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LOW MACH NUMBER FLOWS, AND COMBUSTION

THOMAS ALAZARD

ABSTRACT. We prove uniform existence results for the full Navier-Stokes
equations for time intervals which are independent of the Mach num-
ber, the Reynolds number and the Péclet number. We consider general
equations of state and we give an application for the low Mach number
limit combustion problem introduced by Majda in [B]

1. INTRODUCTION

For a fluid with density g, velocity v, pressure P, temperature 7', internal
energy e, Lamé coefficients (,n and coeflicient of thermal conductivity k,
the full Navier-Stokes equations, written in a non-dimensional way, are

Op + div(pv) =0,

VP
(1.1) Or(pv) + div(pv @ v) + = 1 (2div(¢Dv) 4+ V(ndivv)),
O(pe) + div(pve) + Pdive = kdiv(kVT) + Q,

where ¢ € (0,1], (4, ) € [0,1]? and Q is a given source term (see [[[1], [d, [[§]).
In order to be closed, the system is supplemented with a thermodynamic
closure law, so that p, P, e, T" are completely determined by only two of these
variables. Also, it is assumed that (, 7 and k are smooth functions of the
temperature.

This paper is devoted to the asymptotic limit where the Mach number ¢
tends to 0. We are interested in proving results independent of the Reynolds
number 1/4 and the Péclet number 1/k. Our main result asserts that the
classical solutions of ([[.])) exist and are uniformly bounded on a time interval
independent of €, ;4 and k.

This is a continuation of our previous work [[[J] where the study was re-
stricted to perfect gases and small source terms @ of size O(e). We refer
to the introduction of [ for references and a short historical survey of the
background of these problems (see also the survey papers of Danchin [f],
Desjardins and Lin [[[(], Gallagher [[J], Schochet [P4] and Villani [2§]).

The case of perfect gases is interesting in its own: first, perfect gases
are widely studied in the physical literature; and second, it contains the
important analysis of the singular terms. Yet, modeling real gases requires
general equations of state (see [, [[J]). Moreover, we shall see that it is
interesting to consider large source terms Q) for it allows us to answer a
question addressed by Majda in [[L§] concerning the combustion equations.
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1.1. The equations. To be more precise, we begin by rewriting the equa-
tions under the form

L(u, 0, Op)u + éS(u, Oz )u =0,

which is the classical framework of a singular limit problem.

Before we proceed, three observations are in order. Firstly, for the low
Mach number limit problem, the point is not so much to use the conservative
form of the equations, but instead to balance the acoustics components. This
is one reason it is interesting to work with the unknowns P, v, T' (see [[L]]).
Secondly, the general case must allow for large density and temperature
variations as well as very large acceleration of order of the inverse of the
Mach number (see Section 5 in [[Iff]). Since d;v is of order of e 2V P, this
suggests that we seek P under the form P = Cte + O(g). As in [2(], since

P and T are positive functions, it is pleasant to set
(1.2) P =P, T=Té,

where P and T are given positive constants, say the reference states at
spatial infinity. Finally, the details of the following computations are given
in the Appendix.

From now on, the unknown is (p,v, ) with values in R x R? x R. We are
interested in the general case where p and @ are uniformly bounded in ¢ (so
that VI' = O(1) and dyv = O(e71)).

By assuming that p and e are given smooth functions of (P, T), it is found
that, for smooth solutions of ([[.]), (P, v,T) satisfies a system of the form:

a(OP +v-VP)+dive = k5div(kVT) + Q,

vP
(1.3) p(Ow +v - Vu) + — = ©(2div(¢Dv) + V(ndivo)),
YT +v-VT)+dive = kddiv(kVT) + 6Q,

where the coefficients «, 3, v and ¢ are smooth functions of (P,T"). Then,
by writing 0; , P = €P0; 4p, O0; T = T0; 0 and redefining the functions k,
¢ and 7, it is found that (p, v, 0) satisfies a system of the form:

91(¢)(Op+v-Vp) + édivv = SX1(¢) div(k(0)V0) + §X1(¢)Q,

(14) 92(¢)(aﬂ) +v- VU) + éVp = ,U,B2(¢a 8x)1}7

93(0)(010 + v - VO) + dive = kx3(¢) div(k(0) V) + x3(4)Q,

where ¢ := (0,ep) and Ba(¢,0:) = x2(¢) div(¢(0)D-) + x2(¢)V(n(0) div -).

We are now in position to explain the main differences between ideal gases
and general gases. Firstly, we note that the source term @ introduces an
arbitrary unsigned large term of order of 1/ in the equations. Secondly, to
emphasize the role of the thermodynamics, we suppose now that Q = 0 and
we mention that, for perfect gases, the coefficient yi(¢) is a function of ep
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alone (see Proposition [A.§). Hence, for perfect gases, the limit constraint is
linear in the sense that it reads div v. = 0 with v, = v — kx1(0)k(0) V6. By
contrast, for general equations of state, the limit constraint is nonlinear.

1.2. Assumptions. To avoid confusion, we denote by (¢, p) € R? the place
holder of the unknown (6, ep). Hereafter, it is assumed that:

(H1) The functions ¢, n and k are C* functions of 9 € R, satisfying k > 0,
¢>0andn+2¢>0.

(H2) The functions g; and x; (i = 1,2,3) are C* positive functions of
(¥, p) € R2. Moreover,

X1 < X3,

and there exist two functions F' and G such that (9, p) — (F(9, p), p)
and (9, p) — (9,G(9,p)) are C* diffeomorphisms from R? onto R?,
F(0,0) = G(0,0) =0 and

91(%,— 93(%) ) 91X3619— 93X1ap .

Remark 1.1. Assumption (HP) is used to prove various energy estimates.
The main hypothesis is the inequality x1 < x3. In Appendix [A], it is proved
that the inequality x1 < x3 holds whenever the density p and the energy e
are C* functions of (P,T) € (0,400)?, such that p > 0 and
(1.5) P@—FT@:ane, @>0, @<O, Oe Op 9e Op,
oP oT oP OP oT oT oP =~ OPOT

1.3. Main result. We are interested in the case without smallness assump-
tion: namely, we consider general initial data, general equations of state and
large source terms (). To get around the above mentioned nonlinear features
of the penalization operator, we establish a few new qualitative properties.
These properties are enclosed in various uniform stability results, which as-
sert that the classical solutions of ([.4) exist and they are uniformly bounded
for a time independent of ¢, u and k. We concentrate below on the whole
space problem or the periodic case and we work in the Sobolev spaces H?
endowed with the norms ||ul| ;o = H(I - A)"/QUHLQ.

The following result is the core of all our other uniform stability results.
On the technical side, it contains the idea that one can prove uniform esti-
mates without uniform control of the L2 norm of the velocity v.

Theorem 1.2. Letd =1 ord >3 and N> s > 1+ d/2. For all source
term Q = Q(t,x) € C&(R x RY) and all My > 0, there exist T > 0 and
M > 0 such that, for all (e, p, k) € (0,1] x [0,1] x [0,1] and all initial data
(po,vo, Bp) € HTH(R?) satisfying

(1.6) |(Vpo, Vo) || grs—1 + || (8o, €po, vo) || grs+1 < Mo,

the Cauchy problem for (L4) has a unique classical solution (p,v,0) €
Co([0, T); H T (RY)) such that

(1.7) ap (V) Vo)l o1 + [1(0(2), ep(t), v(t)) || s < M.
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A refined statement is proved in Section [J.

A notable corollary of Theorem [[.9 is Theorem [.1], which is the requested
result for application to the low Mach number limit. Detailed discussions of
the periodic case and the combustion equations are included in Sections [
and fl. The assumption d # 2 is explained in Remark P.§.

2. PRELIMINARIES

In order not to interrupt the proofs later on, we collect here some esti-
mates. The main result of this section is Proposition .4, which complements
the Friedrichs-type estimate

(2.1) IVl go < [|div o] s + [leurl o] g ,

which is immediate using Fourier transform. We prove a variant where div v
is replaced by div(pv) where p is a positive weight.

Notation. The symbol < stands for < up to a positive, multiplicative
constant, which depends only on parameters that are considered fixed.

