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A well-balanced Runge-Kutta Discontinuous Galerkin method for the Shallow-Water Equations with flooding and drying
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We build and analyze a Runge-Kutta Discontinuous Galerkin method to approximate the one-and two-dimensional Shallow-Water Equations. We introduce a flux modification technique to derive a wellbalanced scheme preserving steady-states at rest with variable bathymetry and a slope modification technique to deal satisfactorily with flooding and drying. Numerical results illustrating the performance of the proposed scheme are presented.

Introduction

Free-surface water flows occur in many domains of practical importance such as coastal and river engineering, dam break problems, or ocean modeling. In many cases, such flows can be satisfactorily modeled by the so-called Shallow-Water Equations (SWE), which are derived by considering the depth-averaged three-dimensional incompressible Navier-Stokes Equations, assuming hydrostatic pressure distribution, and neglecting vertical acceleration and viscous effects [START_REF] Saint-Venant | Théorie du mouvement non-permanent des eaux avec application aux crues des rivières et à l'introduction des marées dans leur lit[END_REF][START_REF] Stoker | Water Waves : The Mathematical Theory with Applications[END_REF]. From a mathematical viewpoint, the SWE are a set of nonlinear first-order partial differential equations of hyperbolic type.

The discretization of the SWE has been the subject of extensive literature. Until recent years, the most commonly chosen numerical methods were Finite Differences (FD), Continuous Finite Elements (CFE) and Finite Volumes (FV). We refer, for instance, to [START_REF] Vreugdenhil | Numerical Methods for Shallow-Water Flow[END_REF] for FD, to [START_REF] Hervouet | Hydrodynamique des écoulements à surface libre, modélisation numérique avec la méthode des éléments finis[END_REF][START_REF] Katsaounis | Relaxation models and finite element schemes for the shallow water equations[END_REF][START_REF] Zienkiewicz | A split-characteristic based finite element model for the shallow water equations[END_REF] for CFE and to [START_REF] Audusse | Modélisation hyperbolique et analyse numérique pour les écoulements en eaux peu profondes[END_REF][START_REF] Bermúdez | Upwind methods for hyperbolic conservation laws with source terms[END_REF][START_REF] Galloüet | Some approximate Godunov schemes to compute shallow-water equations with topography[END_REF][START_REF] George | Numerical approximation of the nonlinear shallow-water equations with topography and dry beds[END_REF] for FV. The main motivation for using FV is that such methods are especially tailored to discretize conservation laws possibly with shocks, usually producing approximate solutions with local conservation properties. The main drawback of 1 FV is their low order of convergence, even in the case of smooth solutions. To avoid this situation, one can enhance the order of the spatial approximation by using slope reconstruction techniques like the MUSCL scheme (leading to limited orders of convergence on unstructured meshes anyway). Another possibility consists of using higher order polynomials, leading to so-called Discontinuous Galerkin (DG) methods. DG methods approximate the solution in a finite element setting, but in contrast to CFE which use trial and test spaces spanned by continuous piecewise polynomial functions, DG methods use trial and test spaces spanned by piecewise polynomial functions without enforcing explicitly any continuity between adjacent mesh cells. DG methods with polynomial order set to zero can be interpreted as FV schemes.

Since their introduction more than thirty years ago (see [START_REF] Lesaint | On a finite element method for solving the neutron transport equation[END_REF][START_REF] Reed | Triangular mesh methods for the neutron transport equation[END_REF] for pioneering works), DG methods have experienced a vigorous development. On a given mesh and using a fixed polynomial order, DG methods involve more degrees of freedom than CFE. However, DG methods possess several attractive features, namely they are well-suited to hp-adaptive procedures, they can be implemented on arbitrary meshes without enforcing geometric conformity, and they are amenable to parallel computation owing in particular to the blockdiagonal structure of the mass matrix. Moreover, when approximating conservation laws, DG methods lead to local conservation properties at the cell level, as in FV. We refer to [START_REF] Cockburn | Runge-Kutta Discontinuous Galerkin methods for convection-dominated problems[END_REF][START_REF] Cockburn | Discontinuous Galerkin methods for convection-dominated problems[END_REF] for a general review of DG methods.

Significant progress in the application of DG methods to the SWE has been achieved in the last few years [START_REF] Aizinger | A discontinuous Galerkin method for two-dimensional flow and transport in shallow water[END_REF][START_REF] Ambati | Space-time discontinuous Galerkin finite element method for shallow water flows[END_REF][START_REF] Bokhove | Flooding and drying in Discontinuous Galerkin Finite-Element discretizations of shallowwater equations. part I : One dimension[END_REF][START_REF] Dawson | A discontinuous Galerkin method for three-dimensional shallow water equations[END_REF][START_REF] Dawson | Coupled discontinuous and continuous Galerkin finite element methods for the depthintegrated shallow water equations[END_REF][START_REF] Eskilsson | A triangular spectral/hp Discontinuous Galerkin method for modelling 2d shallow water equations[END_REF][START_REF] Giraldo | Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations[END_REF][START_REF] Li | The discontinuous Galerkin finite element method for the 2D shallow water equations[END_REF][START_REF] Remacle | Adaptive Discontinuous Galerkin Method for the Shallow Water Equations[END_REF][START_REF] Schwanenberg | A discontinuous Galerkin method for the shallow water equations with source terms[END_REF][START_REF] Tassi | Space discontinuous Galerkin method for shallow water flowskinetic and HLLC flux, and potential vorticity generation[END_REF]. However, two issues relevant in many applications, namely preserving steady-states at rest with variable bathymetry and properly handling flooding and drying, have not been addressed in previous work, with the exception of [START_REF] Bokhove | Flooding and drying in Discontinuous Galerkin Finite-Element discretizations of shallowwater equations. part I : One dimension[END_REF] where a moving mesh was used to deal with dry areas in a one-dimensional setting; the extension to two space dimensions does not seem to be straightforward. The main purpose of this work is to design and analyze a discretization by DG methods of the SWE that can satisfactorily handle the two issues above.

