowns on each level for several choices of hmax

5.4.2. Computation of the Lagrange multipliers.

Number of multipliers. The number of multipliers for every mesh and every level
is given in Table 5.8. This number is roughly twice the number of unknowns for every

hmax = 0.2 0.1 0.05 0.025

536 2105+179 8049+759 31249+2946+118
Table 5.8

Number of Lagrange multipliers

level.

Stopping criteria on the residual. The Euclidean norm of the residual is divided
by 103. The number of iterations required to compute the Lagrange multipliers with
different norms are gathered in Table 5.9. Compared to the results of Table 5.3, we
can observe a significant increase for all methods but the results are similarly ordered.

5.4.3. Solution of system (2.4). The multilevel method is used as a precondi-
tioner; the results for the different norms are gathered in Table 5.10.
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Norm hmax = 0.2 0.1 0.05 0.025

A 387 X+134 X+407 X+X+136

A (GSsym) 415 396+X 360+X 348+450+X

A+GhM−1
φ (Gh)t 62 103+31 117+46 120+59+26

A+GhM−1
φ (Gh)t (GSsym) 94 128+37 112+58 113+59+27

S + reg(0.1) 74 212+32 319+65 326+200+27

Id 8 13+7 13+12 14+15+2
Table 5.9

Number of iterations for the multiplier computation (division of the Euclidean norm of the
residual by 103) — unstructured meshes. X means that the stopping criterion was not reached after
1000 iterations.

hmax = 0.2 0.1 0.05 0.025

A 11 12 18 45

A (GSsym) 12 12 17 25

A+GhM−1
φ (Gh)t 12 13 17 26

A+GhM−1
φ (Gh)t (GSsym) 12 13 18 27

S + reg(0.1) 12 12 16 25

Id 13 13 18 28

R. S. 14 20 33 56
Table 5.10

Number of iterations of the conjugate gradient preconditioned by a multilevel method (division
of the Euclidean norm of the residual by 1010).

The choices Id and A+GhM−1
φ (Gh)t (GSsym) are the most efficient because they

provide us with a performing preconditioner and the lowest computationnal cost for
the setup phase.

The prolongation matrix β built by our method provides us with a more efficient
preconditioner than the method proposed by Reitzinger and Schöberl in [14]. Thus
in this simple example, the number of iterations approximately grows like h−0.75

max for
the method of Reitzinger and Schöberl and like h−0.5

max for the choice Id. This validates
the theoretical interest of our algebraic method.

However, the construction of the matrix β remains really more expensive than in
Reitzinger and Schöberl AMG method and the solution of the initial problem with
our method is finally more time-consuming. In order to improve the efficacy for
the solution of problem (3.11), an algorithm, which avoids the Lagrange multiplier
computation, can be employed [12].

REFERENCES

[1] D. N. Arnold, R. S. Falk, and R. Winther, Multigrid in H(div) and H(curl), Numer. Maths,
85 (2000), pp. 197–217.

[2] Pavel B. Bochev, C. Garasi, J. Hu, A. Robinson, and R. Tuminaro, An improved alge-
braic multigrid method for solving Maxwell’s equations, SIAM J. Sci. Comput., 25 (2003),
pp. 623–642 (electronic).

[3] Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element
methods, vol. 15 of Texts in Applied Mathematics, Springer-Verlag, New York, second ed.,
2002.



Compatible coarse nodal and edge elements through energy functionals 23

[4] Paul W. Gross and P. Robert Kotiuga, Electromagnetic theory and computation: a topolog-
ical approach, vol. 48 of Mathematical Sciences Research Institute Publications, Cambridge
University Press, Cambridge, 2004.

[5] R. Hiptmair, Multigrid method for Maxwell’s equations, SIAM J. Numer. Anal., 36 (1999),
pp. 204–225.

[6] J. Hu, R. Tuminaro, P. Bochev, C. Garasi, and A. Robinson, Toward an h-independent
algebraic multigrid method for Maxwell’s equations. To appear in SIAM J. Sci. Computing,
2005.

[7] M. Kaltenbacher and S. Reitzinger, Algebraic multigrid methods for nodal and edge based
discretizations of Maxwell’s equations, International Compumag Society Newsletter, 9
(2002), pp. 15–23.
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