2.1. Nonlinear estimates. Throughout the paper, we will make intensive
and often implicit uses of the following estimates.
For all ¢ > 0, there exists K such that, for all u,v € L>® N H? (RY),

(2.2) [wvll o < K lullpoo [0l o + K llullgo [[0]l oo -

For all s > d/2, 01 > 0, 02 > 0 such that o1 + 09 < 2s, there exists a
constant K such that, for all u € H*~71(R%) and v € H*~92(RY),
(2.3) [wvll o-or-os < K [[ull gro=oy [[0]] gra=os -

For all s > d/2 and for all C* function F vanishing at the origin, there
exists a smooth function O such that, for all u € H*(R%),
(2.4) IE @) s < Crllell o) ull s -

2.2. Estimates in R3. Consider the Fourier multiplier VA~! with symbol
—i€/|€ |2. This operator is, at least formally, a right inverse for the diver-
gence operator. The only thing we will use below is that VA~ is well
defined whenever u = ujug with uy, us € L N H?(R?) for some o > 0.

Proposition 2.1. Given d > 3 and o € R, the Fourier multiplier VA~ is
well defined on L'(R%) N H? (RY) with values in H°T1(R?). Moreover, there
exists a constant K such that, for all u € L'(R?) N H?(R?),

(25) VA ) s < Kl o+ K o

Proof. Set (£) := (1 + |¢/)Y/2. Tt suffices to check that the L?norm of
(&) +1/[€]) [@(€)] is estimated by the right-hand side of (R.§). To do that

we write
20+2 2042
[ S meor dest, [ S @@ des i

where we used 1/ |€]? € L1({|¢] < 1}) for all d > 3. O
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The next proposition is well known. Its corollary is a special case of a
general estimate established in [f].

Proposition 2.2. Given d > 3 and s > d/2, there exists a constant K such
that, for all u € H*(RY),

(2.6) [ull oo < K[Vl gra-r -
Proof. Since H*(RY) — L*(R?), it suffices to prove the result for u in the

Schwartz class S(R?). Now, starting from the Fourier inversion theorem,
the Cauchy—Schwarz inequality yields the desired estimate:

d§ 12 2s—1) ey ey |2 12
e < ([ i) (%@ de) - < 19ul

Corollary 2.3. Given d > 3 and N > s > d/2, there exists a constant K
such that, for all uy,us € H*(RY),

(2.7) [urval| s < K |Vur | ges [[ual e -
Proof. One has to estimate the L?-norm of 0% (ujuz), where o € N? satisfies
|a] < s. Rewrite this term as w;0%us + [0S, u1]ua. Since the commutator

is a sum of terms of the form 85 u103us with 3 > 0, the product rule (@)
implies that

(2.8) 1105, walugll 2 S IVurll o luzll gs -
Moving to the estimate of the first term, we write

[urdzusl L2 < lluall poo lullzs S IIVULll o1 [zl s 0

2.3. A Friedrichs’ Lemma. With these preliminaries established, we are
prepared to prove the following:

Proposition 2.4. Let d > 3 and N 3 s > d/2. There exists a function C
such that, for all o € H**Y(R?) and all vector field v € H*T1(R?),

(2.9) IVollyze < C [[div(e?0)] 7. + C leurl o] .

where C:= (1 + [lo]l gas)C (el s, Vel oo )
Proof. For this proof, we use the notation
R = [[div(e#v) | g + el vl .

and we denote by C, various constants depending only on ||| ;s 4[| V|| oo -
All the computations given below are meaningful since it is sufficient to
prove (.9) for C* functions with compact supports. We begin by setting

v = v—l—VAfl(Vgo-v).
The reason to introduce v is that

e’ divo = div(ev), curlv = curlo.
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Hence, by using (R.1]), we have
(2.10) V0|l s < |le™# div(e?v)|| . + [lcurlv]| 7o < CLR.
The proof of (B.9) thus reduces to estimating vy := v — ¥, which satisfies
div(e¥v1) = —e?V - v, curlv; = 0.
Again, to estimate vy we introduce vy := vy + VA*I(V@ . vl), which solves
divoy = =V - 0, curlv; = 0.

The estimate (R.1)) implies that ||Voy] s < [V - 0] gs. By using (B-10)
and the product rule (R.7), applied with u; = v and us = V¢, we find that

@11) [Vl <196 Flge S Iellgens 19501 < llell e CoR

Hence, it remains only to estimate vo = v; — vy, which satisfies
div(efv9) = —e¥Vp .07 and curlvy = 0.

To estimate vo the key point is the estimate

(2.12) Vo 01| per < CuR,  with d* =2d/(d + 2).

Let us assume (P.19) for a moment and continue the proof.
The constraint curlvo = 0 implies that vo = VW, for some V¥ satisfying

div(e?VV¥) = —e?Vp - 11.

This allows us to estimate VU by a duality argument. We denote by (-, -)
the scalar product in L? and write

(VU ,VU) = (e’Vp v, V).

Denote by d the conjugate exponent of d*, d = d*/(d* — 1) = 2d/(d — 2).
The Holder’s inequality yields

(e?VU, V) < [|e?V - 0| pas [Vl 3 -

The first factor is estimated by means of the claim (2.12). In view of the
Sobolev’s inequality |||, 5 < [|[V¥| 2, we obtain

(e?VU, V) <C,R|VY|)2 .
By using the elementary estimate |[VE||3, < [le™?|| 1 (e?VT, VT ), we get

(2.13) lealle = IV¥]l2 < C,E.
The end of the proof is straightforward. We write
AV¥ = e ?div(e¥VVU) — Ve - VU = —Vp -7, — Ve - VU,
to obtain, for all o € [0, s — 1],
IV9 ) gt S IV 2+ A e S IV Bill o+ (1 + ol 20) 1V

To estimate the first term on the right-hand side, we verify that the analysis
establishing (R.7) also yields

IVe - vl ge S llells VoL o1 < CoR,
6



hence, by induction on o,
V¥ < CoR 4 Cop [V V|2 -
Exactly as above, one has
IV ser STV L2 + 1AV e S Ve - O1llgs + 1+ [l@ll gos) [V g
IV - vl gs S llell s VUL gor < llpll groer CoR-
As a consequence, we end up with
IV o1 < 1@l grats (CoR + Cy [[VV]|2).
Therefore, the L? estimate (R.13) implies that

[v2]l o1 = IVl orr <[l osr CoR.
By combining this estimate with (R.11), we find that

VUil s < Il gress Co .

From the definition of v; and (R.10), we obtain the desired bound (R.9).
We now have to establish the claim (R.19).
With d = 2d/(d — 2) as above, the Sobolev’s inequality and (B-1{) imply
that
[0l pz S IVoll 2 < CoRt.
On the other hand, the Holder’s inequality yields

~ ~ . 2d d
Ve -lls S IVl ol gz,  withd= 9+d d-1

By interpolating this estimate with |V - 9] ;7 < V|l [|[0]] .7, we obtain

Vpe[o,d], [IVe-vll SIVellanpe IVla < CoR.
Because curlv; = 0, one can write v; = VWq for some function ¥y sat-
isfying AU, = —V - v. Hence, the Calderon—Zygmund inequality and the
previous estimate imply that

IVorll s = [V s S 1AW s < CoR.
Therefore, the Sobolev’s inequality yields

. od d
||UIHLD < C@R, Wlth D = m = d_2,
hence, exactly as above, the Holder’s inequality gives
i 2D 2d
(2 14) vp € [da d]? He VSO leLP C@R, with d 5 T D 3d—4

The key estimate (2.12) is now a consequence of the previous one. Indeed,

the estimate (R.14]) applies with p = d* = 2d/(d + 2) since
2d 2d 2d =
Vd > 3, d= < < =d.
T 3d—-4 " d+2 " d-2
This completes the proof of (R.9). O

For later references, we will need the following version of (R.9).
7



Corollary 2.5. Letd =1 ord > 3 and N > s > d/2. There exists a function
C such that, for all o € H**1(RY) and all vector field v € H*+1(RY),

(2.15) IVl s < CUllell o) (1div ol e + [leurl(e?v) [ ).
Proof. The case d = 1 is obvious. If d > 3, Proposition R.4 (applied with
(¢, v) replaced with (—¢, e®v)) yields
IV (€20)ll e < (Il pres) (Idiv vl e + [leurl(e?v) |l s ).
Hence, to prove (R.15) we need only prove that

(2.16) IVl s < CUIell o) [V (EF0)] s -

To do that we write ;v = e7%0;(e®v) — (e~ ?0;¢)(e¥v). The usual product
rule (B-3) implies that the H® norm of the first term is estimated by the right-
hand side of (R.1¢). Moving to the second term, we use the product rule

(B2 to obtain ||(e¥00)(e?v)ll s < (1 + [l ge) 100 ] s IV (€90) | as

This proves the desired bound (R.14). O

Remark 2.6. The fact that Theorem [[.J precludes the case d = 2 is a
consequence of the fact that we do not know if (R.18) holds for d = 2.