• A desirable feature of discretization schemes for the SWE involving bathymetric terms is to preserve equilibrium states and especially steady-states at rest. However, this property is not satisfied by the usual schemes because it requires a compatibility between the numerical flux and the approximation of the source term. In the framework of FV, several techniques have been proposed to satisfy this property, leading to so-called well-balanced schemes; see [START_REF] Audusse | Modélisation hyperbolique et analyse numérique pour les écoulements en eaux peu profondes[END_REF][START_REF] Galloüet | Some approximate Godunov schemes to compute shallow-water equations with topography[END_REF][START_REF] George | Numerical approximation of the nonlinear shallow-water equations with topography and dry beds[END_REF] where bathymetric terms are included in the flux calculation and [START_REF] Bermúdez | Upwind methods for hyperbolic conservation laws with source terms[END_REF] where a so-called upwind discretization of the bathymetric term is proposed. In the present work, we derive a flux modification technique for DG methods inspired from the hydrostatic reconstruction developed for a kinetic scheme in [START_REF] Audusse | Modélisation hyperbolique et analyse numérique pour les écoulements en eaux peu profondes[END_REF]. • Many applications of the SWE involve flooding and drying. One major difficulty when dealing with such processes is to guarantee that the discrete water depth remains nonnegative. Besides their lack of physical meaning, negative values of the water depth lead to difficulties in the computation of the numerical fluxes since the wave speed involves the square root of the water depth. In the present work, we introduce a slope modification technique based on the idea of threshold usually used in the framework of FV. Moreover, we use the HLLE flux [START_REF] Einfeldt | On Godunov-type methods for gas dynamics[END_REF] in one space dimension and the HLLC [START_REF] Eskilsson | A triangular spectral/hp Discontinuous Galerkin method for modelling 2d shallow water equations[END_REF] flux in two space dimensions which, contrary to Roe's flux for example, ensure a property of nonnegativity for the approximate water depth [START_REF] Einfeldt | On Godunov-type methods near low densities[END_REF].

Kutta Discontinuous Galerkin (RKDG) scheme introduced in [START_REF] Eskilsson | A triangular spectral/hp Discontinuous Galerkin method for modelling 2d shallow water equations[END_REF] to approximate the SWE are restated. In §3, the flux modification technique yielding a well-balanced RKDG method is analyzed. In §4, the slope modification technique to deal with flooding and drying is described. In §5, numerical tests are presented to illustrate the performance of the proposed method. Conclusions are reached in §6. For completeness, an appendix briefly describes the HLLE and the HLLC fluxes.

Approximation of SWE by RKDG methods

This section restates the main features of the classical RKDG scheme introduced in [START_REF] Eskilsson | A triangular spectral/hp Discontinuous Galerkin method for modelling 2d shallow water equations[END_REF] to approximate the SWE. This scheme will serve as the basis for the new developments presented in §3 and §4.

Governing Equations

Let the domain Ω be an open bounded subset of R d , d ∈ {1, 2}, and let T > 0 be the simulation time. Let g denote the gravitational acceleration and let b : Ω -→ R denote a smooth function representing the bathymetry. Let (x 1 , . . . , x d ) denote the spatial coordinates; summation convention for repeated indices is used in the sequel. The SWE can be written as follows:

   ∂W ∂t + ∂F i (W ) ∂x i = S(W, b) in Ω × ]0, T [ , Initial and Boundary conditions , (1) 
where

W := (ζ, q) : Ω × [0, T ] -→ R m , m := d + 1
, denotes the conservative variables, ζ being the (scalar-valued) water depth and q the (R d -valued) discharge of the flow with components (q 1 , q 2 ) in two space dimensions. Moreover, the source term S(W, b) and the flux functions {F i (W )} 1≤i≤d are defined for d = 1 as

S(W, b) :=   0 -gζ ∂b ∂x 1   , F 1 (W ) :=    q q 2 ζ + g 2 ζ 2    ,
and for d = 2 as

S(W, b) :=       0 -gζ ∂b ∂x 1 -gζ ∂b ∂x 2       , F 1 (W ) :=       q 1 q 2 1 ζ + g 2 ζ 2 q 1 q 2 ζ       , F 2 (W ) :=       q 2 q 1 q 2 ζ q 2 2 ζ + g 2 ζ 2       .

Space discretization and boundary conditions

Let T h be a shape-regular mesh composed of triangular elements. For simplicity, it is assumed that T h covers Ω exactly, i.e., Ω is a polygonal domain in two space dimensions. Let h := max K∈T h h K , where h K is the diameter of the element K ∈ T h and let n K = (n K,1 , . . . , n K,d ) t be the unit outward normal of K. For K ∈ T h , a set σ ⊂ ∂K is said to be an interface (resp., a boundary face) of

K if there is K ∈ T h with K = K such that σ = K ∩ K (resp., if σ = K ∩ ∂Ω); E i h (K) (resp., E ∂ h (K)
) is then defined as the set of interfaces (resp., boundary faces) of K. If T h does not possess hanging nodes, E i h (K) is simply the set of interior faces of K.