3. UNIFORM STABILITY

In this section, we prove Theorem [[.3. We follow closely the approach
given in [I]: we recall the scheme of the analysis and indicate the points at
which the argument must be adapted.

Hereafter, we use the notations

a::(57ﬂ,/€)€142:(0,1]X[071]X[O,l]’ V=l + R,
HUHHZ“ = [lull go + o fJull ot (20, 0 €R).

Step 1: a refined statement. We first give our main result a refined form
where the solutions satisfy the same estimates as the initial data do. Also,
to prove estimates independent of p and k, an important point is to seek
the solutions in spaces which take into account an extra damping effect for
the penalized terms.

Definition 3.1. Let T > 0, a = (g, u, k) € [0,1]® and set v = \/u + K. The
space X5(T) consists of these (p,v,0) € C°([0,T); H*(R%)) such that

v(p,v,0) € C°([0,T]; H*TH(RY), (v, k) € L*(0,T; H*T2(R?)).
The space X;(T) is given the norm
1@, 0 )l sy = 1V, VO) | oo sy + (6, €ps €0) | poo (a1,
VRVl 2 gy + VEIVOI 2 sy
+Vu Atk VDIl L2 () + vk [div o]l L2 (g5 »

_— . i )
with || ||L;%(X) denoting the norm in LP(0,T; X).
8



The hybrid norm ||| ys+1 was already used by Danchin in Bl
For the study of nonlinear problems, it is important to relax the assump-
tion that @) € C§°.

Definition 3.2. The space F* consists of these function Q such that, for
allN 3> m < s, 0"Q € CYR; HF1-2m(R%)), where CP stands for C° N L>.

Given a normed space X, we set B(X; M) ={zx € X : ||z| < M}.

Theorem 3.3. Assume that d =1 ord > 3 and let N 5 s > 1+ d/2.
Given My > 0 and Q € F?, there exist T > 0 and M > 0 such that, for all
a = (e,1u,k) € A and all initial data (po,vo,0) € H*TH(R?) satisfying

(3.1) 1(Vpo, Vo)l grs—1 + [|(Bo, €po, €vo) || g1 < Mo,

the Cauchy problem for (L.4) has a unique classical solution (p,v,0) €
B(X;(T); M).

This theorem implies Theorem [[.2.

Remark 3.4. A close inspection of the proof indicates that Theorem B.3
remains valid with (B.1]) replaced by

[[(po, v0,00)| x50y = I(VPo, Vvo) || gra=1 + [ (60, €po, €vo) || yrs+1 < Mo.

Step 2: local well posedness. We explain here how to reduce matters
to proving uniform bounds. To do so, our first task is to establish the local
well posedness of the Cauchy problem for fixed a = (e, u, k) € A.

Lemma 3.5. Let d > 1, s > 1+ d/2 and a € A. For dll initial data
Uo = (po,vo,00) € H*(RY), there exists T > 0 such that the Cauchy problem
for ([4) has a unique classical solution U = (p,v,0) € C°([0,T); H®) such
that U(0) = Uy. Moreover, [0,T*), with T* < +00, is a maximal interval of
H? existence if and only if limsup; _p« |U(t) 100 (gay = +00.

Lemma B.J is a special case of Proposition [I.§ established below.
As in [fl, BOJ, on account of the previous local existence result for fixed
a € A, Theorem [[.7 is a consequence of the following uniform estimates:

Proposition 3.6. Letd =1 o0rd >3, N> s>1+d/2 and My > 0. Set
H>®(RY) := Ny>oH(RY). There exist a constant Cy and a non-negative
function C(-) such that, for all T € (0,1] and all a € A, if (p,v,0) €
C>([0,T]; H*®(RY)) is a solution of ([[4) with initial data satisfying (B-1),
then the norm Qq(T) := ||U|| ys(py satisfies

(3.2) 0(T) < Coexp((VT + £)C(Q(T))).

To prove Proposition B.6, as usual, a key step is to study the linearized
system. This is the purpose of Theorem B.10. With this result in hands,
to establish the desired nonlinear estimates (B.2), the analysis is divided
into four steps. This happens for two reasons. Firstly, on the technical
side, most of the work concerns the separation of the estimates into high
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and low frequency components, where the division occurs at frequencies
of order of the inverse of ¢ (since the second-derivative terms with O(1)
coefficients and the first-derivative terms with O(e71) coefficients balance
there). Secondly, there is a division into terms whose evolution is estimated
directly by eliminating large terms of size O(¢~!) (see Lemma and B.19),
and terms whose size is estimated by means of Theorem and the special
structure of the equations (see Lemma B.14).

This scheme of estimates has two useful properties. Firstly, it avoids
estimating the L2 norm of p and v (to obtain a closed set of estimates, we
will use the preliminary estimates from Section []). Secondly, it allows us to
overcome the factor 1/e in front of the source term . Indeed, the linear
estimate in Theorem is applied only to high-frequencies and weighted
time derivatives (£0;)"™. Hence, the fact that the source term is assumed
to be neither of high frequency nor have rapid time oscillations allows us
to recover the lost factor of € in the nonlinear estimates. Note that, in the
combustion case, the assumptions on the source term () may be verified
directly from the equations. Also, we mention that the L? norm of (p,v)
will later be estimated in Section [ under an additional hypothesis.

Let us fix some notations.

Notation 3.7. From now on, we consider an integer s > 1+ d/2, a fixed
time 0 < T < 1, a fixed triple of parameters a = (g, u, k) € A, a bound My,
a fixed smooth solution U = (p,v,0) € C>([0,T]; H*(R?)) of ([[4) with
initial data satisfying (B.1]) and we set

Q= Ul xs (1) -
With these notations, Proposition B.6 can be formulated concisely as follows:
if d # 2, there exist constants Cy depending only on My and C' depending

only on €2 such that
0< Coe(ﬁ+€)c.

Hereafter, we use the notations ¢ := (,ep) and v := \/u + k.

Notation 3.8. For later application to the nonlinear case when @ = F(Y)
for some unknown function Y, we also give precise estimates in terms of
norms of . For our purposes, the requested norm is the following:

(33) = Y |- ()22 (e +v-v)"Q

o<m<s

Loo(0,T;H ™) |

Remark 3.9. To use nonlinear estimates, it is easier to work in Banach
algebras. If d > 3, Proposition P.4 shows that we can supplement the X
estimates with L estimates for the velocity: it suffices to prove (B.9) with
C(Q(T)) replaced by C(27(T)) where Qf (T') := Qu(T) + [|0]| oo (0.7 xRY)-
Similarly, if d > 3, all the estimates involving the source term @ remain
valid with X replaced by

> ||a - @ray e

o<m<s

Loo(0,T;HS T ™)
10



Step 3: An energy estimate for linearized equations. A key step in
the analysis is to estimate the solution (p,v, ) of linearized equations. As
alluded to above, a notable fact is that we can see unsigned large terms
e~ 1f(t,z) in the equations for p and v as source terms provided that: 1)
they do not convey fast oscillations in time: 9;f¢ = O(1); 2) it does not
implies a loss of derivatives. To be more precise: in the nonlinear estimates,
we will see the term e~y (¢)Q as a source term. Similarly, we can see terms
of the form e~ ' F(ep, 0, /kV0) as source terms. As a result, it is sufficient

to consider the following linearized system:

(3.4)
()@ +v- VD) + = divs — = div(k(6)VF) = i,

9207 + v+ V) + V5~ uBa(6,0,)7 = Fy
93(0) (00 +v - VO) + G($, V) - T + div — rix3(¢) div(k(¢)V0) = Fs,

where the unknown (5,7, ) is a smooth function of (,z) € [0,T] x R<.
The following result establishes estimates on

13,7, 0) |z = (B, O zse ) + 16011 25 (12
(3.5) +VEIVO L2 3y + VIV L2 (13, )
+ v+ BVl 2 12) + VEIDIVD] 12 (12

in terms of the norm || (7,3 8)]la0 := |7, 9)(0)]| s, + 10(0) |53 of the data.

Theorem 3.10. Let d > 1 and assume that G, k1 and k3 are C*° functions

such that, for all (9, p) € R, 0 < k1(9, p) < x3(9, p)k(39). Set

Ry = [6(0)ll o1, R:= up. 16,0 + v - V6, V), V26, Vo) ()| 1o -
telo,

There exist constants Cy depending only on Ry and C depending only on R
such that,

" " T
(5.3, 0)ll,.r < Coe “ 1I(Bo. o, 6o)l0 + C/O 1CELs Bo) | g, + ([ F3]l gy -

In [Iil] we established the previous theorem with Ry and R replaced by
Ry =60l o, R = . (¢, e, 0, Vo, vV2, V) (1)| o -
telo,

To prove the above variant, we need only check two facts. Firstly, in the
proof of Theorem 4.3 in [fl], the terms ;¢ and v always come together within
terms involving the convective derivative 0y + v - V.

Secondly, we have to verify that the Lg%, norms of the coefficients (g;(¢),...)

are estimated by constants of the form Coe”“. In [ we used the estimate
sup [[F(¢(0)l e < (S0 + T sup [|0,F(S(1))] 1 < Cop+TC",

t€[0,T t€[0,T
11



for some constants depending only on Rj, and R’. Here, based on an usual
estimate for hyperbolic equations, we can prove a similar bound:

Lemma 3.11. Let F € C*®(R?) be such that F(0) = 0. There eist con-
stants Cy depending only on Ry and C depending only on R such that, for
all t € [0,T), [ F(6(6)] et < CocTC.

Proof. Since s — 1 > d/2, the Moser’s estimates (2.3) and (2.4) imply that
there exists a function C depending only on the function F' such that

180 + v V)F )] o
< (L+[|F'(0) = F ()| yos) 101 + - V)OO 1o
<C|(6 016 +v - Vo)l gemr) < C(R),

and [|F(¢(0))]| grs-1 < C([|$(0)[| gs-1)-
Hence, the desired estimate follows from the following estimate: there
exists a constant V' depending only on ||Vu|| Leops—1 such that

sup [[F(¢(0) | s < [ F(D(0)]| a1 +TV sup [[(0¢ + v - V)F((1))]] o -
te[0,T] te[0,T]

To prove this result we set u := 02 F(¢) where a € N% is such that |a| < s—1.
Then u solves

du+v-Vu=f =00 +v-V)F(®)) + [v,0] - VF(¢).
Since s — 1 > d/2, the product rule (B-J) implies that

0,09 - VE@)lz2 S Y. 07v0)VF(¢)|l 12
B+v=a, >0

S 100l 107V | gaoa-qien
B+y=a, >0

hence, [|fllz2 S (8 +v - V)F (D)l gor + VOl gor |1F(D)]] o1

We next use an integration by parts argument yielding

d - 2 . ~12 2
2 Nl < (U lldivollpe) [fullze + [1£172 -
The Gronwall’s Lemma concludes the proof. O

Step 4: High frequency estimates. We begin by estimating the high
frequency component

O = (1 = Je)Ull sy »

where {J, | h € [0,1]} is a Friedrichs mollifiers: Jj, = 3(hD;) is the Fourier
multiplier with symbol 7(h€) where j is a C™ function of ¢ € R?, satisfying

0<y<1, g§)=1for[f| <1, (&) =0for[{] =2, 3(&) =y3(=E).
12



Proposition 3.12. Let d > 1. There exist constants Cy depending only on
My and C' depending only on 2, such that

(3.6) QHF < Coeﬁc + \/TC |’Q”L§9(Hﬁ+1) .
Proof. Introduce P := (I —J.,)A* and U := (Pp, Pv, P§). Then, U satisfies
System (B.4) with
k1(¢) == x1(9)k(0),  G(, V) := g3(9) V0,
and F = (Fy, Fo, F3)T := fur + fo + fy, where

<P (6)Q) S ORCOND
fQ = 0 ) fX = 0 9
P(xs(9)Q) 0
and fyp is given by
frie = [91(6). Pl +v- V)p +01(9)[v. P] - Vp — = [Bi(6,0,), o,
fZHF [ ( ) ](8t+?} V)v—i—gz(qﬁ)[v,P] -V —M[Bg((ﬁ,aa;),P]v,
faur = [93(¢), P] (0 + v - V)0 + g3(¢){v; P} - VO — k[ Bs(¢,0.), P,
where B;(¢,0;) = xi(¢) div(k(0)V-) (i =1,3), [A,B] = AB — BA and

{v; P} V0 :=v-VPO+ (Pv)-V0—P(v-Vb).
Estimate for fur. We use the following analogue of Lemma 5.3 in [f[]: there

exists a constant K = K(d, s) such that
1L Plull < evEK NV fll e lullgs + ev KNV £l s llull oo

[1f, Plull yy S vE IV Fll oo el s + vE IV fll el g

The fact that the right-hand side only involves V f follows from the most
simple of all the sharp commutator estimates established in [[7: for all
s > 1+ d/2 and all Fourier multiplier A(D,) € OpSj, there exists a

constant K such that, for all f € H*(R?) and all u € HS(Rd)

37 AD)ull 2 < K[V Fllpee lull o + KAV fll s [Jull poo -

As in [, from this and the usual nonlinear estimates (R.9) and (R.4), it
can be verified that there exists a generic function C (depending only on
parameters that are considered fixed) such that,

el < C(I10, ep, v) || s+a) {1 + (0 + v - V)bl s + 0] grose}s
1 f2mrll 1 100, p, ev) grs+1) {1 + [|e(@ + v - V)ol s + pellev]] grasa}y
I f3mE ] 1 100, p, ev)|| grs+2 ) {1 + 115 + v - V)0l gy + £ 1|0]| sz }-
Set 1) = (0,¢ep,ev). The key point is that
10 +v - V)| s

< C(1Yl g ) {1+ ||(vVp, vdivu,epV3o, kV30)|
13
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This estimate differs from the one that appears in Lemma 5.14 in [ in that
the right-hand side does not involve v itself but only its derivatives. Yet, as
the reader can verify, the same proof applies since we do not estimate 0,1
but instead 9 + v - Vib.

Estimate for fo and f,. By using the elementary estimate
I = Ja)ull gopr S evllull o s
we find that
S IPOA (@, + IPO@Q iy < 1 (8)Q o1 + sl g
The tame estimates (.9) and (R.4) (see also Lemma 5.5 and 5.6 in [fl]) imply
i (@) gt S (14 [Ixi@) = xa(O)l g+ ) QU g+ S ClUI DM przr) 1 QN gz

so that HfLQHL%’(HgV) + Hf?»,QHL%»(H&) <C HQHL%O(HSH). The technique for
estimating f, is similar; we find that Hfl,XHLOO(Hl ) < C.
T =514

)
(

By definition of ||-|| xs(1)> the previous estimates imply that there exists
a constant C' depending only on {2 such that

T T
| IR By, + 1By e < V([
<SVTC +VTC||Ql e gy -

From here we can parallel the rest of the argument of Section 5 in []], to
prove that ||(Pp, Pv, PO)||,r < Co exp(VTC) + VTC HQHL%)(Hﬁﬂ) where

the norm ||-[|, » is as defined in (B-F). Since Q" < ||(Pp, Pv, PO)||, 1, this
completes the proof. O

1/2
(Fu, Fo)ll3s, + I Bslly dt)

Step 5: Low frequency estimates. The following step is to estimate the
low frequency part of the fast components:

QLF = Hle JEVU”L%O(HS_I) +v Hle JaVU”L%(HS)
+ ||VJ6VP||L§9(HS*1) +v HVJEVPHL?T(HS) :

Proposition 3.13. Let d > 1. There exist constants Cy depending only
on My, C depending only on Q and C’ depending only on Q+ X, such that

(3.9) QLF < CoeVTHeIC 4 /T,

By contrast with the high frequency regime, the estimate (B.9) cannot be
obtained from the L? estimates by an elementary argument using differenti-
ation of the equations (see [20, 4]). To overcome this problem, we first give
estimates for the time derivatives, and next we use the special structure of
the equations to estimate the spatial derivatives.

For the case of greatest physical interest (d = 3), the proof given in [fl]
applies with only minor changes. Indeed, as alluded to in Remark B.9, it
suffices to check that all the estimates involving ||v|| ;. remain valid with

|v|l ;s replaced by [|v] ;e + [[VV| gs—1. Yet, if d < 2, because of the lack of
14



L? estimates for the velocity, we cannot use the time derivatives. For this
problem, we use an idea introduced by Secchi in [RH]. Namely, we replace d;
by the convective derivative

Dv ::8t+v-V.

For the reader convenience, we indicate how to adapt the three main calculus
inequalities in [[] when &; is replaced by D

First, to localize in the low frequency region we use the following commu-
tator estimate. The thing of interest is the gain of an extra factor €.