Set E h (K) = E i h (K) ∪ E ∂ h (K). For σ ∈ E i h (K), K ∈ T h , K σ
denotes the element of T h sharing the interface σ with K, and for σ ∈ E h (K), n K,σ denotes the unit outward normal of K on σ and |σ| the (d -1)-dimensional measure of σ. The space P p (K), p ∈ N, K ∈ T h , denotes the space of polynomial functions of d variables over K of total degree p at most. The DG space is then defined as P p h := {v : Ω → R : v| K ∈ P p (K), ∀K ∈ T h }. Note that a matching condition at interfaces is not enforced on functions in P p h . For all K ∈ T h , multiply (1) by v h ∈ [P p (K)] m , integrate over K, and apply Green's formula. This yields the following (continuous-in-time) space approximation of (1) : Find

W h := (ζ h , q h ) ∈ C 1 ([0, T ], [P p h ] m ) such that ∀t ∈ ]0, T [, ∀K ∈ T h , ∀v h ∈ [P p (K)] m ,    K v h ∂W h ∂t + ∂K v h φ K (W h ) - K ∂v h ∂x i F i (W h ) = K v h S(W h , b) , Initial condition , (2) 
where φ K (W h ) is the so-called numerical flux. The numerical flux is evaluated as follows:

∀K ∈ T h , ∀σ ∈ E h (K), ∀x ∈ σ, φ K (W h )(x) =    φ * (W h | K (x), W h | Kσ (x), n K,σ ) if σ ∈ E i h (K) , φ * (W h | K (x), W ∂ h (x), n K,σ ) if σ ∈ E ∂ h (K) , (3) 
where φ * : R m × R m × R d -→ R m is a numerical flux function independent of the mesh cell under consideration and where W ∂ h (x) is a fictitious outer state that serves to enforce boundary conditions weakly through the numerical fluxes (see below). The functional φ * has to verify certain conditions such as conservativity, i.e.,

∀(X, Y, n) ∈ R m × R m × R d , φ * (X, Y, n) + φ * (Y, X, -n) = 0 , (4) 
and consistency, i.e.,

∀(X, n) ∈ R m × R d , φ * (X, X, n) = F i (X)n i . (5) 
In this work, φ * is evaluated using the Harten-Lax-van Leer-Einfeldt (HLLE) flux in one space dimension and the Harten-Lax-van Leer-Contact (HLLC) flux in two space dimensions.

The main features of these fluxes are briefly described in the appendix. The actual expression for W ∂ h (x) depends on W h | K (x) and on the flow regime where the boundary conditions are enforced. For example, in the case of an inflow boundary face in one space dimension, the speeds of the two Riemann invariants computed using W h | K are given by

λ ± := q h | K ζ h | K ± gζ h | K .
Observe that λ + > 0 at an inflow boundary. If λ -is also positive, the flow is said to be supercritical and one sets W ∂ h = (ζ ∂ , q ∂ ), where ζ ∂ and q ∂ are prescribed values. If λ -is negative, the flow is said to be subcritical and one usually imposes either ζ or q. More precisely, the conservation of the outward Riemann invariant is written in the form

q h | K ζ h | K -2 gζ h | K = q ∂ ζ ∂ -2 gζ ∂ . (6) 
If the outer discharge q ∂ is prescribed, then (6) permits to obtain an outer water depth ζ ∂ using Newton iterations; if the outer water depth ζ ∂ is prescribed, then (6) immediately yields an outer discharge q ∂ . For a thorough discussion of boundary conditions for SWE and fictitious outer states, we refer to [START_REF] Bristeau | Boundary conditions for the shallow-water equations solved by kinetic schemes[END_REF][START_REF] Hervouet | Hydrodynamique des écoulements à surface libre, modélisation numérique avec la méthode des éléments finis[END_REF].

To write (2) in vector form, a set of basis functions in [P p h ] m must be selected. To exploit the local character of DG methods, the basis functions have support localized at a single mesh cell. On a given mesh cell, the local basis functions are Legendre polynomials in one space dimension and a particular set of modal basis functions constructed using barycentric coordinates in two space dimensions (see [START_REF] Piperno | Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problems[END_REF] for some properties of these modal basis functions). Let -→ W h ∈ R N denote the component vector of W h with respect to the basis functions; here, N denotes the total number of degrees of freedom, i.e., the dimension of

[P p h ] m (N = M m (p+d)! d!p!
where M denotes the number of mesh cells). Then, upon inverting the mass matrix, (2) can be recast into the form

d -→ W h dt = H h ( -→ W h ) , (7) 
where H h : R N → R N . Observe that the mass matrix is block diagonal and hence, easily invertible.

Time discretization

The discretization of the time derivative in ( 7) is performed in an explicit way. Let (t k ) k∈N be a sequence of discrete times with t 0 = 0. Let (∆t) k = t k+1 -t k be the (k + 1)-th time step. To construct an approximation -→ W k h of -→ W h at the discrete time t k , a Runge-Kutta (RK) scheme of order q is used. Given an initial condition -→ W 0 h , the scheme consists of the following steps:

For k ∈ N, set -→ W k+1,0 h = -→ W k h , then for i ∈ {1, . . . , q}, compute the RK sub-iterates -→ W k+1,i h = i-1 l=0 c l i - → w l hi , - → w l hi = -→ W k+1,l h + d l i c l i (∆t) k H h ( -→ W k+1,l h ) , (8) 
and finally set

-→ W k+1 h = -→ W k+1,q h
. The coefficients c l i and d l i in (8) can be found in [START_REF] Cockburn | Runge-Kutta Discontinuous Galerkin methods for convection-dominated problems[END_REF]. To ensure an equal order of accuracy in space and time, a Runge-Kutta scheme of order (p + 1) is used, i.e., q = p + 1.

The time step is determined adaptively by taking (∆t) k := min((∆t) * , (∆t) k cfl ) where (∆t) * is a user-defined maximal time step and (∆t) k cfl results from the following CFL condition [START_REF] Cockburn | Runge-Kutta Discontinuous Galerkin methods for convection-dominated problems[END_REF]:

(∆t) k cfl := 1 2p + 1 min K∈T h inf x∈∂K ζ k h (x)>0 h K | q k h ζ k h •n K | + gζ k h (x) . (9) 
Here,

W k h = (ζ k h , q k h ) is the function in [P p h ] m associated with the component vector -→ W k h .