Lemma 3.14. Given s > 1+ d/2, there exists a constant K such that for
alle € [0,1], allv € [0,2], all T > 0, all m € N such that 1 < m < s and all
fyu and v in C*([0,T]; H>*(D)),

1L/ Jew (Do) | o

< Ke{ | fll + b IAZ D) Do oo |
=0

m—1
x {IAZ D) ull g + D IAZHED) Ul jramsoe

=0
where A2, = (I — (ev)2A)7/2.
To apply the previous lemma, we need estimates of the coefficients f

and D, f. Since, for System ([L.4), the coefficients are functions of the slow
variable (6,ep, ev), the main estimates are the following.

Lemma 3.15. Let s > 1+ d/2 be an integer. There exists a function C(-)
such that, for all a = (e, p, ) € A, all T > 0 and all smooth solution
(p,v,0) € C>([0,T); H*(D)) of ([LA), if v € [(n+k)/2,2] then the function
W defined by

Po= (zp,Dvw,Vl/J) where 1 := (0,ep,ev),

satisfies

(3.10) D MG (D) T gomes < C(I1V]| gror + 53),
0<(<s

(3.11) D A (ED) |yt < (9] goms +5) [ g
0<(<s

where X is as defined in (B.).

Once this is granted, we are in position to estimate the commutator of
the equations ([L.4) and P := J.,(eD,)*:

(91(6), P] Dup + 91(&) [v.P] - Vb = Z[B1(6.0,), P,
fo.LF = [92(0), P] Dyv + g2(¢) [0, P] - Vv — pu[Ba(9, 8,), P,
[ga( (

far = [93(9), P] Db + g1(9) [v,P] - VO — k[Bs(¢, 05), P|6.
15
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It is found that
11l gy + 120l gy + 130l < (U4 (9] g)CUNY] s + ).

Note that W is estimated by means of (B.§).

As in the high frequency regime, we have to estimate source terms of the
form e "'PF (¥, Q). The fact that these large source terms cause no difficulty
comes from the fact that e 1 J.,(eD,)* F(¥,Q) = Jop(eDy) 1D, F(¥,Q)
together with D, F(¥,Q) = O(1) (the norm ¥ introduced in (B.3) is the
requested norm to give this statement a precise meaning).

With these results in hands, one can estimate J., (e D,)*(p,v,0) by means
of Theorem B.1(]. Next, we give estimate for div J.,v and VJ.,p from the
estimate of J.,(¢D,)*(p,v,0) by means of the following induction argument:

Lemma 3.16. Set |[ullcg(r) = llull g (aro-1) + v Il 22 (110
Let U := (p,v,0) solve
g1 (AP +v- VD) +e Ldive — ke 'x1 (o) div(k(0)VE) = f1,
(3.12) 92(0) (00 + v - VT) + e 'V — uBa(¢,0:)0 = fo,
93(0)(810 + v - V) + divd — rx3(¢) div(k(0)VE) = f3.

If support of the Fourier transform of U is included in the ball {|¢] < 2/ev},
then there exist constant Cy depending only on My and C depending only
on  such that, for all o € [1, 5],

IVDllico (ry + 1div o]l o ()
< C(ED)Bllicg 7y + C (D) div Bl g1

(3.13) _ _ ’
+ C VPl Lo 2y + ClIOO) | o1 + eC | ]| oo +1 oy

+eC||(f1, F2)llg () + vC /31l L2 a0y »
where C = C’oe(ﬁ+5)c.

Step 6: estimates for the slow components. To complete the proof
of (B.9), it remains to estimate curlv and 6. Yet, this is not straightforward.
Following Métivier and Schochet [R{], we begin by estimating curl(yv) for
some appropriate positive weight v = T'(6, ep).

Lemma 3.17. Let d > 1. There exist constants Cy depending only on My
and C depending only on Q, and there exists a function I' € C*®(R?) such
that, with v =T1'(0,¢ep), there holds

”C‘lﬂ(’YU)”L%O(Hs—l) Vi chrl(’YU)”L%(Hs) < Coeﬁc +VTC ”QHL%O(Hﬁﬂ) :

Lemma 3.18. Let d > 1. There exist constants Cy depending only on My
and C' depending only on ), such that

“JEVH“L%O(Hﬁ+1) +Vk HJaVHHLZT(H§+2) < Coeﬁc +VTC ”Q|’L%°(H,§+1) :

16



The proofs of Lemma and follow from a close inspection of the
proofs of Lemma 6.25 and 6.26 in [fl]. We just mention that this is where
we use the function F' of Assumption (HB) in §L.9 (7 is related to the fluid
entropy).

Lemma 3.19. Assume d > 3. There exist constants Cy depending only on
My and C' depending only on ) such that, with vo = I'(6o,epg) where I' is
as above, there holds

HCuﬂ(WOU)HL%(HS*l)_{_\//_‘ ||CUT1(70U)HL2T(HS) < Coeﬁc+\/fc HQHL%O(H;H) :

Proof. Set 7 := v — 7p. By Lemma B.17, all we need to prove is that
(3.14)

[lewrl(Yo)[| oo (grs-1y + Vit el ()| 2 sy < VTC +VTC QN oo 741y -
To do so, we claim that 7 is small for small times:
(315)  [Aleqe + 2 1l ey < VIC +VIC [Qll oy

Let us assume this and continue the proof.

We have to estimate curl(yv) = Jcurlv + (V7) X v. By combining the
Cauchy-Schwarz estimate with the usual product rule (R.J) and the product
rule (R.7), we find that

|WCUY1UHL%°(H5—1

VAT curl ]|z

‘W”Lgs(Hs—l) ”VU|’L%°(HS—1) )

7230 sy WAV 0l 3, 125
VY x UHL%O(HS—l ‘W”L%"(HS) HVU”L%O(HS—I) )
VIV 30l g2 sy < IV L2 (o) VOl Lo (51 -

The claim (B.15) then yields the desired bound (B.14).
We now have to prove the claim (B.1§). We first note that

) S
) S
) S
) S

v |W||L2T(HS+1) < VﬁHA'YJHL%O(HsH)
< V\/TC(‘|(9,€]?)‘|L39(L;0))(1 + ||(9,€p)HLg9(Hs+1))
< VTC(I(0,2p) | e rz+1)) < VTC.

To prove the second half of (B.15), we verify that, directly from the defini-
tions, 7 satisfies an equation of the form 0,y +v-V~4 = f with f bounded in
L?(0,T; H*(R%)) by a constant depending only on Q + HQHL%O(Hg“)- Then,
we apply the above mentioned estimate for hyperbolic equations:

T
(3.16) 30 e ey < € 13 (0] 115 +/0 OV f | gyt

where V' = KfOT V|| s—1 dt with K = K(s,d). Since ¥(0) = 0, by apply-
ing the Cauchy-Schwarz inequality, it is found that the L3 (H?®) norm of ¥
is estimated by vVTeTV ||f]| L2.(#+)> thereby obtaining the claim. O

17



Step 7: closed set of estimates. To complete the proof of Proposi-
tion B.6, it remains to check that we have proved a closed set of estimates.
The obvious estimate ||ul| 7o < ||Jovu|l o + [|(I — Jov)u|| o implies that

[(Vp, div U)HL%O(HS—l) + v+ &[[(Vp, div U)HLQT(HS) S Qur + Qur,

and, similarly, HHHL%O(Hgﬂ) +Vk HV@HLQT(HﬁH) is estimated by

‘|Jeu9||L39(H5+1) + VK HJE-:VVHHL%(HLS,H) + Qur.
The estimate |[eul|yo+1 S [leull 2 + [[Vull go-1 + [[(1 = Jev)ul| o+ yields

(3.17) (e, €0l oo sty + VANV 2 sy S lep,ev)l pae z2)
+ (VP V)l o g1y + VE VO L2112y + Quar-

On the other hand, Corollary R.J implies that, if d # 2, there exists a
constant Cy depending only on M such that

HVUHL%O(HS*U + Vi va||L2T(HS)
< Co [[(div v, curl(y00)) || e (gs-1) + Cov/[[(div v, curl(v0v)) || 22 g7y -

By using the estimate (8.§), one can verify that the term ||(ep, ev) ||L%O(L2) (in
the left-hand side of (B.17)) can be estimated as in the proof of Lemma B.11].
Therefore, according to Propositions B.12-§.1d and Lemma B.1§f.19, we
have proved that, if d # 2, then Q < C where C = Coe(ﬁ+5)c +VTC!
for some constants Cy, C' and C’ depending only on My,  and Q + X,
respectively.