Slope limiting

It is well-known that in the context of conservation laws, a shock can appear in finite time even if the initial data are smooth. Moreover, high-order methods can yield spurious oscillations near a shock. To avoid this situation, slope limiting is necessary. Slope limiting consists of replacing the evaluation of

-→ W k+1,i h in (8) by -→ W k+1,i h = Λ i i-1 l=0 c l i - → w l hi , - → w l hi = -→ W k+1,l h + d l i c l i (∆t) k H h ( -→ W k+1,l h ) , (10) 
noticing that the evaluation of -→ w l hi is kept unchanged [START_REF] Cockburn | Runge-Kutta Discontinuous Galerkin methods for convection-dominated problems[END_REF]. Here, Λ i : R N → R N , i ∈ {1, . . . , q}, are operators that firstly detect shocks and mark cells near shocks and then, on the marked cells, restrict the polynomial order to p = 1 and reconstruct the slope of the approximation using mean-preserving transformations. In [START_REF] Cockburn | Runge-Kutta Discontinuous Galerkin methods for convection-dominated problems[END_REF], the same operator Λ i ≡ Λ is used at each RK sub-iterate. Here, this technique is used in one space dimension, but to reduce computational costs in two space dimensions, Λ i is the identity for i < q and Λ q ≡ Λ, that is, slope limiting is enforced only on the last RK sub-iterate. Furthermore, following the ideas of [START_REF] Schwanenberg | A discontinuous Galerkin method for the shallow water equations with source terms[END_REF], slope limiting is applied to the free surface height (ζ + b) rather than to the water depth ζ. To detect shocks, the criterion proposed in [START_REF] Krivodonova | Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws[END_REF] is used. For all K ∈ T h , define the subset E - h (K) of E h (K) as the inflow interfaces or boundary faces of K, namely

E - h (K) := { σ ∈ E h (K) : σ q h •n K,σ ≤ 0 } .
Moreover, setting for all K ∈ T h and for all σ ∈ E h (K),

I K,σ := σ (ζ h | K -ζ h | Kσ ) h (p+1)/2 K |σ| | ζ h K | , I K := σ∈E - h (K) I K,σ
where ζ h K denotes the mean value of ζ h over K, the criterion is to apply slope limiting on K whenever I K ≥ 1.

A well-balanced RKDG scheme with flux modification

The preservation of equilibrium states is a desirable feature for schemes dealing with the SWE. Among these states, we will consider in particular steady-states at rest. These states are defined by the conditions ζ + b ≡ C (a constant) and q ≡ 0 over the domain. Failure to preserve such states leads to so-called numerical waves; see, e.g., [START_REF] Noelle | Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows[END_REF] for an example in the framework of FV and §5.2.1 for an example with DG methods. Approximation schemes that avoid this situation are termed well-balanced schemes. Examples of well-balanced FV schemes include those designed in [START_REF] Audusse | Modélisation hyperbolique et analyse numérique pour les écoulements en eaux peu profondes[END_REF][START_REF] Bermúdez | Upwind methods for hyperbolic conservation laws with source terms[END_REF][START_REF] Galloüet | Some approximate Godunov schemes to compute shallow-water equations with topography[END_REF][START_REF] George | Numerical approximation of the nonlinear shallow-water equations with topography and dry beds[END_REF]. Unfortunately, the RKDG scheme defined in §2 is not well-balanced. Indeed, well-balancing requires a compatibility between the numerical flux and the discretization of the source term. The goal of this section is to design a well-balanced RKDG scheme. A first observation is that it is not possible to obtain ζ h + b ≡ C simply because b ∈ P p h . Hence, we seek for the optimal ζ h ∈ P p h in the least-squares sense, that is, we seek for The well-balanced RKDG scheme with slope limiting is obtained by modifying (2) as follows:

ζ h ∈ P p h such that ζ h + b h ≡ C where b h ∈ P p h is the L 2 -projection of b onto P p h . Recall that this projection verifies K b v h = K b h v h , ∀v h ∈ P p (K) , ∀K ∈ T h .
K v h ∂W h ∂t + ∂K v h φ K (W h ) - K ∂v h ∂x i F i (W h ) = K v h S(W h , b h ) + ∂K v h δ K (W h , b h ) . (11) 
Here, W h := (ζ h , q h ) with for K ∈ T h ,

ζ h | K :=    max(0 , ζ h | K -max(b h | Kσ -b h | K , 0)) , σ ∈ E i h (K) , ζ h | K , σ ∈ E ∂ h (K) ,
while q h := ζ h q h /ζ h , and where

δ K (W h , b h ) := 0 g 2 (ζ h | 2 K -ζ h | 2 K )n K . ( 12 
)
The difference between ( 2) and ( 11) is on the one hand that in [START_REF] Lesaint | On a finite element method for solving the neutron transport equation[END_REF] the numerical flux is evaluated using W h instead of W h (still using ( 3)), and on the other hand that the source term consists of a volume contribution K v h S(W h , b h ) (evaluated using the projected bathymetry b h ) and a surface contribution

∂K v h δ K (W h , b h ). In vector form, (11) can be recast into the form d -→ W h dt = H wb h ( -→ W h ) ,
where H wb h : R N → R N . The well-balanced RKDG scheme consists of replacing [START_REF] George | Numerical approximation of the nonlinear shallow-water equations with topography and dry beds[END_REF] by

-→ W k+1,i h = Λ i i-1 l=0 c l i - → w l hi , - → w l hi = -→ W k+1,l h + d l i c l i (∆t) k H wb h ( -→ W k+1,l h ) . (13) 
The key property of the above scheme is given in the following Proposition 1. The scheme (13) preserves steady-states at rest, i.e., for all k ∈ N,

ζ k h + b h ≡ C and q k h ≡ 0 ⇒ ζ k+1 h + b h ≡ C and q k+1 h ≡ 0 ,
where C denotes a fixed positive constant.

Proof. Let W h = (ζ h , q h ) ∈ [P p h ] m such that ζ h + b h ≡ C
and q h = 0 (the superscript k is omitted for brevity). We set d = 2 for the following of the proof, the case d = 1 is treated in a similar way. It is clear that it is sufficient to prove that for all K ∈ T h and for all

v h ∈ [P p (K)] m , ∂K v h φ K (W h ) - K ∂v h ∂x i F i (W h ) = K v h S(W h , b h ) + ∂K v h δ K (W h , b h ) .
Since W h corresponds to a steady-state at rest, it is readily verified that

• for all K ∈ T h and for all σ

∈ E i h (K), ζ h is single-valued on σ and equal to C -max(b h | K , b h | Kσ ); • q h = 0.
Using the consistency of the flux function φ * (see [START_REF] Katsaounis | Relaxation models and finite element schemes for the shallow water equations[END_REF]) then yields that

φ K (W h ) =   0 g 2 (ζ h | K ) 2 n K,1 g 2 (ζ h | K ) 2 n K,2   . Moreover, F 1 (W ) :=     0 g 2 ζ 2 h 0     , F 2 (W ) :=     0 0 g 2 ζ 2 h     , S(W h , b h ) :=       0 g 2 ∂ζ 2 h ∂x 1 g 2 ∂ζ 2 h ∂x 2      
, where we have used that ζ h + b h ≡ C to simplify the expression for S(W h , b h ). Using ( 12) and Green's formula yields the desired result.

Remark 1. The only property required on the numerical flux for the above result to hold is consistency (but not conservativity).

It is important to assess the accuracy of the above flux modification technique. This motivates the following

Proposition 2. Let W h ∈ [P p h ] m . Assume that for all K ∈ T h , ζ h | K is positive and that ζ h | K and (q h /ζ h )| K are uniformly bounded.
Assume that the bathymetry is smooth enough. Then, for all K ∈ T h , for all σ ∈ E i h (K), and for all x ∈ σ,

W h (x) -W h (x) R m + δ K (W h , b h ) R m ≤ ch p+1 K ,
where c is independent of T h and where • R m denotes any norm on R m .

Proof. Since the bathymetry is smooth enough, classical approximation results imply that for all K ∈ T h , for all σ ∈ E i h (K), and for all x ∈ σ,

|b h | K (x) -b h | Kσ (x)| ≤ ch p+1 K ,
whence the conclusion is readily inferred. Proposition 2 shows that the flux modification technique induces a perturbation of the original RKDG scheme of order h p+1 . Since the problem is nonlinear, it cannot be inferred that the error induced by this perturbation is necessarily of the same order. Numerical results reported in §5 confirm that the present flux modification technique preserves the high-order accuracy of the RKDG method.

Slope modification for flooding and drying

When the problem involves flooding and drying, it is necessary to prevent the discrete water depth from taking negative values. To this purpose, a procedure, similar in spirit to slope limiting, is introduced. On each mesh cell where the minimum (computed over the integration points) of ζ h is lower than a threshold ε, the following steps are taken.

For p = 0, the procedure is similar to that used in FV, namely setting to zero ζ h and q h . For p ≥ 2, the discrete solution is first projected onto linears and then the procedure for p = 1 is applied elementwise as follows:

• If the average of ζ h is negative, then ζ h and q h are set to zero.

• If the average of ζ h is nonnegative, this value is kept but the gradient of ζ h is modified in such a way that ζ h vanishes at vertices with negative value. More specifically in two space dimensions, let K be the reference triangle with vertices v 0 := (0, 0), v 1 := (1, 0) and v 2 := (0, 1). Introduce the nodal polynomial basis functions p 0 := 1 -x -y, p 

ζ h := ζ h K ζ h K -ζ i (ζ h -ζ i ) .
If ζ h is negative at two vertices, say v i1 and v i2 with i 1 , i 2 ∈ {0, 1, 2}, then

ζ h := ζ h K p i K p i , where i ∈ {0, 1, 2} \ {i 1 , i 2 }. It is straightforward to verify that ζ h K = ζ h K , ( 14 
) ∀x ∈ K, ζ h (x) ≥ 0. ( 15 
)
Finally, the discharge q h is modified by only setting its value to zero at those vertices where ζ h has been modified. Moreover, q h is also modified using a similar procedure whenever the discrete velocity norm is larger than a prescribed upper bound for the velocity in the flow. The overall transformation preserves mass because of ( 14) (as long as the average of ζ h is nonnegative), but not discharge.

The well-balanced RKDG scheme with slope modification consists of replacing ( 13) by

-→ W k+1,i h = Λ i i-1 l=0 c l i - → w l hi , - → w l hi = -→ W k+1,l h + d l i c l i (∆t) k H wb h (Υ -→ W k+1,l h ) , (16) 
where Υ : R N → R N is the mean-preserving and nonnegativity-enforcing transformation defined above. Slope limiting is not applied at the same time as slope modification, since the latter can activate artificially the former.