This concludes the proof of Proposition B.§ and hence Theorem B.3.

4. UNIFORM ESTIMATES IN THE SOBOLEV SPACES

With regards to the low Mach number limit problem, we mention that the
convergence results ' proved in [l apply for general systems (not only for
perfect gases). To avoid repetition, we only mention that one can rigorously
justify the low Mach number limit for general initial data provided that one
can prove that the solutions are uniformly bounded in Sobolev spaces (see
Proposition 8.2 in [[l]). The problem presents itself: Theorem [[.3 only gives

uniform estimates for the derivatives of p and v. In this section, we give
uniform bounds in Sobolev norms.

Theorem 4.1. Let d > 1 and N 5 s > 1+ d/2. Assume that Q) = 0.
Also, assume that either x1 = x1(¢, p) is independent of ¥ or that d > 3.
Then, for all Mg > 0, there exist T' > 0 and M > 0 such that, for all
a=(g,p, k) € A and all initial data (po,vo,0) € H*THRY) satisfying

”(p07 o, HO)HH5+1 < M07

IThese results are strongly based on a Theorem of Métivier and Schochet [E] about
the decay to zero of the local energy for a class of wave operators with variable coefficients.
18



the Cauchy problem for ([L4) has a unique classical solution (p,v,0) in
CY([0,T); H*TY(R?)) such that

sup |[(p(t), v(t), ()|l s < M.
t€[0,T)

The first half of this result is proved in [f]. Indeed, the assumption that
X1(¥, ) does not depend on ¥ is satisfied by perfect gases. So we concentrate
on the second half (d > 3). In view of Theorem B.d, it remains only to prove
a posteriori uniform L? estimates. More precisely, the proof of Theorem [4.1]
reduces to establishing the following result.

Lemma 4.2. Let d > 3. Consider a family of solutions (p®,v®,0%) of (L.4)
(for some source terms Q%) uniformly bounded in the sense of the conclusion

of Theorem B.3:
(41) sSup ||(paava’9a)||X;(T) < +00,
acA

for some s > 14+d/2 and fixed T > 0. Assume further that the source terms
Q® are uniformly bounded in C'([0,T); L' N L?(R%)) and that the initial
data (p®(0),v%(0)) are uniformly bounded in L?>(RY). Then the solutions
(p®,v*,0%) are uniformly bounded in C°([0, T]; L2(R%)).

Remark 4.3. We allow Q% # 0 for application to the combustion equations.
To clarify matters, we note that one can replace (1)) by

sup sup |[(Vp®(t), Vo (£)) [ = + [160“ ()| grasr < +00,
a€A te[0,T)

for some s > 2 4 d/2.
Proof. For this proof, we set

R o= sup{ 0, 0", 6 gy + 10" (00" Ol + 1@ onqorasrs

and we denote by C(R) various constants depending only on R.
The strategy of the proof consists of transforming the system ([.4) so as to
obtain L? estimates uniform in € by a simple integration by parts argument.
To do that we claim that there exist U? € C'([0,T]; L?(R?)) satisfying
the following properties:

(4.2) sup H(Paﬂfa)”Lgs(LQ) < sup ”UaHLgs(LQ) + C(R),
acA acA

(4.3) sup [[T(0)]] .2 < C(R),
ac
and U® solves a system having the form
(4.4) E QU +715(9,) U = F*,

where S(0;) is skew-symmetric, the symmetric matrices E% = E%(t,x) are
positive definite and one has the uniform bounds

a a\ — —1 a
(4'5) SEE HatE ||L°°([O,T}><Rd)+H(E ) 1HLoo([07T}><Rd)+HF HL%(LQ) < C(R)
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Before we prove the claim, let us prove that it implies Lemma [£.3. To see
this, we combine two basic ingredients:

1d 1
§E<EGU“, Us) = - 1{S(0,)U*, U") + (F*, U") + 5((6tE“)Ua, ue)

<NF?IZ2 + CR) U172

and HU“H%Q < H(E“)*IHEL (E*U*,U®). Hence, by (£3) and ([LJ), the
Gronwall’s Lemma implies that HU“HL%;(LQ) < C(R). The estimate ([.2)

thus implies the desired result.
To prove the claim, we set U® := (p®,v® — V“)T where

VO i= mxa (§)k(09) V0% + VAT (—rVx1(6%) - K(O)VO" + x1(6)Q").

The fact that V¢ is well defined follows from Proposition R.1. We next verify
that U® satisfies ([..4) with

= (25 o) sea= (g ),

Fe— ( —g1(¢")0" - Vp° )
—g1(¢")0" - Vo' + uBy(¢7, 02 )v" — g2(¢")0, V) -
By (), (B-4) and (2-9), to prove that the bounds ([.9) and ([£5) hold, it

suffices to prove that ||0;¢%|| ys—1 < C(R). Yet, this is nothing new. Indeed,
we first observe that, directly from the equations,

010" + v - V|| g1 < C(R).

On the other hand, the product rule (R.7) implies that [[v® - V|| e—1 is
estimated by ||[Vv?|| ys-1 |¢] 7= < C(R). This completes the proof. O

Remark 4.4. For our purposes, one of the main differences between R?
and R is the following. For all f € C§°(R?), Proposition P.§ implies that
there exists a vector field u € H*(R3) such that divu = f. In sharp
contrast, the mean value of the divergence of a smooth vector field u €
H°®°(R) is zero. This implies that Lemma [£.9 is false with d = 1.

The following result contains an analysis of the easy case where initially
0o = O(e). This regime is interesting for the incompressible limit (see [B]).

Proposition 4.5. Let d > 1 and R 3 s > 1+ d/2. For all My > 0,
there exists T > 0 and M > 0 such that for all a € A and all initial data
(po, vo,00) € H*(R?) satisfying

(4.6) 1(Posvo)ll = + &~ |80l 7= < Mo,

the Cauchy problem for ([L4) has a unique classical solution (p,v,0) in
CY([0,T]; H*(RY)) such that

(4.7) sup [|(p(t), v(E) | g7 + €10 7o < M.

te[0,T)
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Proof. The proof of this result is based on the change of unknown (p, v, 8) —
(G(0,ep),v,0) where G is as given by Assumption (Hf) in §[.9 By setting
p = G(0,¢ep) it is found that (p,v,0) satisfies ([L.4) if and only if

x3(0ip +v-Vp) + (x3 — x1)dive =0,
(4.8) G2(Ov + v - V) 4+ e 29Vl + e 27, Vp — uBov = 0,
93(00 + v - V) + dive — ks div(kVE) = 0,

where 71 = (x193)/(x391) and 72 = 1/g1. Notice that Assumption (Hp)
implies that the coefficients g;, v;, x3 and x3 — x1 are positive.

The key point is that the assumption (f.6) allows us to symmetrize the
equations by setting u := (p, v, é), where

pi=ctp, O:=c10.

The fact that this change of unknowns is singular in € causes no difficulty.
Indeed, directly from the assumption (), we have ||0(0)|| ;s < My. On
the other hand, the assumption G(0,0) = 0 implies that there is a function
Cg such that ||G(u)]| o < Ca(||ullp) ||lull 4o for all w € H? with o > d/2.
Therefore, we have

1Al e = €™M IG(8,ep) | s < 7 Ca (19, ep)ll o0 ) 118 €p) I 5

4.9 ~
(4.9) < Co[10: ep) )| G- p) 1

hence, ||5(0)|| s < Cop for some constant depending only on M.

Because (¢, p) — (¢,G(9,p)) is a C* diffeomorphism with G(0,0) =
0, one can write ep = P(0,G(0,ep)) = P(6,p), for some C* function P
vanishing at the origin. Therefore one can see the coefficients (g;, xi, Vi---)
as functions of (6, p). Hence, with u = (p,v,0) as above, one can rewrite

System ([.§) under the form

(4.10) Ap(eu)Opu+ Z Aj(u,esu)aju—i—1 Z Sj(ew)0ju—B(eu, Oy )u = 0,
155<d £ 1G<d

where the matrices S, A; are symmetric (with Ag positive definite) and the
viscous perturbation B(eu,d;) is as in ([.§).