Numerical tests

Test cases presented in this section are regrouped into three subsections. In §5.1, we illustrate the ability of the classical RKDG scheme described in §2 to approximate smooth solutions with high accuracy and to capture sharply shocks for constant bathymetry. In §5.2, we illustrate the fact that the well-balanced RKDG scheme designed in §3 performs equally well in terms of accuracy and shock capturing when the bathymetry is variable. In §5.3, we assess the slope modification technique designed in §4 to handle flooding and drying within the well-balanced RKDG scheme. In the sequel, we set g = 9.81m/s 2 . When evaluating convergence rates below, the parameter h representative of a given triangulation is evaluated as the maximal length of an edge in the triangulation. Let us mention that the unstructured meshes considered henceforth are quite regular and smooth (in general, the minimal length of an edge in the mesh is larger than h/3). 2 )m and q 0 = 0m 2 /s. Since an analytical solution is not available, the error is calculated with respect to a reference solution computed on an uniform mesh of 200 cells with polynomial degree p = 3. Figure 1 presents the L 2 -error on the water depth for various mesh sizes. In all cases, the convergence rate is (p + 1) as expected.

Oblique hydraulic jump

The aim of this test case is to study the performance of the classical RKDG scheme in the case where the exact solution presents a shock. We consider the standard test case of an oblique hydraulic jump on a flat bottom [START_REF] Alcrudo | A high-resolution Godunov-type scheme in finite volumes for the 2d shallowwater equations[END_REF]. The definition of the problem is illustrated in Figure 2: a uniform horizontal inflow (state (ζ u , q 1u , q 2u )) is deflected by an oblique wall with deflection angle α. The steady analytical solution presents an oblique jump (angle β with the horizontal axis) separating the inflow zone from a constant downstream state (ζ d , q 1d , q 2d ) with (q 1u , q 2d ) = q d (cos(α), sin(α)). The Rankine-Hugoniot jump relations yield:

q 2 1u sin 2 β = q 2 d sin 2 (β -α) = gζ u ζ d ζ u + ζ d 2 , tan(α) = (ζ d -ζ u ) sin β ζ u sin 2 β + ζ d cos 2 β .
Imposing ζ u = 1m, ζ d = 1.5m and β = 30 • yields the approximate values: α ≈ 8.9483 • , q 1u ≈ 8.5776m 2 /s, (q 1d , q 2d ) ≈ (11.7941, 1.8571)m 2 /s. Furthermore, the initial condition is ζ 0 = 1m and q 0 = (8.57, 0)m 2 /s. We compute the DG solution on unstructured meshes for the degree of approximation p = 1. The initial and final approximations are represented in Figure 3. For all the conserved variables, the convergence rate of the L 2 -error is owing to the presence of a shock and the use of unfitted meshes (i.e., the oblique shock crosses some mesh cells). 
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Variable bathymetry

Steady-state at rest

The preservation of steady-states at rest by the well-balanced RKDG scheme can be illustrated on one-dimensional setting. The initial condition is PSfrag replacements 

ζ 0 + b = 1m and q 0 = (0, 0)m 2 /s with b(x) = (10e -x 2 + 15e -(x-2.5) 2 + 10e -(x-5) 2 /2 + 6e -2(x-7.5) 2 + 16e -(x-10) 2 )/20.
0m 0m 25m 5m q•n = 0 q•n = 0 ζ = 2m q 1 = 4.42m 2 /s q 2 = 0m

Subcritical flow

To assess the order of accuracy of the scheme, we now consider a classical test case of a subcritical flow over a bump [START_REF] Goutal | Proceeding of the second workshop on dam-break simulation[END_REF]. The definition of the problem is illustrated in Figure 5. The bathymetry is b(x, y) = max(0, 0.2 -0.05(x -10) 2 ) and the initial condition ζ 0 + b = 2m and q 0 = (0, 0)m 2 /s. After a finite time (for this test, we set T = 600s), the solution reaches a steady-state (see Figure 6). Using structured, fitted meshes in which the lines of discontinuity of the slope of the bathymetry coincide with mesh cell interfaces, the optimal order of convergence (p + 1) of the RKDG method is recovered. The errors in the L 2 -norm on the water depth for p ∈ {0, 1, 2} are plotted in the left part of Figure 7. Using unstructured, unfitted meshes, the optimal order of convergence (p + 1) of the RKDG method is not preserved. The errors in the L 2 -norm on the water depth for p ∈ {0, 1, 2} are plotted in the right part of Figure 7. The maximum order of convergence is 3 2 ; this can be explained by the fact that the exact solution is continuous but not C 1 inside some mesh elements.

Transcritical flow with shock

We consider the same domain and bathymetry as in the previous test case but the initial condition is ζ 0 + b = 0.33m and q 0 = (0, 0)m 2 /s. Moreover, the inflow discharge and the outflow water depth are q in = (0.18, 0)m 2 /s and h out = 0.33m [START_REF] Goutal | Proceeding of the second workshop on dam-break simulation[END_REF]. The obtained steady-state (observed at time T = 100s) presents a stationary shock (see Figure 8). The errors in the L 2 -norm on all the conservative variables (water depth and - discharge) are illustrated in Figure 9 for p = 1. As for reconstructed FV methods [START_REF] Audusse | Modélisation hyperbolique et analyse numérique pour les écoulements en eaux peu profondes[END_REF], the observed order of convergence is 1 2 .
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Flooding and drying

Ritter solution [34]

We now study the capacity of the slope modification technique to treat flooding. The domain Ω is a 50m × 40m rectangle and the bottom is flat. The initial discharge is q = (0, 0)m 2 /s and the initial water depth is set to zero for x > 20m and to ζ 0 for x < 20m. The analytical solution is self-similar, i.e., it depends only on ξ = x-20 t . It is given by - We have taken ζ 0 such that gζ 0 = 1m 2 /s 2 . The simulation time is T = 10s (such that the rarefaction wave does not reach the boundary of the domain) and we consider unstructured meshes (however, meshes are fitted to the discontinuity in the initial solution). The threshold ε introduced in Section 4 for the slope modification technique is set to 10 -6 . The initial and final approximate water depths are plotted for p = 1 in Figure 10. The test case is solved starting with the analytical solution at time t = 2. Thus the solution is at least everywhere continuous, but not continuously differentiable. The limiting process is not used since the solution is smooth enough. The errors in the L 2 -norm on the water depth are presented in Figure 11 order of convergence between 1/2 and 1 is expected), and respectively like h 1.3 and h 1.6 for p = 1 and p = 2 (since the solution is not smooth at the left end of the rarefaction wave, the global accuracy should be limited to 3 2 ). It is interesting to notice that the error is localized in the regions where the solution is not very smooth (near both ends of the rarefaction fan), which means that the accuracy of the method in the present case is preserved far from relative singularities. This is shown by Figure 12 which represents the L 2 -norm of the error on the water depth in the region {x ∈ [15; 35]} at time t = 10s for p ∈ {0, 1, 2}. One finds numerically that these errors behave respectively for p ∈ {0, 1, 2} like h 0.8 , h 2.5 , and h 3.2 .

   if ξ < - √ gζ 0 : ζ(x, t) = ζ 0 , q(x, t) = 0 else if ξ > 2 √ gζ 0 : ζ(x, t) = 0, q(x, t) = 0 else ζ(x, t) = 1 9g (ξ -2 √ gζ 0 ) 2 , u(x, t) = 2 3 (ξ + √ gζ 0 ) 0 

Parabolic bowl

The aim is to assess the capacity of the method to treat flooding and drying. We consider a parabolic bowl (the bottom corresponds to a paraboloid of revolution, i.e., b(x, y) = αr 2 with r 2 = x 2 + y 2 and α is a positive constant) for which the exact solution has a periodic behavior and the free surface is an oscillating paraboloid of revolution. The analytical solution (see [START_REF] Thacker | Some exact solutions to the nonlinear shallow-water wave equations[END_REF] for more details) is such that ζ(r, t) is non-zero for r < X+Y cos ωt (with ω 2 = 8gα, X and Y are constants such that X > 0 and |Y | < X), and

ζ(r, t) = 1 X+Y cos ωt + α(Y 2 -X 2 ) r 2 (X+Y cos ωt) 2 , u(r, t) = -Y ω sin ωt X+Y cos ωt ( x 2 , y 2 ) t . (17) 
The solution is periodic with a period τ = 2π ω . The computational domain Ω is a square of length L = 8000m centered at the origin. We set α = 1.6 10 -7 m -1 , X = 1m -1 , and Y = -0.41884m -1 . We use for this test case (with no relevant boundaries) a structured triangular mesh. The threshold ε is set to 10 -6 . We observe that the scale of this test case is close to realistic applications, the order of magnitude of the water depth being around 2m on a domain of kilometric size.

The solution is illustrated at different times in Figure 13. It was obtained with p = 1 on a triangular mesh obtained by cutting rectangles of a 50 × 50 Cartesian mesh. The relative error in global mass conservation is less than 0.0002%, confirming that the average of ζ h almost never takes negative values. The L 2 -norm of the error on the water depth is presented on Figure 14. Two different behaviors appear. During the first half period (t ∈ [0; τ /2]), the water spreads and flooding occurs. For p = 0, p = 1, and p = 2, the orders of convergence are respectively 0.9, 1.4, and 1.5. These results are close to expected orders of convergence (respectively, 0.5, 1.5, and 1.5). However, for the second half period (t ∈ [τ /2; τ ]), the water flows back and drying occurs. For p = 0, the order of convergence is close to 0.5, while for p = 1 and p = 2, the orders of convergence are close to each other and vary from around 1.1 down to 0.5. This means that the drying algorithm does not perform as well as expected. One can remark that the flooding and drying algorithm plays the role of a limiter. In the flooding zones, it has to limit numerical oscillations due to high order accuracy. However, in the drying zones, it has to limit both numerical oscillations and the physical drying process.

These two different behaviors can be illustrated by computing numerically the actual radius of the flooded zone during the computation. More precisely, we can compute (using the values of the discrete solution at quadrature points) the following radii: • the exact radius of the flooded zone r(t) = X+Y cos ωt α(X Furthermore, as µ → 0, r + (t, µ) and r -(t, µ) should be close to r(t). In the zone r < r -(t, µ), the ground can be considered as flooded (since ζ(t, x, y) > µ). On the contrary, in the zone r > r + (t, µ), the ground can be considered as dry (since ζ(t, x, y) < µ). The zone r -(t, µ) ≤ r ≤ r + (t, µ) is where the ground is marginally flooded. The different curves for µ ∈ {10 -2.5 , 10 -3.5 } are plotted on Figure 15 (polynomial order p = 1, triangular mesh obtained by cutting rectangles of a 100×100 Cartesian mesh). The left part of Figure 15 shows that the flooded zone is quite accurately captured. The right part of the figure shows that the dry zone is not accurately captured during the drying phase (areas with small ζ are actually expanding during the computation for µ = 10 -3.5 ). In particular, observing r + (t, µ = 10 -3.5 ) yields a possible explanation of accuracy loss in the drying phase of the computation: while zones with ζ > 10 -3.5 remain limited during the flooding phase, they spread (or at least do not diminish) during the drying phase, where large areas with small ζ remain. Additional investigations on that specific behavior are under way. Anyway, one should keep in mind that these considerations are aimed at obtaining the sharpest possible asymptotic behavior for the numerical method, while spurious water heights below one millimeter are not a concern in practical simulations.

Conclusions

In this work, we have designed a well-balanced RKDG scheme for the shallow-water equations.

In the absence of drying processes, the scheme performs well on structured or unstructured, fitted or unfitted meshes. As with classical CFE methods, the scheme delivers accurate solutions with high-order convergence rates whenever the solution is smooth enough. At the same time, the scheme can handle various nonsmooth wave structures (shocks, rarefaction fans), as FV methods. For drying processes, the scheme behaves satisfactorily in the present test case, since spurious oscillations where the water depth takes small values can be controlled below one millimeter over a domain with kilometric scale.