Note that one can always assume that the matrices S; have constant co-
efficients. Furthermore, since the matrix Ay multiplying the time derivative
depends only on the unknown through eu, and since the initial data u(0)
are uniformly bounded in H?®, the proof of the uniform existence Theorem
of [[5] applies. By that proof, we conclude that the solutions of (f.10) exist
and are uniformly bounded for a time T independent of €. Once this is
granted, it remains to verify that the solutions (p,v, ) of System ([.4) exist
and are uniformly bounded in the sense of (J.7). To see this, as for 5 in
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(E9), we note that

1Dl s = [P0, )| s
< e Cp([10: )l o) 10: )l 2= = CP (0, P) | Lo )18, ) | =
<Ol p)la),
so that ||(p,v)|| s + 71 |0]l;7s < C(||ullz7). This completes the proof. [

Remark 4.6. Consider the Euler equations (@ = 0 = x and € = 1). By
a standard re-scaling, Proposition [L.5 just says that the classical solutions
with small initial data of size ¢ exist for a time of order of 1/§. Following
the approach initiated by Alinhac in [J], several much more precise results
have been obtained. In particular, the interested reader is referred to the
recent advance of Godin [[[4] (for the 3D non-isentropic Euler equations).

5. SPATIALLY PERIODIC SOLUTIONS

In this section, we consider the case where x belongs to the torus T¢.

Theorem 5.1. Let d > 1 and N 5 s > 1+ d/2. For all source term
Q € C*(R x T and for all My > 0, there exist T > 0 and M > 0 such
that, for all a € A and all initial data (po,vo,0o) € H*1(TY) satisfying

||(p05v0)”H5 + ||(90,€p0,6U0)‘|H5+1 < MO’

the Cauchy problem for (L4) has a unique classical solution (p,v,0) in
CY([0,T); HTY(T?)) such that

sup [[Vp()| s + [[v(@)ll s + 16(), ep())]] s < M.
te[0,7)

The proof follows from two observations: first, the results proved in
Steps 1-6 in section [| apply mutatis mutandis in the periodic case; and
second, as proved below, the periodic case is easier in that one can prove
uniform L? estimates for the velocity. This in turn implies that (as in [fl, {))
one can directly prove a closed set of estimates by means of the estimate:

[Vl s (pay < Clldiv ol g (pay + Clleurl(y0) || a1 (pay + C 0]l 2y 5

for some constant C' depending only on [[log || s g4y (compare with RI19)).
Let us concentrate on the main new qualitative property:

Lemma 5.2. Let d > 1. Consider a family of solutions (p®,v®,0%) of (L.4)
(for some source terms Q%) such that

sup ”(paa va7 Ha)”/\’(f(T) < 400,
a€A

for some s > 1+ d/2 and fitzed T > 0. If Q% is uniformly bounded in
CY([0,T); L*(T9)) and (p®(0),v*(0)) is uniformly bounded in L*(T%), then
v® is uniformly bounded in C°([0,T]; L?(T4)).
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Proof. The main new technical ingredient is, as used by Schochet in 2J], an
appropriate ansatz for the pressure.

Again, the proof makes use of the Fourier multiplier VA~!. Note, that
VA~! is bounded from L?(’]I‘d) to H'(T?) where L?(Td) consists of these

functions u € L*(T?) such that (u) := [, u(z)dz = 0.
Set

F* = rx1(¢%) div(k(0) V) + x1(6")Q",
and introduce the functions V¢ = V(¢,z) and P* = P*(t) by
(F?)

P @y

and V®:= VA~ F* - g (¢*)P?),
so that
F* = gi1(¢")P* 4+ div V"

This allows us to rewrite the first equation in ([L.4) as

91(6") (Oep® + v - Vp*) + &~ Hdiv(v" — V) = g1(¢") P*.
Therefore, by introducing

U= (¢%v* = VO with ¢%t,z) = p*(t,z) — P(t),
we are back in the situation of Lemma [l.%: U® satisfies
(5.1) EY(0,U" +v* - VU®) + ¢ 15(8,)U* = F°,

where S(0,) is skew-symmetric, the matrices E* are positive definite and
11
(B, 0B +v® - VE)|| oo 0,77 xra) + || (E®) 1”Loo([o,T}de) HIE Ly z2)

is uniformly bounded.
As before, the proof proceeds by multiplying by U® and integrating on T¢.
We find that 0;( E*U*, U®) is given by

(B + 0" - V)EY)U*, U") + (EY(divo")U*, U*) + 2(F*, U");
and hence conclude that U? is uniformly bounded in C°([0,T]; L?(T%)).

Since V¢ is uniformly bounded in C°([0, T]; L?(T%)), this yields the desired
result. O

Remark 5.3. In the periodic case, as shown by Métivier and Schochet [21],
as well as Bresch, Desjardins, Grenier and Lin [fi], the study of the
behavior of the solutions when € — 0 involved many additional phenomena.

6. Low MACH NUMBER COMBUSTION

The system ([[.1) is relevant whenever all nuclear or chemical reactions are
frozen, which is the case in many treatments of fluid mechanics. By contrast,
for the combustion, one has to replace the energy evolution equation by

O¢(pe) + div(pve) + Pdive = kdiv(kVT) + F(Y),
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with Y := (Y1,...,Yr) where the Y;’s denote the relative concentrations of
nuclear or chemical species. The new unknown Y; satisfies :

(6.1) Ou(pYe) + div(pvYy) = Adiv(DeVYy) + puog(t, @),
where wy is a given source term, Dy > 0 and A measures the importance of
diffusion processes.

Many results have been obtained for the reactive gas equations (see [f]

and the references therein). Yet, the previous studies do not include the
dimensionless numbers. Here we consider the system:

a(OP 4+ v-VP)+dive = kdiv(kVT) + FA(Y,T, P),
VP . .

p(Ow 4+ v - Vo) + = ©(2div(¢Dv) 4+ V(ndivv)),

YT +v-VT)+dive = kddiv(kVT) + F5(Y, T, P),

p(0Y +v-VY) = Adiv(DVY),

where a, 3, v and § are given functions of (Y, T, P).

As explained in the introduction, it is convenient to introduce (p, 6,y) by
P=DPe?, T =T, Y =YeY, where (P,T,Y) € [0,+00)?TL. For smooth
solutions, (p, v, 8,y) satisfies a system of the form:

(6.3)

(6.2)

G1(®)(@p -+ v~ Vp) + — dive = T3 (@) div(k(6)V0) + ZQi(®),

92(®)(0p -+ - V) + ~Vp = ja(®) (div(C(6) D) + V(5(6) div v)),
93(®)(8,0 + v - V) + dive = k3 (®) div(k(0)VO) + Q3(®),
94(®)(Opy + v - Vy) = Axa(®) div(D(0)Vy),

where ® = (y,6,¢ep).

Assumption 6.1. Denote by (y, 9, p) € RY the place holder of the unknown
(y,0,ep). Parallel to Assumption (HE) in §.9, we suppose that g; and x;
(i = 1,2,3) are C* positive functions of (y,, p) € RY, x; < x3 and there
exist two functions F' and G such that (y,9,p) — (y,F(y,?, p),p) and
(y,9,9) — (v,9,G(0,p)) are O diffeomorphisms from RY onto RV, F
and G vanish at the origin, and

OF __ OF oG __,  0G _
91819_ 938p > 91X3879_ 93X18p .

Moreover, 1 and Q3 are C* functions of (y, ¥, p) vanishing at the origin.
Introduce
Bi= { (e ) € (0,1] % [0,1] % [0,1] x [0,2]| A > Vi F 7 }

Definition 6.2. LetT >0, s € R, b= (e, u,k,\) € B and set a := (e, 1, k).
The space Z§(T) consists of these (p,v,0,y) € C°([0,T); H*(R%)) such that

(p,v.0) € X3(T), vy e CO0, T H(RY), Xy e L*(0,T; HyP(RY)),
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where v := \/u+ r and X5(T) is as defined in Definition [3.4. The space
Z3(T) is given the norm

H(P7U797y)Hzg(T) = ”(p7U=Q)HX;(T) + “y“L%O(H5+1) + \/X”ZJHL;(HgH) :

Having proved estimates for the solutions of System ([[.4) with precised
estimates in terms of the norm ¥ of the source term Q (see (B.)), we are
now in position to assert that:

Theorem 6.3. Assume that d # 2. Given My > 0 and N> s > 1+d/2,
there exist T > 0 and M > 0, such that for all b € B and all initial data
(pOav(]a HO,yO) € H8+1(Rd) satzsfymg

H(vp07VUO)HH5—I + H(y07007€p07€v0)”H3+1 < MOa

the Cauchy problem for ([L4) has a unique classical solution (p,v,0,y) in
the ball B(Z;(T); M).