Appendix. The HLLE and HLLC fluxes

Let K ∈ T h , let σ ∈ E i h (K) and let K σ be the element of T h sharing the interface σ with K. Let x σ be an integration point on σ. Let W K = (ζ K , u K ζ K ) and W Kσ = (ζ Kσ , u Kσ ζ Kσ ) be the two states on both sides of x σ . Recall that n K,σ denotes the unit outward normal of K on σ.

The HLLE flux is used in one space dimension. This numerical flux is based on the approximation that the solution consists of three states, namely W K , W σ and W Kσ , separated by two waves of speeds c ± σ . Letting v K = u K •n K,σ and v Kσ = u Kσ •n K,σ , the wave speeds are evaluated as c + σ := max(0, max(v Kσ + gζ Kσ , v * σ + gζ * σ )), c - σ := min(0, min(v K -gζ K , v * σ -gζ * σ )), where

ζ * σ := ζ K + ζ Kσ 2 , v * σ := √ ζ K v K + ζ Kσ v Kσ √ ζ K + ζ Kσ ,
are the so-called Roe-averaged values. Then, the HLLE flux is evaluated as

φ HLLE * (W K , W Kσ , n K,σ ) := 1 2 (F 1 (W K ) + F 1 (W Kσ ))n K,σ + 1 2 Q σ (W K -W Kσ ) , with 
Q σ := c + σ + c - σ c + σ -c - σ 0 1 -(v * σ ) 2 + gζ * σ 2v * σ -2 c + σ c - σ c + σ -c - σ I 2 ,
where I 2 is the identity matrix in R 2,2 . In two space dimensions, the HLLC flux is preferred to the HLLE flux since the latter suffers from difficulties in resolving contact discontinuities and tangential waves. The HLLC flux is based on the approximation that the solution consists of four states, namely W K , W - σ , W + σ and W Kσ , separated by three waves of speeds c ± σ and c σ . The wave speeds are evaluated as c - σ := min(v Kgζ K , v Kσ -gζ Kσ ) , c + σ := min(v K + gζ K , v Kσ + gζ Kσ ) ,

c σ := 1 2 gζ 2 K -1 2 gζ 2 Kσ + ζ Kσ v Kσ (c + σ -v Kσ ) -ζ K v K (c - σ -v K ) ζ Kσ (c + σ -v Kσ ) -ζ K (c - σ -v K )
.

Then, the HLLC is evaluated as

φ HLLC * (W K , W Kσ , n K,σ ) := 1 2 (F i (W K ) + F i (W Kσ ))n K,σ,i + 1 2 (|c - σ | -|c σ |)W - σ + (|c + σ | -|c σ |)W + σ + |c - σ |W K + |c + σ |W Kσ , with c - σ -c σ c - σ -v K W - σ := W K + 0 ζ K (c σ -v K )n K , and c + σ -c σ c + σ -v Kσ W + σ := W Kσ + 0 ζ Kσ (c σ -v Kσ )n K .
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 211 Figure 1. Test case with smooth solution: L 2 -error on the water depth for p ∈ {0, 1, 2, 3}.

Figure 2 .

 2 Figure 2. Oblique hydraulic jump: problem setting.

Figure 3 .

 3 Figure 3. Oblique hydraulic jump: initial (left) and final (right) approximate water heights for p = 1.

Figure 4

 4 presents the approximate solution at time T = 1s obtained by the classical RKDG scheme and by the well-balanced RKDG scheme for p = 2 and an uniform step size of h = 1m. The importance of numerical waves introduced by the classical scheme and their elimination by the flux modification technique are clearly illustrated.

Figure 4 .

 4 Figure 4. Steady-state at rest: water height for the classical RKDG scheme (left) and for the wellbalanced RKDG scheme (right) for p = 2 at time T = 1s (bathymetry in bold line).

Figure 5 .

 5 Figure 5. Subcritical flow: problem setting (the leading and trailing edges of the bump are indicated by a dashed line).

Figure 6 .

 6 Figure 6. Subcritical flow: initial (left) and final (right) approximate water heights for p = 1 (structured, fitted meshes).

Figure 7 .

 7 Figure 7. Subcritical flow: L 2 -error on the water depth for p ∈ {0, 1, 2}: structured, fitted meshes (left) and unstructured, unfitted meshes (right).

Figure 8 .

 8 Figure 8. Transcritical flow with shock: initial (left) and final (right) approximate water heights for p = 1.

Figure 9 .

 9 Figure 9. Transcritical flow with shock: L 2 -errors on all the conservative variables (p = 1).

Figure 10 .Figure 11 .

 1011 Figure 10. Rarefaction wave: initial (left) and final (right) approximate water depths for p = 1.

Figure 12 .

 12 Figure 12. Rarefaction wave: local L 2 -error over {x ∈ [15; 35]} on the water depth for p ∈ {0, 1, 2}.

6 Figure 13 .

 613 Figure 13. Parabolic bowl: approximate water depth for p = 1 at times t = i τ 6 , (0 ≤ i ≤ 5).

Figure 14 .

 14 Figure 14. Parabolic bowl: max

Figure 15 .

 15 Figure 15. Parabolic bowl: r -(t, µ) (left) and r + (t, µ) (right) for µ ∈ {10 -2.5 , 10 -3.5 }.

  1 := x and p 2 := y. Let ζ h ∈ P 1 (K) be such that ζ h := 2 j=0 ζ j p j and assume that ζ h has negative values on K. Let ζ h K denote the mean of ζ h over K. If ζ h is negative at only one vertex, say v i with i ∈ {0, 1, 2}, then
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