Remark 6.4. For the case of greatest physical interest (d = 3), Theorem [5.3
has two corollaries. As alluded to in Section [, it allows us to rigorously
justify, at least in the whole space case, the computations given by Majda
in [[§]. By the way, this proves the well posedness of the Cauchy problem
for the zero Mach number combustion in the whole space (this was known
only in the periodic case [[L1]]). Moreover, note that the solutions given
by Theorem satisfy uniform estimates recovering in the limit ¢ — 0
those obtained by Embid for the limit system. Finally, we mention that the
previous analysis seems to apply with Q;(®) replaced by x;(®)Q(®, Vy, V2y)
for some smooth function @, yet we will not address this issue.

APPENDIX A. GENERAL EQUATIONS OF STATE

Recall that, in order to study the full Navier-Stokes equations ([[.1)), we
choose to work with the unknown (P,v,T). In order to close this sys-
tem, we must relate (p,e) to (P,T) by means of two equations of state:
p=p(P,T)and e = e(P,T). The purpose of this section is to show that As-
sumption (Hf) in §[.3 is satisfied under general assumptions on the partial
derivatives of p and e with respect to P and T'.

A.1. Computation of the coefficients. We begin by expressing the co-
efficients g; and x;, which appear in ([.4), in terms of the partial derivatives
of p and e with respect to P and T. To do that it is convenient to introduce
the entropy. Here is where the first identity in ([[.5) enters.

Assumption A.1l. The functions p and e are C* functions of (P,T) €
(0, +00)?, satisfying
ap ap 5 Oe
2F L pZF 207
op o ~ " op
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Introduce the 1-form w defined by Tw := de+ P d(1/p), where we started
using the notation d f = (0f/0T)dT + (0f/OP)d P. Assumption [A.T] im-
plies that dw = 0. Hence, the Poincaré’s Lemma implies that there exists
a C™ function S = S(P,T), defined on (0,+00)?, satisfying the second
principle of thermodynamics:

(A1) TdS =de+ Pd(1/p).

By combining the evolution equations for p and e with ([A.]]) written in the
form pT'dS = pde — (p/p)dp, we get an evolution equation for S, so that

@ +v-7) (g) - (}p (pz(ﬂ))%) (mw(%% +Q>'

On the other hand, one has

@ +v-V) (g) — IO+ V) (;) with J = (ggégi gg;g};) .

Equating both right hand sides and inverting the matrix J, we obtain

A9 (8P +v-VP)+adive — kbdiv(kVT) = bQ,
i (0T +v-VT) + cdive — kddiv(kVT) = dQ,

where

_ p(0S/0T) " _0p/oT p(9S/0P) dp/oP

det(J) pT det(J)’ det(J) = pTdet(J)

To express the coefficients g; and y; in terms of physically relevant quan-
tities, we need some more notations. We introduce

1 dp 10p 8S/oP
K = —— = 9 = - 9
A3) ATE L Y AR T T2
Yo 98 . pOS/OT)(9p/OP) — (9S/OP)(DS/OT)
P ar Vo dp/oP

The functions K7, Kp, Cy and Cp are known as the coefficient of isothermal
compressibility, the coefficient of thermal expansion and the specific heats
at constant volume and pressure, respectively (see Section 2 in [[12]). The
function R generalizes the usual gas constant: for perfect gases one can
check that R = R.

We now have to convert System [A.9 into equations for the fluctuations p
and 6 as defined by ([.7). Performing a little algebra we find that

KTCVP 1 . HKP 1Kp
— (0 -V ~-d — -
CP ( tp+v p)+€ v €pCp €,OCP

1
p(Opv +v - Vo) + gPVp = p(2div(¢Dv) + V(ndivv)),

pCyT (00 + v -VO)+ RpT dive — kdiv(kTV0) = Q.
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Hence, (p,v,0) satisfies ([[.4) with

KpCy P p Cy Kp 1 1
A4 *:7, *:—, *:—, *: 3 *:—, *: 9
(Ad) g Cp RT P BT RXT = 5T op
where we used the following notation: for all f: (0, +00)? — R,

(A.5) F1(0,9) = f(Ze”, Pe?).

A.2. Properties of the coefficients.

Assumption A.2. The functions p and e are C* functions of (P,T) €

(0,+00)? such that, p > 0 and
dp dp

Oe Op _ Oe Op
(A.6) 8_P>0’ 6_T<0 and a_T@—P>6_P6_T

Remark A.3. This assumption is satisfied by general equations of state.
Indeed, (A just means that the coefficients K7, Kp and Cy are positive.

The following result prove that Assumptions [A.1] and [A.3 imply that our
main structural assumption is satisfied.

Proposition A.4. If Assumptions and [A are satisfied, then x1 < x3
and g;, xi (1 =1,2,3) are C* positive functions.
Proof. In view of (A4), the proof reduces to establishing that
Cp
TKp
The first two inequalities follow from the definitions of K1 and Kp. To prove

the last two, we first establish the Maxwell’s identity 8S/0P = p=2(dp/0T).
To see this, by ((A]), we compute
95 AT AdP = d(TdS) = a{de+ Pd@)} = L% gpprar
opr p p2 0T '
Since dp/0T < 0, the Maxwell’s identity implies that 9S/0P < 0. By
combining this inequality with dp/0P > 0, we find R > 0. Also, the
identity 0S/0P = p=2(0p/0T) implies that
Cr (95/0T)(9p/0P)
Cv  (9S/0T)(0p/OP) — p=2(dp/OT)"

which proves Cy < Cp.

0<Kp, 0<Kp, 0<Cy<Cp and 0<R<

de O de 0
In view of ([A.]), the assumption geIp  IEIP 4 equivalent to

oT P ~ 0OPOT
05 0p _ 95 0p.
oT oP =~ OPOT
This inequality has two consequences. Firstly, it implies that Cy > 0.
Secondly, it yields
TKpR _ (0S/0P)(0p/0T) <1
Cp (0S/0T)(0p/OP) ’
This concludes the proof. O
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We now discuss the physical meaning of the functions F and G introduced
in §.3. These are compatibility conditions between the singular terms and
the viscous terms. To see this, suppose (p,v,6) is a smooth solution of ([[.4)
and let U = W (9, p) € C°(R?). Then v := ¥ (0, ep) satisfies

9193(8) + v - V)

ov ovy . ov vy , ..
+ <918—79 + 93%) dive = H(ngBa—ﬁ + 93Xx1 %) (d1v(k:(9)V9) + Q),
—_——— ~— v/
=T'1(T) =:T'2(T)
where the coefficients g;, x;, 0¥ /009 and 0¥ /Jp are evaluated at (6,ep). We
next show that for appropriate function ¥ one can impose

(A?) [Fl(\l’) =0 and FQ(\II) > 0] or [Fl(\lf) > 0 and FQ(\I]) = 0]
Proposition A.5. Assume that Assumptions [A1] and [A.3 are satisfied and
use the notation (A.H). The functions S* and p* satisfy

55 55 ap* dp*
A. 20 g2 Lo 2 <o
(A.8) 9153 9555 >0, 91X3 55 43x1° <0

Remark A.6. The fact that ¥ = S* (or ¥ = p*) satisfies the first (respec-
tively second) set of conditions in ([A.]) now follows from x; < xs3.

Proof. By (A.4) and the definitions given in ([A.3), one has

gi  P(0S/oP)
& o = T(@s/0T)

By definition (&), 9f*/09 = [T(9f/0T)]" and 9f*/0p = [P(0f/0P)]".
This proves that S* satisfies the first identity in (A.§). Next, we compute

Xi _ (0p/0T)(05/9P)

x5 (9p/0P)(05/0T)
By (A.9), this yields x}g5 P(0p/0P) = —x39;T(dp/0T). Which proves that
p* satisfies the second identity in (A-§). O

Remark A.7. Assumption (HB) in §[L.9 requires, in addition, that F' = S*
and G = p* define bijections. This means nothing but the fact that the
thermodynamic state is completely determined by (P, T'), or (P, S) or (p,T).

The following result contains an example of equation of state such that
x1 depends on 7.

Proposition A.8. Assume that the gas obeys Mariotte’s law: P = RpT,
for some positive constant R, and e = e(T) satisfies Cy = 0e/OT > 0.
Then, Assumptions [A] and [A-] are satisfied. Moreover,

xi =R/((Cv(T) + R)P),

so that x1(9, p) is independent of ¥ if and only if Cy is constant.
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